Metamath Proof Explorer


Theorem gsumzaddlem

Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumzadd.b B=BaseG
gsumzadd.0 0˙=0G
gsumzadd.p +˙=+G
gsumzadd.z Z=CntzG
gsumzadd.g φGMnd
gsumzadd.a φAV
gsumzadd.fn φfinSupp0˙F
gsumzadd.hn φfinSupp0˙H
gsumzaddlem.w W=FHsupp0˙
gsumzaddlem.f φF:AB
gsumzaddlem.h φH:AB
gsumzaddlem.1 φranFZranF
gsumzaddlem.2 φranHZranH
gsumzaddlem.3 φranF+˙fHZranF+˙fH
gsumzaddlem.4 φxAkAxFkZGHx
Assertion gsumzaddlem φGF+˙fH=GF+˙GH

Proof

Step Hyp Ref Expression
1 gsumzadd.b B=BaseG
2 gsumzadd.0 0˙=0G
3 gsumzadd.p +˙=+G
4 gsumzadd.z Z=CntzG
5 gsumzadd.g φGMnd
6 gsumzadd.a φAV
7 gsumzadd.fn φfinSupp0˙F
8 gsumzadd.hn φfinSupp0˙H
9 gsumzaddlem.w W=FHsupp0˙
10 gsumzaddlem.f φF:AB
11 gsumzaddlem.h φH:AB
12 gsumzaddlem.1 φranFZranF
13 gsumzaddlem.2 φranHZranH
14 gsumzaddlem.3 φranF+˙fHZranF+˙fH
15 gsumzaddlem.4 φxAkAxFkZGHx
16 1 2 mndidcl GMnd0˙B
17 5 16 syl φ0˙B
18 1 3 2 mndlid GMnd0˙B0˙+˙0˙=0˙
19 5 17 18 syl2anc φ0˙+˙0˙=0˙
20 19 adantr φW=0˙+˙0˙=0˙
21 2 fvexi 0˙V
22 21 a1i φ0˙V
23 11 6 fexd φHV
24 23 suppun φFsupp0˙FHsupp0˙
25 24 9 sseqtrrdi φFsupp0˙W
26 10 6 22 25 gsumcllem φW=F=xA0˙
27 26 oveq2d φW=GF=GxA0˙
28 2 gsumz GMndAVGxA0˙=0˙
29 5 6 28 syl2anc φGxA0˙=0˙
30 29 adantr φW=GxA0˙=0˙
31 27 30 eqtrd φW=GF=0˙
32 10 6 fexd φFV
33 32 suppun φHsupp0˙HFsupp0˙
34 uncom FH=HF
35 34 oveq1i FHsupp0˙=HFsupp0˙
36 33 35 sseqtrrdi φHsupp0˙FHsupp0˙
37 36 9 sseqtrrdi φHsupp0˙W
38 11 6 22 37 gsumcllem φW=H=xA0˙
39 38 oveq2d φW=GH=GxA0˙
40 39 30 eqtrd φW=GH=0˙
41 31 40 oveq12d φW=GF+˙GH=0˙+˙0˙
42 6 adantr φW=AV
43 17 ad2antrr φW=xA0˙B
44 42 43 43 26 38 offval2 φW=F+˙fH=xA0˙+˙0˙
45 20 mpteq2dv φW=xA0˙+˙0˙=xA0˙
46 44 45 eqtrd φW=F+˙fH=xA0˙
47 46 oveq2d φW=GF+˙fH=GxA0˙
48 47 30 eqtrd φW=GF+˙fH=0˙
49 20 41 48 3eqtr4rd φW=GF+˙fH=GF+˙GH
50 49 ex φW=GF+˙fH=GF+˙GH
51 5 adantr φWf:1W1-1 ontoWGMnd
52 1 3 mndcl GMndzBwBz+˙wB
53 52 3expb GMndzBwBz+˙wB
54 51 53 sylan φWf:1W1-1 ontoWzBwBz+˙wB
55 54 caovclg φWf:1W1-1 ontoWxByBx+˙yB
56 simprl φWf:1W1-1 ontoWW
57 nnuz =1
