Metamath Proof Explorer


Theorem fourierdlem71

Description: A periodic piecewise continuous function, possibly undefined on a finite set in each periodic interval, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem71.dmf φdomF
fourierdlem71.f φF:domF
fourierdlem71.a φA
fourierdlem71.b φB
fourierdlem71.altb φA<B
fourierdlem71.t T=BA
fourierdlem71.7 φM
fourierdlem71.q φQ:0M
fourierdlem71.q0 φQ0=A
fourierdlem71.10 φQM=B
fourierdlem71.fcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem71.r φi0..^MRFQiQi+1limQi
fourierdlem71.l φi0..^MLFQiQi+1limQi+1
fourierdlem71.xpt φxdomFkx+kTdomF
fourierdlem71.fxpt φxdomFkFx+kT=Fx
fourierdlem71.i I=i0..^MQiQi+1
fourierdlem71.e E=xx+BxTT
Assertion fourierdlem71 φyxdomFFxy

Proof

Step Hyp Ref Expression
1 fourierdlem71.dmf φdomF
2 fourierdlem71.f φF:domF
3 fourierdlem71.a φA
4 fourierdlem71.b φB
5 fourierdlem71.altb φA<B
6 fourierdlem71.t T=BA
7 fourierdlem71.7 φM
8 fourierdlem71.q φQ:0M
9 fourierdlem71.q0 φQ0=A
10 fourierdlem71.10 φQM=B
11 fourierdlem71.fcn φi0..^MFQiQi+1:QiQi+1cn
12 fourierdlem71.r φi0..^MRFQiQi+1limQi
13 fourierdlem71.l φi0..^MLFQiQi+1limQi+1
14 fourierdlem71.xpt φxdomFkx+kTdomF
15 fourierdlem71.fxpt φxdomFkFx+kT=Fx
16 fourierdlem71.i I=i0..^MQiQi+1
17 fourierdlem71.e E=xx+BxTT
18 prfi ranQdomFranIFin
19 18 a1i φranQdomFranIFin
20 2 adantr φxranQdomFranIF:domF
21 simpl φxranQdomFranIφ
22 simpr φxranQdomFranIxranQdomFranI
23 ovex 0MV
24 23 a1i φ0MV
25 8 24 fexd φQV
26 rnexg QVranQV
27 inex1g ranQVranQdomFV
28 25 26 27 3syl φranQdomFV
29 28 adantr φxranQdomFranIranQdomFV
30 ovex 0..^MV
31 30 mptex i0..^MQiQi+1V
32 16 31 eqeltri IV
33 32 rnex ranIV
34 33 a1i φranIV
35 34 uniexd φranIV
36 35 adantr φxranQdomFranIranIV
37 uniprg ranQdomFVranIVranQdomFranI=ranQdomFranI
38 29 36 37 syl2anc φxranQdomFranIranQdomFranI=ranQdomFranI
39 22 38 eleqtrd φxranQdomFranIxranQdomFranI
40 elinel2 xranQdomFxdomF
41 40 adantl φxranQdomFranIxranQdomFxdomF
42 simpll φxranQdomFranI¬xranQdomFφ
43 elunnel1 xranQdomFranI¬xranQdomFxranI
44 43 adantll φxranQdomFranI¬xranQdomFxranI
45 16 funmpt2 FunI
46 elunirn FunIxranIidomIxIi
47 45 46 ax-mp xranIidomIxIi
48 47 biimpi xranIidomIxIi
49 48 adantl φxranIidomIxIi
50 id idomIidomI
51 ovex QiQi+1V
52 51 16 dmmpti domI=0..^M
53 50 52 eleqtrdi idomIi0..^M
54 53 adantl φidomIi0..^M
55 51 a1i φidomIQiQi+1V
56 16 fvmpt2 i0..^MQiQi+1VIi=QiQi+1
57 54 55 56 syl2anc φidomIIi=QiQi+1
