Metamath Proof Explorer


Theorem eulerpartlems

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 6-Aug-2018) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypotheses eulerpartlems.r R=f|f-1Fin
eulerpartlems.s S=f0Rkfkk
Assertion eulerpartlems A0RtSA+1At=0

Proof

Step Hyp Ref Expression
1 eulerpartlems.r R=f|f-1Fin
2 eulerpartlems.s S=f0Rkfkk
3 1 2 eulerpartlemsf S:0R0
4 3 ffvelcdmi A0RSA0
5 nndiffz1 SA01SA=SA+1
6 5 eleq2d SA0t1SAtSA+1
7 4 6 syl A0Rt1SAtSA+1
8 7 pm5.32i A0Rt1SAA0RtSA+1
9 simpr A0Rt1SAt1SA
10 eldif t1SAt¬t1SA
11 9 10 sylib A0Rt1SAt¬t1SA
12 11 simpld A0Rt1SAt
13 1 2 eulerpartlemelr A0RA:0A-1Fin
14 13 simpld A0RA:0
15 14 ffvelcdmda A0RtAt0
16 12 15 syldan A0Rt1SAAt0
17 simpl A0Rt1SAA0R
18 4 adantr A0Rt1SASA0
19 11 simprd A0Rt1SA¬t1SA
20 simpl tSA0t
21 nnuz =1
22 20 21 eleqtrdi tSA0t1
23 simpr tSA0SA0
24 23 nn0zd tSA0SA
25 elfz5 t1SAt1SAtSA
26 22 24 25 syl2anc tSA0t1SAtSA
27 26 notbid tSA0¬t1SA¬tSA
28 23 nn0red tSA0SA
29 20 nnred tSA0t
30 28 29 ltnled tSA0SA<t¬tSA
31 27 30 bitr4d tSA0¬t1SASA<t
32 31 biimpa tSA0¬t1SASA<t
33 12 18 19 32 syl21anc A0Rt1SASA<t
34 1 2 eulerpartlemsv1 A0RSA=kAkk
35 fveq2 k=tAk=At
36 id k=tk=t
37 35 36 oveq12d k=tAkk=Att
38 37 cbvsumv kAkk=tAtt
39 34 38 eqtr2di A0RtAtt=SA
40 breq2 t=lSA<tSA<l
41 fveq2 t=lAt=Al
42 41 breq2d t=l0<At0<Al
43 40 42 anbi12d t=lSA<t0<AtSA<l0<Al
44 43 cbvrexvw tSA<t0<AtlSA<l0<Al
45 4 adantr A0RlSA<l0<AlSA0
46 45 nn0red A0RlSA<l0<AlSA
47 4 ad2antrr A0RlSA<l0<AlSA0
48 47 nn0red A0RlSA<l0<AlSA
49 simpr A0Rll
50 49 adantr A0RlSA<l0<All
51 50 nnred A0RlSA<l0<All
52 1zzd A0Rl1
53 14 ad2antrr A0RltA:0
54 simpr A0Rltt
55 eqidd A:0tmAmm=mAmm
56 simpr A:0tm=tm=t
57 56 fveq2d A:0tm=tAm=At
58 57 56 oveq12d A:0tm=tAmm=Att
59 simpr A:0tt
60 ffvelcdm A:0tAt0
61 59 nnnn0d A:0tt0
62 60 61 nn0mulcld A:0tAtt0
63 55 58 59 62 fvmptd A:0tmAmmt=Att
64 53 54 63 syl2anc A0RltmAmmt=Att
65 14 adantr A0RlA:0
66 65 ffvelcdmda A0RltAt0
67 54 nnnn0d A0Rltt0
68 66 67 nn0mulcld A0RltAtt0
69 68 nn0red A0RltAtt
70 fveq2 m=tAm=At
71 id m=tm=t
72 70 71 oveq12d m=tAmm=Att
73 72 cbvmptv mAmm=tAtt
74 68 73 fmptd A0RlmAmm:0
75 nn0sscn 0
76 fss mAmm:00mAmm:
77 74 75 76 sylancl A0RlmAmm:
78 nnex V
79 0nn0 00
80 eqid 0=0
81 80 ffs2 V00mAmm:mAmmsupp0=mAmm-10
82 78 79 81 mp3an12 mAmm:mAmmsupp0=mAmm-10
