Metamath Proof Explorer


Theorem fourierdlem102

Description: For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem102.f φF:
fourierdlem102.t T=2π
fourierdlem102.per φxFx+T=Fx
fourierdlem102.g G=Fππ
fourierdlem102.dmdv φππdomGFin
fourierdlem102.gcn φG:domGcn
fourierdlem102.rlim φxππdomGGx+∞limx
fourierdlem102.llim φxππdomGG−∞xlimx
fourierdlem102.x φX
fourierdlem102.p P=np0n|p0=πpn=πi0..^npi<pi+1
fourierdlem102.e E=xx+πxTT
fourierdlem102.h H=ππEXππdomG
fourierdlem102.m M=H1
fourierdlem102.q Q=ιg|gIsom<,<0MH
Assertion fourierdlem102 φF−∞XlimXFX+∞limX

Proof

Step Hyp Ref Expression
1 fourierdlem102.f φF:
2 fourierdlem102.t T=2π
3 fourierdlem102.per φxFx+T=Fx
4 fourierdlem102.g G=Fππ
5 fourierdlem102.dmdv φππdomGFin
6 fourierdlem102.gcn φG:domGcn
7 fourierdlem102.rlim φxππdomGGx+∞limx
8 fourierdlem102.llim φxππdomGG−∞xlimx
9 fourierdlem102.x φX
10 fourierdlem102.p P=np0n|p0=πpn=πi0..^npi<pi+1
11 fourierdlem102.e E=xx+πxTT
12 fourierdlem102.h H=ππEXππdomG
13 fourierdlem102.m M=H1
14 fourierdlem102.q Q=ιg|gIsom<,<0MH
15 2z 2
16 15 a1i φ2
17 tpfi ππEXFin
18 17 a1i φππEXFin
19 pire π
20 19 renegcli π
21 20 rexri π*
22 19 rexri π*
23 negpilt0 π<0
24 pipos 0<π
25 0re 0
26 20 25 19 lttri π<00<ππ<π
27 23 24 26 mp2an π<π
28 20 19 27 ltleii ππ
29 prunioo π*π*ππππππ=ππ
30 21 22 28 29 mp3an ππππ=ππ
31 30 difeq1i ππππdomG=ππdomG
32 difundir ππππdomG=ππdomGππdomG
33 31 32 eqtr3i ππdomG=ππdomGππdomG
34 prfi ππFin
35 diffi ππFinππdomGFin
36 34 35 mp1i φππdomGFin
37 unfi ππdomGFinππdomGFinππdomGππdomGFin
38 5 36 37 syl2anc φππdomGππdomGFin
39 33 38 eqeltrid φππdomGFin
40 unfi ππEXFinππdomGFinππEXππdomGFin
41 18 39 40 syl2anc φππEXππdomGFin
42 12 41 eqeltrid φHFin
43 hashcl HFinH0
44 42 43 syl φH0
45 44 nn0zd φH
46 20 27 ltneii ππ
47 hashprg ππππππ=2
48 20 19 47 mp2an ππππ=2
49 46 48 mpbi ππ=2
50 17 elexi ππEXV
51 ovex ππV
52 difexg ππVππdomGV
53 51 52 ax-mp ππdomGV
54 50 53 unex ππEXππdomGV
55 12 54 eqeltri HV
56 negex πV
57 56 tpid1 πππEX
58 19 elexi πV
59 58 tpid2 πππEX
60 prssi πππEXπππEXππππEX
61 57 59 60 mp2an ππππEX
62 ssun1 ππEXππEXππdomG
63 62 12 sseqtrri ππEXH
64 61 63 sstri ππH
65 hashss HVππHππH
66 55 64 65 mp2an ππH
67 66 a1i φππH
68 49 67 eqbrtrrid φ2H
69 eluz2 H22H2H
70 16 45 68 69 syl3anbrc φH2
71 uz2m1nn H2H1
72 70 71 syl φH1
73 13 72 eqeltrid φM
74 20 a1i φπ
75 19 a1i φπ
76 negpitopissre ππ
77 27 a1i φπ<π
78 picn π
79 78 2timesi 2π=π+π
80 78 78 subnegi ππ=π+π
81 79 2 80 3eqtr4i T=ππ
82 74 75 77 81 11 fourierdlem4 φE:ππ
83 82 9 ffvelcdmd φEXππ
84 76 83 sselid φEX
85 74 75 84 3jca φππEX
86 fvex EXV
87 56 58 86 tpss ππEXππEX