58 cncff FQiQi+1:QiQi+1cnFQiQi+1:QiQi+1
59 fdm FQiQi+1:QiQi+1domFQiQi+1=QiQi+1
60 11 58 59 3syl φi0..^MdomFQiQi+1=QiQi+1
61 53 60 sylan2 φidomIdomFQiQi+1=QiQi+1
62 ssdmres QiQi+1domFdomFQiQi+1=QiQi+1
63 61 62 sylibr φidomIQiQi+1domF
64 57 63 eqsstrd φidomIIidomF
65 64 3adant3 φidomIxIiIidomF
66 simp3 φidomIxIixIi
67 65 66 sseldd φidomIxIixdomF
68 67 3exp φidomIxIixdomF
69 68 adantr φxranIidomIxIixdomF
70 69 rexlimdv φxranIidomIxIixdomF
71 49 70 mpd φxranIxdomF
72 42 44 71 syl2anc φxranQdomFranI¬xranQdomFxdomF
73 41 72 pm2.61dan φxranQdomFranIxdomF
74 21 39 73 syl2anc φxranQdomFranIxdomF
75 20 74 ffvelcdmd φxranQdomFranIFx
76 75 recnd φxranQdomFranIFx
77 76 abscld φxranQdomFranIFx
78 simpr φw=ranQdomFw=ranQdomF
79 fzfid φ0MFin
80 rnffi Q:0M0MFinranQFin
81 8 79 80 syl2anc φranQFin
82 infi ranQFinranQdomFFin
83 81 82 syl φranQdomFFin
84 83 adantr φw=ranQdomFranQdomFFin
85 78 84 eqeltrd φw=ranQdomFwFin
86 simpll φw=ranQdomFxwφ
87 simpr w=ranQdomFxwxw
88 simpl w=ranQdomFxww=ranQdomF
89 87 88 eleqtrd w=ranQdomFxwxranQdomF
90 89 adantll φw=ranQdomFxwxranQdomF
91 2 adantr φxranQdomFF:domF
92 40 adantl φxranQdomFxdomF
93 91 92 ffvelcdmd φxranQdomFFx
94 93 recnd φxranQdomFFx
95 94 abscld φxranQdomFFx
96 86 90 95 syl2anc φw=ranQdomFxwFx
97 96 ralrimiva φw=ranQdomFxwFx
98 fimaxre3 wFinxwFxyxwFxy
99 85 97 98 syl2anc φw=ranQdomFyxwFxy
100 99 adantlr φwranQdomFranIw=ranQdomFyxwFxy
101 simpll φwranQdomFranI¬w=ranQdomFφ
102 neqne ¬w=ranQdomFwranQdomF
103 elprn1 wranQdomFranIwranQdomFw=ranI
104 102 103 sylan2 wranQdomFranI¬w=ranQdomFw=ranI
105 104 adantll φwranQdomFranI¬w=ranQdomFw=ranI
106 fzofi 0..^MFin
107 16 rnmptfi 0..^MFinranIFin
108 106 107 ax-mp ranIFin
109 108 a1i φw=ranIranIFin
110 2 adantr φxranIF:domF
111 110 71 ffvelcdmd φxranIFx
112 111 recnd φxranIFx
113 112 adantlr φw=ranIxranIFx
114 113 abscld φw=ranIxranIFx
115 51 16 fnmpti IFn0..^M
116 fvelrnb IFn0..^MtranIi0..^MIi=t
117 115 116 ax-mp tranIi0..^MIi=t
118 117 biimpi tranIi0..^MIi=t
119 118 adantl φtranIi0..^MIi=t
120 8 adantr φi0..^MQ:0M
121 elfzofz i0..^Mi0M
122 121 adantl φi0..^Mi0M
123 120 122 ffvelcdmd φi0..^MQi
124 fzofzp1 i0..^Mi+10M
125 124 adantl φi0..^Mi+10M
126 120 125 ffvelcdmd φi0..^MQi+1
127 123 126 11 13 12 cncfioobd φi0..^MbxQiQi+1FQiQi+1xb
128 127 3adant3 φi0..^MIi=tbxQiQi+1FQiQi+1xb
129 fvres xQiQi+1FQiQi+1x=Fx
130 129 fveq2d xQiQi+1FQiQi+1x=Fx
131 130 breq1d xQiQi+1FQiQi+1xbFxb
132 131 adantl φi0..^MxQiQi+1FQiQi+1xbFxb
