| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerpartlems.r |
|
| 2 |
|
eulerpartlems.s |
|
| 3 |
1 2
|
eulerpartlemsf |
|
| 4 |
3
|
ffvelcdmi |
|
| 5 |
|
nndiffz1 |
|
| 6 |
5
|
eleq2d |
|
| 7 |
4 6
|
syl |
|
| 8 |
7
|
pm5.32i |
|
| 9 |
|
simpr |
|
| 10 |
|
eldif |
|
| 11 |
9 10
|
sylib |
|
| 12 |
11
|
simpld |
|
| 13 |
1 2
|
eulerpartlemelr |
|
| 14 |
13
|
simpld |
|
| 15 |
14
|
ffvelcdmda |
|
| 16 |
12 15
|
syldan |
|
| 17 |
|
simpl |
|
| 18 |
4
|
adantr |
|
| 19 |
11
|
simprd |
|
| 20 |
|
simpl |
|
| 21 |
|
nnuz |
|
| 22 |
20 21
|
eleqtrdi |
|
| 23 |
|
simpr |
|
| 24 |
23
|
nn0zd |
|
| 25 |
|
elfz5 |
|
| 26 |
22 24 25
|
syl2anc |
|
| 27 |
26
|
notbid |
|
| 28 |
23
|
nn0red |
|
| 29 |
20
|
nnred |
|
| 30 |
28 29
|
ltnled |
|
| 31 |
27 30
|
bitr4d |
|
| 32 |
31
|
biimpa |
|
| 33 |
12 18 19 32
|
syl21anc |
|
| 34 |
1 2
|
eulerpartlemsv1 |
|
| 35 |
|
fveq2 |
|
| 36 |
|
id |
|
| 37 |
35 36
|
oveq12d |
|
| 38 |
37
|
cbvsumv |
|
| 39 |
34 38
|
eqtr2di |
|
| 40 |
|
breq2 |
|
| 41 |
|
fveq2 |
|
| 42 |
41
|
breq2d |
|
| 43 |
40 42
|
anbi12d |
|
| 44 |
43
|
cbvrexvw |
|
| 45 |
4
|
adantr |
|
| 46 |
45
|
nn0red |
|
| 47 |
4
|
ad2antrr |
|
| 48 |
47
|
nn0red |
|
| 49 |
|
simpr |
|
| 50 |
49
|
adantr |
|
| 51 |
50
|
nnred |
|
| 52 |
|
1zzd |
|
| 53 |
14
|
ad2antrr |
|
| 54 |
|
simpr |
|
| 55 |
|
eqidd |
|
| 56 |
|
simpr |
|
| 57 |
56
|
fveq2d |
|
| 58 |
57 56
|
oveq12d |
|
| 59 |
|
simpr |
|
| 60 |
|
ffvelcdm |
|
| 61 |
59
|
nnnn0d |
|
| 62 |
60 61
|
nn0mulcld |
|
| 63 |
55 58 59 62
|
fvmptd |
|
| 64 |
53 54 63
|
syl2anc |
|
| 65 |
14
|
adantr |
|
| 66 |
65
|
ffvelcdmda |
|
| 67 |
54
|
nnnn0d |
|
| 68 |
66 67
|
nn0mulcld |
|
| 69 |
68
|
nn0red |
|
| 70 |
|
fveq2 |
|
| 71 |
|
id |
|
| 72 |
70 71
|
oveq12d |
|
| 73 |
72
|
cbvmptv |
|
| 74 |
68 73
|
fmptd |
|
| 75 |
|
nn0sscn |
|
| 76 |
|
fss |
|
| 77 |
74 75 76
|
sylancl |
|
| 78 |
|
nnex |
|
| 79 |
|
0nn0 |
|
| 80 |
|
eqid |
|
| 81 |
80
|
ffs2 |
|
| 82 |
78 79 81
|
mp3an12 |
|
| 83 |
77 82
|
syl |
|
| 84 |
|
fcdmnn0supp |
|
| 85 |
78 65 84
|
sylancr |
|
| 86 |
13
|
simprd |
|
| 87 |
86
|
adantr |
|
| 88 |
85 87
|
eqeltrd |
|
| 89 |
78
|
a1i |
|
| 90 |
79
|
a1i |
|
| 91 |
|
ffn |
|
| 92 |
|
simp3 |
|
| 93 |
92
|
oveq1d |
|
| 94 |
|
simp2 |
|
| 95 |
94
|
nncnd |
|
| 96 |
95
|
mul02d |
|
| 97 |
93 96
|
eqtrd |
|
| 98 |
73 89 90 91 97
|
suppss3 |
|
| 99 |
65 98
|
syl |
|
| 100 |
|
ssfi |
|
| 101 |
88 99 100
|
syl2anc |
|
| 102 |
83 101
|
eqeltrrd |
|
| 103 |
21 52 77 102
|
fsumcvg4 |
|
| 104 |
21 52 64 69 103
|
isumrecl |
|
| 105 |
104
|
adantr |
|
| 106 |
|
simprl |
|
| 107 |
14
|
ffvelcdmda |
|
| 108 |
107
|
adantr |
|
| 109 |
108
|
nn0red |
|
| 110 |
109 51
|
remulcld |
|
| 111 |
50
|
nnnn0d |
|
| 112 |
111
|
nn0ge0d |
|
| 113 |
|
simprr |
|
| 114 |
|
elnnnn0b |
|
| 115 |
|
nnge1 |
|
| 116 |
114 115
|
sylbir |
|
| 117 |
108 113 116
|
syl2anc |
|
| 118 |
51 109 112 117
|
lemulge12d |
|
| 119 |
107
|
nn0cnd |
|
| 120 |
49
|
nncnd |
|
| 121 |
119 120
|
mulcld |
|
| 122 |
|
id |
|
| 123 |
41 122
|
oveq12d |
|
| 124 |
123
|
sumsn |
|
| 125 |
49 121 124
|
syl2anc |
|
| 126 |
|
snfi |
|
| 127 |
126
|
a1i |
|
| 128 |
49
|
snssd |
|
| 129 |
68
|
nn0ge0d |
|
| 130 |
21 52 127 128 64 69 129 103
|
isumless |
|
| 131 |
125 130
|
eqbrtrrd |
|
| 132 |
131
|
adantr |
|
| 133 |
51 110 105 118 132
|
letrd |
|
| 134 |
48 51 105 106 133
|
ltletrd |
|
| 135 |
134
|
r19.29an |
|
| 136 |
46 135
|
gtned |
|
| 137 |
136
|
ex |
|
| 138 |
44 137
|
biimtrid |
|
| 139 |
138
|
necon2bd |
|
| 140 |
39 139
|
mpd |
|
| 141 |
|
ralnex |
|
| 142 |
140 141
|
sylibr |
|
| 143 |
|
imnan |
|
| 144 |
143
|
ralbii |
|
| 145 |
142 144
|
sylibr |
|
| 146 |
145
|
r19.21bi |
|
| 147 |
146
|
imp |
|
| 148 |
17 12 33 147
|
syl21anc |
|
| 149 |
|
nn0re |
|
| 150 |
|
0red |
|
| 151 |
149 150
|
lenltd |
|
| 152 |
|
nn0le0eq0 |
|
| 153 |
151 152
|
bitr3d |
|
| 154 |
153
|
biimpa |
|
| 155 |
16 148 154
|
syl2anc |
|
| 156 |
8 155
|
sylbir |
|