83 77 82 syl A0RlmAmmsupp0=mAmm-10
84 fcdmnn0supp VA:0Asupp0=A-1
85 78 65 84 sylancr A0RlAsupp0=A-1
86 13 simprd A0RA-1Fin
87 86 adantr A0RlA-1Fin
88 85 87 eqeltrd A0RlAsupp0Fin
89 78 a1i A:0V
90 79 a1i A:000
91 ffn A:0AFn
92 simp3 A:0tAt=0At=0
93 92 oveq1d A:0tAt=0Att=0t
94 simp2 A:0tAt=0t
95 94 nncnd A:0tAt=0t
96 95 mul02d A:0tAt=00t=0
97 93 96 eqtrd A:0tAt=0Att=0
98 73 89 90 91 97 suppss3 A:0mAmmsupp0Asupp0
99 65 98 syl A0RlmAmmsupp0Asupp0
100 ssfi Asupp0FinmAmmsupp0Asupp0mAmmsupp0Fin
101 88 99 100 syl2anc A0RlmAmmsupp0Fin
102 83 101 eqeltrrd A0RlmAmm-10Fin
103 21 52 77 102 fsumcvg4 A0Rlseq1+mAmmdom
104 21 52 64 69 103 isumrecl A0RltAtt
105 104 adantr A0RlSA<l0<AltAtt
106 simprl A0RlSA<l0<AlSA<l
107 14 ffvelcdmda A0RlAl0
108 107 adantr A0RlSA<l0<AlAl0
109 108 nn0red A0RlSA<l0<AlAl
110 109 51 remulcld A0RlSA<l0<AlAll
111 50 nnnn0d A0RlSA<l0<All0
112 111 nn0ge0d A0RlSA<l0<Al0l
113 simprr A0RlSA<l0<Al0<Al
114 elnnnn0b AlAl00<Al
115 nnge1 Al1Al
116 114 115 sylbir Al00<Al1Al
117 108 113 116 syl2anc A0RlSA<l0<Al1Al
118 51 109 112 117 lemulge12d A0RlSA<l0<AllAll
119 107 nn0cnd A0RlAl
120 49 nncnd A0Rll
121 119 120 mulcld A0RlAll
122 id t=lt=l
123 41 122 oveq12d t=lAtt=All
124 123 sumsn lAlltlAtt=All
125 49 121 124 syl2anc A0RltlAtt=All
126 snfi lFin
127 126 a1i A0RllFin
128 49 snssd A0Rll
129 68 nn0ge0d A0Rlt0Att
130 21 52 127 128 64 69 129 103 isumless A0RltlAtttAtt
131 125 130 eqbrtrrd A0RlAlltAtt
132 131 adantr A0RlSA<l0<AlAlltAtt
133 51 110 105 118 132 letrd A0RlSA<l0<AlltAtt
134 48 51 105 106 133 ltletrd A0RlSA<l0<AlSA<tAtt
135 134 r19.29an A0RlSA<l0<AlSA<tAtt
136 46 135 gtned A0RlSA<l0<AltAttSA
137 136 ex A0RlSA<l0<AltAttSA
138 44 137 biimtrid A0RtSA<t0<AttAttSA
139 138 necon2bd A0RtAtt=SA¬tSA<t0<At
140 39 139 mpd A0R¬tSA<t0<At
141 ralnex t¬SA<t0<At¬tSA<t0<At
142 140 141 sylibr A0Rt¬SA<t0<At
143 imnan SA<t¬0<At¬SA<t0<At
144 143 ralbii tSA<t¬0<Att¬SA<t0<At
145 142 144 sylibr A0RtSA<t¬0<At
146 145 r19.21bi A0RtSA<t¬0<At
147 146 imp A0RtSA<t¬0<At
148 17 12 33 147 syl21anc A0Rt1SA¬0<At
149 nn0re At0At
150 0red At00
151 149 150 lenltd At0At0¬0<At
152 nn0le0eq0 At0At0At=0
153 151 152 bitr3d At0¬0<AtAt=0
154 153 biimpa At0¬0<AtAt=0
155 16 148 154 syl2anc A0Rt1SAAt=0
156 8 155 sylbir A0RtSA+1At=0