133 132 ralbidva φi0..^MxQiQi+1FQiQi+1xbxQiQi+1Fxb
134 133 rexbidv φi0..^MbxQiQi+1FQiQi+1xbbxQiQi+1Fxb
135 134 3adant3 φi0..^MIi=tbxQiQi+1FQiQi+1xbbxQiQi+1Fxb
136 51 56 mpan2 i0..^MIi=QiQi+1
137 id Ii=tIi=t
138 136 137 sylan9req i0..^MIi=tQiQi+1=t
139 138 3adant1 φi0..^MIi=tQiQi+1=t
140 139 raleqdv φi0..^MIi=txQiQi+1FxbxtFxb
141 140 rexbidv φi0..^MIi=tbxQiQi+1FxbbxtFxb
142 135 141 bitrd φi0..^MIi=tbxQiQi+1FQiQi+1xbbxtFxb
143 128 142 mpbid φi0..^MIi=tbxtFxb
144 143 3exp φi0..^MIi=tbxtFxb
145 144 adantr φtranIi0..^MIi=tbxtFxb
146 145 rexlimdv φtranIi0..^MIi=tbxtFxb
147 119 146 mpd φtranIbxtFxb
148 147 adantlr φw=ranItranIbxtFxb
149 eqimss w=ranIwranI
150 149 adantl φw=ranIwranI
151 109 114 148 150 ssfiunibd φw=ranIyxwFxy
152 101 105 151 syl2anc φwranQdomFranI¬w=ranQdomFyxwFxy
153 100 152 pm2.61dan φwranQdomFranIyxwFxy
154 simpr φxABdomFxranQxranQ
155 elinel2 xABdomFxdomF
156 155 ad2antlr φxABdomFxranQxdomF
157 154 156 elind φxABdomFxranQxranQdomF
158 elun1 xranQdomFxranQdomFranI
159 157 158 syl φxABdomFxranQxranQdomFranI
160 7 ad2antrr φxABdomF¬xranQM
161 8 ad2antrr φxABdomF¬xranQQ:0M
162 elinel1 xABdomFxAB
163 162 adantl φxABdomFxAB
164 9 eqcomd φA=Q0
165 164 adantr φxABdomFA=Q0
166 10 eqcomd φB=QM
167 166 adantr φxABdomFB=QM
168 165 167 oveq12d φxABdomFAB=Q0QM
169 163 168 eleqtrd φxABdomFxQ0QM
170 169 adantr φxABdomF¬xranQxQ0QM
171 simpr φxABdomF¬xranQ¬xranQ
172 fveq2 k=jQk=Qj
173 172 breq1d k=jQk<xQj<x
174 173 cbvrabv k0..^M|Qk<x=j0..^M|Qj<x
175 174 supeq1i supk0..^M|Qk<x<=supj0..^M|Qj<x<
176 160 161 170 171 175 fourierdlem25 φxABdomF¬xranQi0..^MxQiQi+1
177 53 ad2antrl φidomIxIii0..^M
178 simprr φidomIxIixIi
179 177 136 syl φidomIxIiIi=QiQi+1
180 178 179 eleqtrd φidomIxIixQiQi+1
181 177 180 jca φidomIxIii0..^MxQiQi+1
182 id i0..^Mi0..^M
183 182 52 eleqtrrdi i0..^MidomI
184 183 ad2antrl φi0..^MxQiQi+1idomI
185 simprr φi0..^MxQiQi+1xQiQi+1
186 136 eqcomd i0..^MQiQi+1=Ii
187 186 ad2antrl φi0..^MxQiQi+1QiQi+1=Ii
188 185 187 eleqtrd φi0..^MxQiQi+1xIi
189 184 188 jca φi0..^MxQiQi+1idomIxIi
190 181 189 impbida φidomIxIii0..^MxQiQi+1
191 190 rexbidv2 φidomIxIii0..^MxQiQi+1
192 191 ad2antrr φxABdomF¬xranQidomIxIii0..^MxQiQi+1
193 176 192 mpbird φxABdomF¬xranQidomIxIi
194 193 47 sylibr φxABdomF¬xranQxranI
195 elun2 xranIxranQdomFranI
196 194 195 syl φxABdomF¬xranQxranQdomFranI
197 159 196 pm2.61dan φxABdomFxranQdomFranI
198 197 ralrimiva φxABdomFxranQdomFranI