88 85 87 sylib φππEX
89 iccssre ππππ
90 20 19 89 mp2an ππ
91 ssdifss ππππdomG
92 90 91 mp1i φππdomG
93 88 92 unssd φππEXππdomG
94 12 93 eqsstrid φH
95 42 94 14 13 fourierdlem36 φQIsom<,<0MH
96 isof1o QIsom<,<0MHQ:0M1-1 ontoH
97 f1of Q:0M1-1 ontoHQ:0MH
98 95 96 97 3syl φQ:0MH
99 98 94 fssd φQ:0M
100 reex V
101 ovex 0MV
102 100 101 elmap Q0MQ:0M
103 99 102 sylibr φQ0M
104 fveq2 0=iQ0=Qi
105 104 adantl φi0M0=iQ0=Qi
106 99 ffvelcdmda φi0MQi
107 106 leidd φi0MQiQi
108 107 adantr φi0M0=iQiQi
109 105 108 eqbrtrd φi0M0=iQ0Qi
110 elfzelz i0Mi
111 110 zred i0Mi
112 111 ad2antlr φi0M¬0=ii
113 elfzle1 i0M0i
114 113 ad2antlr φi0M¬0=i0i
115 neqne ¬0=i0i
116 115 necomd ¬0=ii0
117 116 adantl φi0M¬0=ii0
118 112 114 117 ne0gt0d φi0M¬0=i0<i
119 nnssnn0 0
120 nn0uz 0=0
121 119 120 sseqtri 0
122 121 73 sselid φM0
123 eluzfz1 M000M
124 122 123 syl φ00M
125 98 124 ffvelcdmd φQ0H
126 94 125 sseldd φQ0
127 126 ad2antrr φi0M0<iQ0
128 106 adantr φi0M0<iQi
129 simpr φi0M0<i0<i
130 95 ad2antrr φi0M0<iQIsom<,<0MH
131 124 anim1i φi0M00Mi0M
132 131 adantr φi0M0<i00Mi0M
133 isorel QIsom<,<0MH00Mi0M0<iQ0<Qi
134 130 132 133 syl2anc φi0M0<i0<iQ0<Qi
135 129 134 mpbid φi0M0<iQ0<Qi
136 127 128 135 ltled φi0M0<iQ0Qi
137 118 136 syldan φi0M¬0=iQ0Qi
138 109 137 pm2.61dan φi0MQ0Qi
139 138 adantr φi0MQi=πQ0Qi
140 simpr φi0MQi=πQi=π
141 139 140 breqtrd φi0MQi=πQ0π
142 74 rexrd φπ*
143 75 rexrd φπ*
144 lbicc2 π*π*πππππ
145 21 22 28 144 mp3an πππ
146 145 a1i φπππ
147 ubicc2 π*π*πππππ
148 21 22 28 147 mp3an πππ
149 148 a1i φπππ
150 iocssicc ππππ
151 150 83 sselid φEXππ
152 tpssi ππππππEXππππEXππ
153 146 149 151 152 syl3anc φππEXππ
154 difssd φππdomGππ
155 153 154 unssd φππEXππdomGππ
156 12 155 eqsstrid φHππ
157 156 125 sseldd φQ0ππ
158 iccgelb π*π*Q0πππQ0
159 142 143 157 158 syl3anc φπQ0
160 159 ad2antrr φi0MQi=ππQ0
161 126 ad2antrr φi0MQi=πQ0
162 20 a1i φi0MQi=ππ
163 161 162 letri3d φi0MQi=πQ0=πQ0ππQ0
164 141 160 163 mpbir2and φi0MQi=πQ0=π
165 63 57 sselii πH
166 f1ofo Q:0M1-1 ontoHQ:0MontoH
167 96 166 syl QIsom<,<0MHQ:0MontoH
168 forn Q:0MontoHranQ=H
169 95 167 168 3syl φranQ=H
170 165 169 eleqtrrid φπranQ
171 ffn Q:0MHQFn0M
172 fvelrnb QFn0MπranQi0MQi=π
173 98 171 172 3syl φπranQi0MQi=π
174 170 173 mpbid φi0MQi=π
175 164 174 r19.29a φQ0=π
176 63 59 sselii πH
177 176 169 eleqtrrid φπranQ
178 fvelrnb QFn0MπranQi0MQi=π
179 98 171 178 3syl φπranQi0MQi=π
180 177 179 mpbid φi0MQi=π
181 98 156 fssd φQ:0Mππ
182 eluzfz2 M0M0M
183 122 182 syl φM0M
184 181 183 ffvelcdmd φQMππ
185 iccleub π*π*QMππQMπ
186 142 143 184 185 syl3anc φQMπ
187 186 3ad2ant1 φi0MQi=πQMπ
188 id Qi=πQi=π
