Metamath Proof Explorer


Theorem fourierdlem54

Description: Given a partition Q and an arbitrary interval [ C , D ] , a partition S on [ C , D ] is built such that it preserves any periodic function piecewise continuous on Q will be piecewise continuous on S , with the same limits. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem54.t T=BA
fourierdlem54.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem54.m φM
fourierdlem54.q φQPM
fourierdlem54.c φC
fourierdlem54.d φD
fourierdlem54.cd φC<D
fourierdlem54.o O=mp0m|p0=Cpm=Di0..^mpi<pi+1
fourierdlem54.h H=CDxCD|kx+kTranQ
fourierdlem54.n N=H1
fourierdlem54.s S=ιf|fIsom<,<0NH
Assertion fourierdlem54 φNSONSIsom<,<0NH

Proof

Step Hyp Ref Expression
1 fourierdlem54.t T=BA
2 fourierdlem54.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
3 fourierdlem54.m φM
4 fourierdlem54.q φQPM
5 fourierdlem54.c φC
6 fourierdlem54.d φD
7 fourierdlem54.cd φC<D
8 fourierdlem54.o O=mp0m|p0=Cpm=Di0..^mpi<pi+1
9 fourierdlem54.h H=CDxCD|kx+kTranQ
10 fourierdlem54.n N=H1
11 fourierdlem54.s S=ιf|fIsom<,<0NH
12 2z 2
13 12 a1i φ2
14 prid1g CCCD
15 elun1 CCDCCDxCD|kx+kTranQ
16 5 14 15 3syl φCCDxCD|kx+kTranQ
17 16 9 eleqtrrdi φCH
18 17 ne0d φH
19 prfi CDFin
20 2 3 4 fourierdlem11 φABA<B
21 20 simp1d φA
22 20 simp2d φB
23 20 simp3d φA<B
24 2 3 4 fourierdlem15 φQ:0MAB
25 frn Q:0MABranQAB
26 24 25 syl φranQAB
27 2 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
28 3 27 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
29 4 28 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
30 29 simpld φQ0M
31 elmapi Q0MQ:0M
32 ffn Q:0MQFn0M
33 30 31 32 3syl φQFn0M
34 fzfid φ0MFin
35 fnfi QFn0M0MFinQFin
36 33 34 35 syl2anc φQFin
37 rnfi QFinranQFin
38 36 37 syl φranQFin
39 29 simprd φQ0=AQM=Bi0..^MQi<Qi+1
40 39 simpld φQ0=AQM=B
41 40 simpld φQ0=A
42 3 nnnn0d φM0
43 nn0uz 0=0
44 42 43 eleqtrdi φM0
45 eluzfz1 M000M
46 44 45 syl φ00M
47 fnfvelrn QFn0M00MQ0ranQ
48 33 46 47 syl2anc φQ0ranQ
49 41 48 eqeltrrd φAranQ
50 40 simprd φQM=B
51 eluzfz2 M0M0M
52 44 51 syl φM0M
53 fnfvelrn QFn0MM0MQMranQ
54 33 52 53 syl2anc φQMranQ
55 50 54 eqeltrrd φBranQ
56 eqid abs=abs
57 eqid ranQ×ranQI=ranQ×ranQI
58 eqid ranabsranQ×ranQI=ranabsranQ×ranQI
59 eqid supranabsranQ×ranQI<=supranabsranQ×ranQI<
60 eqid topGenran.=topGenran.
61 eqid topGenran.𝑡CD=topGenran.𝑡CD
62 oveq1 x=wx+kT=w+kT
63 62 eleq1d x=wx+kTranQw+kTranQ
64 63 rexbidv x=wkx+kTranQkw+kTranQ
65 64 cbvrabv xCD|kx+kTranQ=wCD|kw+kTranQ
66 oveq1 i=jiT=jT
67 66 oveq2d i=jy+iT=y+jT
68 67 eleq1d i=jy+iTranQy+jTranQ
69 68 anbi1d i=jy+iTranQz+lTranQy+jTranQz+lTranQ
70 oveq1 l=klT=kT
71 70 oveq2d l=kz+lT=z+kT
72 71 eleq1d l=kz+lTranQz+kTranQ
73 72 anbi2d l=ky+jTranQz+lTranQy+jTranQz+kTranQ
74 69 73 cbvrex2vw ily+iTranQz+lTranQjky+jTranQz+kTranQ
75 74 anbi2i φyzy<zily+iTranQz+lTranQφyzy<zjky+jTranQz+kTranQ