199 dfss3 ABdomFranQdomFranIxABdomFxranQdomFranI
200 198 199 sylibr φABdomFranQdomFranI
201 28 35 37 syl2anc φranQdomFranI=ranQdomFranI
202 200 201 sseqtrrd φABdomFranQdomFranI
203 19 77 153 202 ssfiunibd φyxABdomFFxy
204 nfv xφ
205 nfra1 xxABdomFFxy
206 204 205 nfan xφxABdomFFxy
207 1 sselda φxdomFx
208 4 adantr φxdomFB
209 208 207 resubcld φxdomFBx
210 4 3 resubcld φBA
211 6 210 eqeltrid φT
212 211 adantr φxdomFT
213 3 4 posdifd φA<B0<BA
214 5 213 mpbid φ0<BA
215 214 6 breqtrrdi φ0<T
216 215 gt0ne0d φT0
217 216 adantr φxdomFT0
218 209 212 217 redivcld φxdomFBxT
219 218 flcld φxdomFBxT
220 219 zred φxdomFBxT
221 220 212 remulcld φxdomFBxTT
222 207 221 readdcld φxdomFx+BxTT
223 17 fvmpt2 xx+BxTTEx=x+BxTT
224 207 222 223 syl2anc φxdomFEx=x+BxTT
225 224 fveq2d φxdomFFEx=Fx+BxTT
226 fvex BxTV
227 eleq1 k=BxTkBxT
228 227 anbi2d k=BxTφxdomFkφxdomFBxT
229 oveq1 k=BxTkT=BxTT
230 229 oveq2d k=BxTx+kT=x+BxTT
231 230 fveq2d k=BxTFx+kT=Fx+BxTT
232 231 eqeq1d k=BxTFx+kT=FxFx+BxTT=Fx
233 228 232 imbi12d k=BxTφxdomFkFx+kT=FxφxdomFBxTFx+BxTT=Fx
234 226 233 15 vtocl φxdomFBxTFx+BxTT=Fx
235 219 234 mpdan φxdomFFx+BxTT=Fx
236 225 235 eqtr2d φxdomFFx=FEx
237 236 fveq2d φxdomFFx=FEx
238 237 adantlr φxABdomFFxyxdomFFx=FEx
239 fveq2 x=wFx=Fw
240 239 fveq2d x=wFx=Fw
241 240 breq1d x=wFxyFwy
242 241 cbvralvw xABdomFFxywABdomFFwy
243 242 biimpi xABdomFFxywABdomFFwy
244 243 ad2antlr φxABdomFFxyxdomFwABdomFFwy
245 iocssicc ABAB
246 3 adantr φxdomFA
247 5 adantr φxdomFA<B
248 id x=yx=y
249 oveq2 x=yBx=By
250 249 oveq1d x=yBxT=ByT
251 250 fveq2d x=yBxT=ByT
252 251 oveq1d x=yBxTT=ByTT
253 248 252 oveq12d x=yx+BxTT=y+ByTT
254 253 cbvmptv xx+BxTT=yy+ByTT
255 17 254 eqtri E=yy+ByTT
256 246 208 247 6 255 fourierdlem4 φxdomFE:AB
257 256 207 ffvelcdmd φxdomFExAB
258 245 257 sselid φxdomFExAB
259 230 eleq1d k=BxTx+kTdomFx+BxTTdomF
260 228 259 imbi12d k=BxTφxdomFkx+kTdomFφxdomFBxTx+BxTTdomF
261 226 260 14 vtocl φxdomFBxTx+BxTTdomF
262 219 261 mpdan φxdomFx+BxTTdomF
263 224 262 eqeltrd φxdomFExdomF
264 258 263 elind φxdomFExABdomF
265 264 adantlr φxABdomFFxyxdomFExABdomF
266 fveq2 w=ExFw=FEx
267 266 fveq2d w=ExFw=FEx
268 267 breq1d w=ExFwyFExy
269 268 rspccva wABdomFFwyExABdomFFExy
270 244 265 269 syl2anc φxABdomFFxyxdomFFExy
271 238 270 eqbrtrd φxABdomFFxyxdomFFxy
272 271 ex φxABdomFFxyxdomFFxy
273 206 272 ralrimi φxABdomFFxyxdomFFxy
274 273 ex φxABdomFFxyxdomFFxy
275 274 reximdv φyxABdomFFxyyxdomFFxy
276 203 275 mpd φyxdomFFxy