189 188 eqcomd Qi=ππ=Qi
190 189 3ad2ant3 φi0MQi=ππ=Qi
191 107 adantr φi0Mi=MQiQi
192 fveq2 i=MQi=QM
193 192 adantl φi0Mi=MQi=QM
194 191 193 breqtrd φi0Mi=MQiQM
195 111 ad2antlr φi0M¬i=Mi
196 elfzel2 i0MM
197 196 zred i0MM
198 197 ad2antlr φi0M¬i=MM
199 elfzle2 i0MiM
200 199 ad2antlr φi0M¬i=MiM
201 neqne ¬i=MiM
202 201 necomd ¬i=MMi
203 202 adantl φi0M¬i=MMi
204 195 198 200 203 leneltd φi0M¬i=Mi<M
205 106 adantr φi0Mi<MQi
206 90 184 sselid φQM
207 206 ad2antrr φi0Mi<MQM
208 simpr φi0Mi<Mi<M
209 95 ad2antrr φi0Mi<MQIsom<,<0MH
210 simpr φi0Mi0M
211 183 adantr φi0MM0M
212 210 211 jca φi0Mi0MM0M
213 212 adantr φi0Mi<Mi0MM0M
214 isorel QIsom<,<0MHi0MM0Mi<MQi<QM
215 209 213 214 syl2anc φi0Mi<Mi<MQi<QM
216 208 215 mpbid φi0Mi<MQi<QM
217 205 207 216 ltled φi0Mi<MQiQM
218 204 217 syldan φi0M¬i=MQiQM
219 194 218 pm2.61dan φi0MQiQM
220 219 3adant3 φi0MQi=πQiQM
221 190 220 eqbrtrd φi0MQi=ππQM
222 206 3ad2ant1 φi0MQi=πQM
223 19 a1i φi0MQi=ππ
224 222 223 letri3d φi0MQi=πQM=πQMππQM
225 187 221 224 mpbir2and φi0MQi=πQM=π
226 225 rexlimdv3a φi0MQi=πQM=π
227 180 226 mpd φQM=π
228 elfzoelz i0..^Mi
229 228 zred i0..^Mi
230 229 ltp1d i0..^Mi<i+1
231 230 adantl φi0..^Mi<i+1
232 elfzofz i0..^Mi0M
233 fzofzp1 i0..^Mi+10M
234 232 233 jca i0..^Mi0Mi+10M
235 isorel QIsom<,<0MHi0Mi+10Mi<i+1Qi<Qi+1
236 95 234 235 syl2an φi0..^Mi<i+1Qi<Qi+1
237 231 236 mpbid φi0..^MQi<Qi+1
238 237 ralrimiva φi0..^MQi<Qi+1
239 175 227 238 jca31 φQ0=πQM=πi0..^MQi<Qi+1
240 10 fourierdlem2 MQPMQ0MQ0=πQM=πi0..^MQi<Qi+1
241 73 240 syl φQPMQ0MQ0=πQM=πi0..^MQi<Qi+1
242 103 239 241 mpbir2and φQPM
243 4 reseq1i GQiQi+1=FππQiQi+1
244 21 a1i φi0..^Mπ*
245 22 a1i φi0..^Mπ*
246 181 adantr φi0..^MQ:0Mππ
247 simpr φi0..^Mi0..^M
248 244 245 246 247 fourierdlem27 φi0..^MQiQi+1ππ
249 248 resabs1d φi0..^MFππQiQi+1=FQiQi+1
250 243 249 eqtr2id φi0..^MFQiQi+1=GQiQi+1
251 6 10 73 242 12 169 fourierdlem38 φi0..^MGQiQi+1:QiQi+1cn
252 250 251 eqeltrd φi0..^MFQiQi+1:QiQi+1cn
253 250 oveq1d φi0..^MFQiQi+1limQi=GQiQi+1limQi
254 6 adantr φi0..^MG:domGcn
255 7 adantlr φi0..^MxππdomGGx+∞limx
256 8 adantlr φi0..^MxππdomGG−∞xlimx
257 95 adantr φi0..^MQIsom<,<0MH
258 257 96 97 3syl φi0..^MQ:0MH
259 84 adantr φi0..^MEX
260 257 167 168 3syl φi0..^MranQ=H
261 254 255 256 257 258 247 237 248 259 12 260 fourierdlem46 φi0..^MGQiQi+1limQiGQiQi+1limQi+1
262 261 simpld φi0..^MGQiQi+1limQi
263 253 262 eqnetrd φi0..^MFQiQi+1limQi
264 250 oveq1d φi0..^MFQiQi+1limQi+1=GQiQi+1limQi+1
265 261 simprd φi0..^MGQiQi+1limQi+1
266 264 265 eqnetrd φi0..^MFQiQi+1limQi+1
267 1 2 3 9 10 73 242 252 263 266 fourierdlem94 φF−∞XlimXFX+∞limX