58 56 57 eleqtrdi φWf:1W1-1 ontoWW1
59 10 adantr φWf:1W1-1 ontoWF:AB
60 f1of1 f:1W1-1 ontoWf:1W1-1W
61 60 ad2antll φWf:1W1-1 ontoWf:1W1-1W
62 suppssdm FHsupp0˙domFH
63 62 a1i φFHsupp0˙domFH
64 9 a1i φW=FHsupp0˙
65 dmun domFH=domFdomH
66 10 fdmd φdomF=A
67 11 fdmd φdomH=A
68 66 67 uneq12d φdomFdomH=AA
69 unidm AA=A
70 68 69 eqtrdi φdomFdomH=A
71 65 70 eqtr2id φA=domFH
72 63 64 71 3sstr4d φWA
73 72 adantr φWf:1W1-1 ontoWWA
74 f1ss f:1W1-1WWAf:1W1-1A
75 61 73 74 syl2anc φWf:1W1-1 ontoWf:1W1-1A
76 f1f f:1W1-1Af:1WA
77 75 76 syl φWf:1W1-1 ontoWf:1WA
78 fco F:ABf:1WAFf:1WB
79 59 77 78 syl2anc φWf:1W1-1 ontoWFf:1WB
80 79 ffvelcdmda φWf:1W1-1 ontoWk1WFfkB
81 11 adantr φWf:1W1-1 ontoWH:AB
82 fco H:ABf:1WAHf:1WB
83 81 77 82 syl2anc φWf:1W1-1 ontoWHf:1WB
84 83 ffvelcdmda φWf:1W1-1 ontoWk1WHfkB
85 59 ffnd φWf:1W1-1 ontoWFFnA
86 81 ffnd φWf:1W1-1 ontoWHFnA
87 6 adantr φWf:1W1-1 ontoWAV
88 ovexd φWf:1W1-1 ontoW1WV
89 inidm AA=A
90 85 86 77 87 87 88 89 ofco φWf:1W1-1 ontoWF+˙fHf=Ff+˙fHf
91 90 fveq1d φWf:1W1-1 ontoWF+˙fHfk=Ff+˙fHfk
92 91 adantr φWf:1W1-1 ontoWk1WF+˙fHfk=Ff+˙fHfk
93 fnfco FFnAf:1WAFfFn1W
94 85 77 93 syl2anc φWf:1W1-1 ontoWFfFn1W
95 fnfco HFnAf:1WAHfFn1W
96 86 77 95 syl2anc φWf:1W1-1 ontoWHfFn1W
97 inidm 1W1W=1W
98 eqidd φWf:1W1-1 ontoWk1WFfk=Ffk
99 eqidd φWf:1W1-1 ontoWk1WHfk=Hfk
100 94 96 88 88 97 98 99 ofval φWf:1W1-1 ontoWk1WFf+˙fHfk=Ffk+˙Hfk
101 92 100 eqtrd φWf:1W1-1 ontoWk1WF+˙fHfk=Ffk+˙Hfk
102 5 ad2antrr φWf:1W1-1 ontoWn1..^WGMnd
103 elfzouz n1..^Wn1
104 103 adantl φWf:1W1-1 ontoWn1..^Wn1
105 elfzouz2 n1..^WWn
106 105 adantl φWf:1W1-1 ontoWn1..^WWn
107 fzss2 Wn1n1W
108 106 107 syl φWf:1W1-1 ontoWn1..^W1n1W
109 108 sselda φWf:1W1-1 ontoWn1..^Wk1nk1W
110 80 adantlr φWf:1W1-1 ontoWn1..^Wk1WFfkB
111 109 110 syldan φWf:1W1-1 ontoWn1..^Wk1nFfkB
112 1 3 mndcl GMndkBxBk+˙xB
113 112 3expb GMndkBxBk+˙xB
114 102 113 sylan φWf:1W1-1 ontoWn1..^WkBxBk+˙xB
115 104 111 114 seqcl φWf:1W1-1 ontoWn1..^Wseq1+˙FfnB
116 84 adantlr φWf:1W1-1 ontoWn1..^Wk1WHfkB