76 21 22 23 1 26 38 49 55 56 57 58 59 5 6 60 61 65 75 fourierdlem42 φxCD|kx+kTranQFin
77 unfi CDFinxCD|kx+kTranQFinCDxCD|kx+kTranQFin
78 19 76 77 sylancr φCDxCD|kx+kTranQFin
79 9 78 eqeltrid φHFin
80 hashnncl HFinHH
81 79 80 syl φHH
82 18 81 mpbird φH
83 82 nnzd φH
84 5 7 ltned φCD
85 hashprg CDCDCD=2
86 5 6 85 syl2anc φCDCD=2
87 84 86 mpbid φCD=2
88 87 eqcomd φ2=CD
89 ssun1 CDCDxCD|kx+kTranQ
90 89 a1i φCDCDxCD|kx+kTranQ
91 90 9 sseqtrrdi φCDH
92 hashssle HFinCDHCDH
93 79 91 92 syl2anc φCDH
94 88 93 eqbrtrd φ2H
95 eluz2 H22H2H
96 13 83 94 95 syl3anbrc φH2
97 uz2m1nn H2H1
98 96 97 syl φH1
99 10 98 eqeltrid φN
100 prssg CDCDCD
101 5 6 100 syl2anc φCDCD
102 5 6 101 mpbi2and φCD
103 ssrab2 xCD|kx+kTranQCD
104 5 6 iccssred φCD
105 103 104 sstrid φxCD|kx+kTranQ
106 102 105 unssd φCDxCD|kx+kTranQ
107 9 106 eqsstrid φH
108 79 107 11 10 fourierdlem36 φSIsom<,<0NH
109 df-isom SIsom<,<0NHS:0N1-1 ontoHx0Ny0Nx<ySx<Sy
110 108 109 sylib φS:0N1-1 ontoHx0Ny0Nx<ySx<Sy
111 110 simpld φS:0N1-1 ontoH
112 f1of S:0N1-1 ontoHS:0NH
113 111 112 syl φS:0NH
114 113 107 fssd φS:0N
115 reex V
116 ovex 0NV
117 116 a1i φ0NV
118 elmapg V0NVS0NS:0N
119 115 117 118 sylancr φS0NS:0N
120 114 119 mpbird φS0N
121 df-f1o S:0N1-1 ontoHS:0N1-1HS:0NontoH
122 111 121 sylib φS:0N1-1HS:0NontoH
123 122 simprd φS:0NontoH
124 dffo3 S:0NontoHS:0NHhHy0Nh=Sy
125 123 124 sylib φS:0NHhHy0Nh=Sy
126 125 simprd φhHy0Nh=Sy
127 eqeq1 h=Ch=SyC=Sy
128 eqcom C=SySy=C
129 127 128 bitrdi h=Ch=SySy=C
130 129 rexbidv h=Cy0Nh=Syy0NSy=C
131 130 rspcv CHhHy0Nh=Syy0NSy=C
132 17 126 131 sylc φy0NSy=C
133 fveq2 y=0Sy=S0
134 133 eqcomd y=0S0=Sy
135 134 adantl φSy=Cy=0S0=Sy
136 simplr φSy=Cy=0Sy=C
137 135 136 eqtrd φSy=Cy=0S0=C
138 5 ad2antrr φSy=Cy=0C
139 137 138 eqeltrd φSy=Cy=0S0
140 139 137 eqled φSy=Cy=0S0C
141 140 3adantl2 φy0NSy=Cy=0S0C
142 5 rexrd φC*
143 6 rexrd φD*
144 5 6 7 ltled φCD
145 lbicc2 C*D*CDCCD
146 142 143 144 145 syl3anc φCCD
147 ubicc2 C*D*CDDCD
148 142 143 144 147 syl3anc φDCD
149 prssg CCDDCDCCDDCDCDCD
150 146 148 149 syl2anc φCCDDCDCDCD
151 146 148 150 mpbi2and φCDCD
152 103 a1i φxCD|kx+kTranQCD
153 151 152 unssd φCDxCD|kx+kTranQCD
154 9 153 eqsstrid φHCD
155 nnm1nn0 HH10
156 82 155 syl φH10
157 10 156 eqeltrid φN0
158 157 43 eleqtrdi φN0
159 eluzfz1 N000N
160 158 159 syl φ00N
161 113 160 ffvelcdmd φS0H
162 154 161 sseldd φS0CD
163 104 162 sseldd φS0
164 163 adantr φ¬y=0S0
165 164 3ad2antl1 φy0NSy=C¬y=0S0
166 5 adantr φ¬y=0C
167 166 3ad2antl1 φy0NSy=C¬y=0C
168 elfzelz y0Ny
169 168 zred y0Ny
170 169 adantr y0N¬y=0y
171 elfzle1 y0N0y
172 171 adantr y0N¬y=00y
173 neqne ¬y=0y0
174 173 adantl y0N¬y=0y0
175 170 172 174 ne0gt0d y0N¬y=00<y
176 175 3ad2antl2 φy0NSy=C¬y=00<y
177 simpl1 φy0NSy=C¬y=0φ
178 simpl2 φy0NSy=C¬y=0y0N
179 110 simprd φx0Ny0Nx<ySx<Sy
180 breq1 x=0x<y0<y
181 fveq2 x=0Sx=S0
182 181 breq1d x=0Sx<SyS0<Sy
183 180 182 bibi12d x=0x<ySx<Sy0<yS0<Sy
184 183 ralbidv x=0y0Nx<ySx<Syy0N0<yS0<Sy
185 184 rspcv 00Nx0Ny0Nx<ySx<Syy0N0<yS0<Sy
186 160 179 185 sylc φy0N0<yS0<Sy
187 186 r19.21bi φy0N0<yS0<Sy
188 177 178 187 syl2anc φy0NSy=C¬y=00<yS0<Sy
189 176 188 mpbid φy0NSy=C¬y=0S0<Sy
190 simpl3 φy0NSy=C¬y=0Sy=C
191 189 190 breqtrd φy0NSy=C¬y=0S0<C
192 165 167 191 ltled φy0NSy=C¬y=0S0C
193 141 192 pm2.61dan φy0NSy=CS0C
194 193 rexlimdv3a φy0NSy=CS0C
195 132 194 mpd φS0C
196 elicc2 CDS0CDS0CS0S0D
197 5 6 196 syl2anc φS0CDS0CS0S0D
198 162 197 mpbid φS0CS0S0D
199 198 simp2d φCS0
200 163 5 letri3d φS0=CS0CCS0
201 195 199 200 mpbir2and φS0=C
202 eluzfz2 N0N0N
203 158 202 syl φN0N
204 113 203 ffvelcdmd φSNH
205 154 204 sseldd φSNCD
206 elicc2 CDSNCDSNCSNSND
207 5 6 206 syl2anc φSNCDSNCSNSND
208 205 207 mpbid φSNCSNSND
209 208 simp3d φSND
210 prid2g DDCD
211 elun1 DCDDCDxCD|kx+kTranQ
212 6 210 211 3syl φDCDxCD|kx+kTranQ
213 212 9 eleqtrrdi φDH
214 eqeq1 h=Dh=SyD=Sy
215 eqcom D=SySy=D
216 214 215 bitrdi h=Dh=SySy=D
217 216 rexbidv h=Dy0Nh=Syy0NSy=D
218 217 rspcv DHhHy0Nh=Syy0NSy=D
219 213 126 218 sylc φy0NSy=D
220 215 biimpri Sy=DD=Sy
221 220 3ad2ant3 φy0NSy=DD=Sy
222 114 ffvelcdmda φy0NSy
223 104 205 sseldd φSN
224 223 adantr φy0NSN
225 169 adantl φy0Ny
226 elfzel2 y0NN
227 226 zred y0NN
228 227 adantl φy0NN
229 elfzle2 y0NyN
230 229 adantl φy0NyN
231 225 228 230 lensymd φy0N¬N<y
232 breq1 x=Nx<yN<y
233 fveq2 x=NSx=SN
234 233 breq1d x=NSx<SySN<Sy
235 232 234 bibi12d x=Nx<ySx<SyN<ySN<Sy
236 235 ralbidv x=Ny0Nx<ySx<Syy0NN<ySN<Sy
237 236 rspcv N0Nx0Ny0Nx<ySx<Syy0NN<ySN<Sy
238 203 179 237 sylc φy0NN<ySN<Sy
239 238 r19.21bi φy0NN<ySN<Sy
240 231 239 mtbid φy0N¬SN<Sy
241 222 224 240 nltled φy0NSySN
242 241 3adant3 φy0NSy=DSySN
243 221 242 eqbrtrd φy0NSy=DDSN
244 243 rexlimdv3a φy0NSy=DDSN
245 219 244 mpd φDSN
246 223 6 letri3d φSN=DSNDDSN
247 209 245 246 mpbir2and φSN=D
248 elfzoelz i0..^Ni
249 248 zred i0..^Ni
250 249 ltp1d i0..^Ni<i+1
251 250 adantl φi0..^Ni<i+1
252 179 adantr φi0..^Nx0Ny0Nx<ySx<Sy
253 elfzofz i0..^Ni0N
254 253 adantl φi0..^Ni0N
255 fzofzp1 i0..^Ni+10N
256 255 adantl φi0..^Ni+10N
257 breq1 x=ix<yi<y
258 fveq2 x=iSx=Si
259 258 breq1d x=iSx<SySi<Sy
260 257 259 bibi12d x=ix<ySx<Syi<ySi<Sy
261 breq2 y=i+1i<yi<i+1
262 fveq2 y=i+1Sy=Si+1
263 262 breq2d y=i+1Si<SySi<Si+1
264 261 263 bibi12d y=i+1i<ySi<Syi<i+1Si<Si+1
265 260 264 rspc2v i0Ni+10Nx0Ny0Nx<ySx<Syi<i+1Si<Si+1
266 254 256 265 syl2anc φi0..^Nx0Ny0Nx<ySx<Syi<i+1Si<Si+1
267 252 266 mpd φi0..^Ni<i+1Si<Si+1
268 251 267 mpbid φi0..^NSi<Si+1
269 268 ralrimiva φi0..^NSi<Si+1
270 201 247 269 jca31 φS0=CSN=Di0..^NSi<Si+1
271 8 fourierdlem2 NSONS0NS0=CSN=Di0..^NSi<Si+1
272 99 271 syl φSONS0NS0=CSN=Di0..^NSi<Si+1
273 120 270 272 mpbir2and φSON
274 99 273 108 jca31 φNSONSIsom<,<0NH