117 109 116 syldan φWf:1W1-1 ontoWn1..^Wk1nHfkB
118 104 117 114 seqcl φWf:1W1-1 ontoWn1..^Wseq1+˙HfnB
119 fzofzp1 n1..^Wn+11W
120 ffvelcdm Ff:1WBn+11WFfn+1B
121 79 119 120 syl2an φWf:1W1-1 ontoWn1..^WFfn+1B
122 ffvelcdm Hf:1WBn+11WHfn+1B
123 83 119 122 syl2an φWf:1W1-1 ontoWn1..^WHfn+1B
124 fvco3 f:1WAn+11WFfn+1=Ffn+1
125 77 119 124 syl2an φWf:1W1-1 ontoWn1..^WFfn+1=Ffn+1
126 fveq2 k=fn+1Fk=Ffn+1
127 126 eleq1d k=fn+1FkZGHf1nFfn+1ZGHf1n
128 15 expr φxAkAxFkZGHx
129 128 ralrimiv φxAkAxFkZGHx
130 129 ex φxAkAxFkZGHx
131 130 alrimiv φxxAkAxFkZGHx
132 131 ad2antrr φWf:1W1-1 ontoWn1..^WxxAkAxFkZGHx
133 imassrn f1nranf
134 77 adantr φWf:1W1-1 ontoWn1..^Wf:1WA
135 134 frnd φWf:1W1-1 ontoWn1..^WranfA
136 133 135 sstrid φWf:1W1-1 ontoWn1..^Wf1nA
137 vex fV
138 137 imaex f1nV
139 sseq1 x=f1nxAf1nA
140 difeq2 x=f1nAx=Af1n
141 reseq2 x=f1nHx=Hf1n
142 141 oveq2d x=f1nGHx=GHf1n
143 142 sneqd x=f1nGHx=GHf1n
144 143 fveq2d x=f1nZGHx=ZGHf1n
145 144 eleq2d x=f1nFkZGHxFkZGHf1n
146 140 145 raleqbidv x=f1nkAxFkZGHxkAf1nFkZGHf1n
147 139 146 imbi12d x=f1nxAkAxFkZGHxf1nAkAf1nFkZGHf1n
148 138 147 spcv xxAkAxFkZGHxf1nAkAf1nFkZGHf1n
149 132 136 148 sylc φWf:1W1-1 ontoWn1..^WkAf1nFkZGHf1n
150 ffvelcdm f:1WAn+11Wfn+1A
151 77 119 150 syl2an φWf:1W1-1 ontoWn1..^Wfn+1A
152 fzp1nel ¬n+11n
153 75 adantr φWf:1W1-1 ontoWn1..^Wf:1W1-1A
154 119 adantl φWf:1W1-1 ontoWn1..^Wn+11W
155 f1elima f:1W1-1An+11W1n1Wfn+1f1nn+11n
156 153 154 108 155 syl3anc φWf:1W1-1 ontoWn1..^Wfn+1f1nn+11n
157 152 156 mtbiri φWf:1W1-1 ontoWn1..^W¬fn+1f1n
158 151 157 eldifd φWf:1W1-1 ontoWn1..^Wfn+1Af1n
159 127 149 158 rspcdva φWf:1W1-1 ontoWn1..^WFfn+1ZGHf1n
160 125 159 eqeltrd φWf:1W1-1 ontoWn1..^WFfn+1ZGHf1n
161 138 a1i φWf:1W1-1 ontoWn1..^Wf1nV
162 11 ad2antrr φWf:1W1-1 ontoWn1..^WH:AB
163 162 136 fssresd φWf:1W1-1 ontoWn1..^WHf1n:f1nB
164 13 ad2antrr φWf:1W1-1 ontoWn1..^WranHZranH
165 resss Hf1nH
166 165 rnssi ranHf1nranH
167 4 cntzidss ranHZranHranHf1nranHranHf1nZranHf1n
168 164 166 167 sylancl φWf:1W1-1 ontoWn1..^WranHf1nZranHf1n
169 104 57 eleqtrrdi φWf:1W1-1 ontoWn1..^Wn
170 f1ores f:1W1-1A1n1Wf1n:1n1-1 ontof1n
171 153 108 170 syl2anc φWf:1W1-1 ontoWn1..^Wf1n:1n1-1 ontof1n
172 f1of1 f1n:1n1-1 ontof1nf1n:1n1-1f1n
173 171 172 syl φWf:1W1-1 ontoWn1..^Wf1n:1n1-1f1n
174 suppssdm Hf1nsupp0˙domHf1n
175 dmres domHf1n=f1ndomH
176 175 a1i φWf:1W1-1 ontoWn1..^WdomHf1n=f1ndomH
177 174 176 sseqtrid φWf:1W1-1 ontoWn1..^WHf1nsupp0˙f1ndomH
178 inss1 f1ndomHf1n
179 df-ima f1n=ranf1n
180 179 a1i φWf:1W1-1 ontoWn1..^Wf1n=ranf1n
181 178 180 sseqtrid φWf:1W1-1 ontoWn1..^Wf1ndomHranf1n
182 177 181 sstrd φWf:1W1-1 ontoWn1..^WHf1nsupp0˙ranf1n
183 eqid Hf1nf1nsupp0˙=Hf1nf1nsupp0˙
184 1 2 3 4 102 161 163 168 169 173 182 183 gsumval3 φWf:1W1-1 ontoWn1..^WGHf1n=seq1+˙Hf1nf1nn
185 179 eqimss2i ranf1nf1n
186 cores ranf1nf1nHf1nf1n=Hf1n
187 185 186 ax-mp Hf1nf1n=Hf1n
188 resco Hf1n=Hf1n
189 187 188 eqtr4i Hf1nf1n=Hf1n
190 189 fveq1i Hf1nf1nk=Hf1nk
191 fvres k1nHf1nk=Hfk
192 190 191 eqtrid k1nHf1nf1nk=Hfk
193 192 adantl φWf:1W1-1 ontoWn1..^Wk1nHf1nf1nk=Hfk
194 104 193 seqfveq φWf:1W1-1 ontoWn1..^Wseq1+˙Hf1nf1nn=seq1+˙Hfn
195 184 194 eqtr2d φWf:1W1-1 ontoWn1..^Wseq1+˙Hfn=GHf1n
196 fvex seq1+˙HfnV
197 196 elsn seq1+˙HfnGHf1nseq1+˙Hfn=GHf1n
198 195 197 sylibr φWf:1W1-1 ontoWn1..^Wseq1+˙HfnGHf1n
199 3 4 cntzi Ffn+1ZGHf1nseq1+˙HfnGHf1nFfn+1+˙seq1+˙Hfn=seq1+˙Hfn+˙Ffn+1
200 160 198 199 syl2anc φWf:1W1-1 ontoWn1..^WFfn+1+˙seq1+˙Hfn=seq1+˙Hfn+˙Ffn+1
201 200 eqcomd φWf:1W1-1 ontoWn1..^Wseq1+˙Hfn+˙Ffn+1=Ffn+1+˙seq1+˙Hfn
202 1 3 102 115 118 121 123 201 mnd4g φWf:1W1-1 ontoWn1..^Wseq1+˙Ffn+˙seq1+˙Hfn+˙Ffn+1+˙Hfn+1=seq1+˙Ffn+˙Ffn+1+˙seq1+˙Hfn+˙Hfn+1
203 55 55 58 80 84 101 202 seqcaopr3 φWf:1W1-1 ontoWseq1+˙F+˙fHfW=seq1+˙FfW+˙seq1+˙HfW
204 54 59 81 87 87 89 off φWf:1W1-1 ontoWF+˙fH:AB
205 14 adantr φWf:1W1-1 ontoWranF+˙fHZranF+˙fH
206 51 113 sylan φWf:1W1-1 ontoWkBxBk+˙xB
207 206 59 81 87 87 89 off φWf:1W1-1 ontoWF+˙fH:AB
208 eldifi xAranfxA
209 eqidd φWf:1W1-1 ontoWxAFx=Fx
210 eqidd φWf:1W1-1 ontoWxAHx=Hx
211 85 86 87 87 89 209 210 ofval φWf:1W1-1 ontoWxAF+˙fHx=Fx+˙Hx
212 208 211 sylan2 φWf:1W1-1 ontoWxAranfF+˙fHx=Fx+˙Hx
213 24 adantr φWf:1W1-1 ontoWFsupp0˙FHsupp0˙
214 f1ofo f:1W1-1 ontoWf:1WontoW
215 forn f:1WontoWranf=W
216 214 215 syl f:1W1-1 ontoWranf=W
217 216 9 eqtrdi f:1W1-1 ontoWranf=FHsupp0˙
218 217 sseq2d f:1W1-1 ontoWFsupp0˙ranfFsupp0˙FHsupp0˙
219 218 ad2antll φWf:1W1-1 ontoWFsupp0˙ranfFsupp0˙FHsupp0˙
220 213 219 mpbird φWf:1W1-1 ontoWFsupp0˙ranf
221 21 a1i φWf:1W1-1 ontoW0˙V
222 59 220 87 221 suppssr φWf:1W1-1 ontoWxAranfFx=0˙
223 33 adantr φWf:1W1-1 ontoWHsupp0˙HFsupp0˙
224 223 35 sseqtrrdi φWf:1W1-1 ontoWHsupp0˙FHsupp0˙
225 217 sseq2d f:1W1-1 ontoWHsupp0˙ranfHsupp0˙FHsupp0˙
226 225 ad2antll φWf:1W1-1 ontoWHsupp0˙ranfHsupp0˙FHsupp0˙
227 224 226 mpbird φWf:1W1-1 ontoWHsupp0˙ranf
228 81 227 87 221 suppssr φWf:1W1-1 ontoWxAranfHx=0˙
229 222 228 oveq12d φWf:1W1-1 ontoWxAranfFx+˙Hx=0˙+˙0˙
230 19 ad2antrr φWf:1W1-1 ontoWxAranf0˙+˙0˙=0˙
231 212 229 230 3eqtrd φWf:1W1-1 ontoWxAranfF+˙fHx=0˙
232 207 231 suppss φWf:1W1-1 ontoWF+˙fHsupp0˙ranf
233 ovex F+˙fHV
234 233 137 coex F+˙fHfV
235 suppimacnv F+˙fHfV0˙VF+˙fHfsupp0˙=F+˙fHf-1V0˙
236 235 eqcomd F+˙fHfV0˙VF+˙fHf-1V0˙=F+˙fHfsupp0˙
237 234 21 236 mp2an F+˙fHf-1V0˙=F+˙fHfsupp0˙
238 1 2 3 4 51 87 204 205 56 75 232 237 gsumval3 φWf:1W1-1 ontoWGF+˙fH=seq1+˙F+˙fHfW
239 12 adantr φWf:1W1-1 ontoWranFZranF
240 eqid Ffsupp0˙=Ffsupp0˙
241 1 2 3 4 51 87 59 239 56 75 220 240 gsumval3 φWf:1W1-1 ontoWGF=seq1+˙FfW
242 13 adantr φWf:1W1-1 ontoWranHZranH
243 eqid Hfsupp0˙=Hfsupp0˙
244 1 2 3 4 51 87 81 242 56 75 227 243 gsumval3 φWf:1W1-1 ontoWGH=seq1+˙HfW
245 241 244 oveq12d φWf:1W1-1 ontoWGF+˙GH=seq1+˙FfW+˙seq1+˙HfW
246 203 238 245 3eqtr4d φWf:1W1-1 ontoWGF+˙fH=GF+˙GH
247 246 expr φWf:1W1-1 ontoWGF+˙fH=GF+˙GH
248 247 exlimdv φWff:1W1-1 ontoWGF+˙fH=GF+˙GH
249 248 expimpd φWff:1W1-1 ontoWGF+˙fH=GF+˙GH
250 7 8 fsuppun φFHsupp0˙Fin
251 9 250 eqeltrid φWFin
252 fz1f1o WFinW=Wff:1W1-1 ontoW
253 251 252 syl φW=Wff:1W1-1 ontoW
254 50 249 253 mpjaod φGF+˙fH=GF+˙GH