Metamath Proof Explorer


Theorem gsumzaddlem

Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumzadd.b B = Base G
gsumzadd.0 0 ˙ = 0 G
gsumzadd.p + ˙ = + G
gsumzadd.z Z = Cntz G
gsumzadd.g φ G Mnd
gsumzadd.a φ A V
gsumzadd.fn φ finSupp 0 ˙ F
gsumzadd.hn φ finSupp 0 ˙ H
gsumzaddlem.w W = F H supp 0 ˙
gsumzaddlem.f φ F : A B
gsumzaddlem.h φ H : A B
gsumzaddlem.1 φ ran F Z ran F
gsumzaddlem.2 φ ran H Z ran H
gsumzaddlem.3 φ ran F + ˙ f H Z ran F + ˙ f H
gsumzaddlem.4 φ x A k A x F k Z G H x
Assertion gsumzaddlem φ G F + ˙ f H = G F + ˙ G H

Proof

Step Hyp Ref Expression
1 gsumzadd.b B = Base G
2 gsumzadd.0 0 ˙ = 0 G
3 gsumzadd.p + ˙ = + G
4 gsumzadd.z Z = Cntz G
5 gsumzadd.g φ G Mnd
6 gsumzadd.a φ A V
7 gsumzadd.fn φ finSupp 0 ˙ F
8 gsumzadd.hn φ finSupp 0 ˙ H
9 gsumzaddlem.w W = F H supp 0 ˙
10 gsumzaddlem.f φ F : A B
11 gsumzaddlem.h φ H : A B
12 gsumzaddlem.1 φ ran F Z ran F
13 gsumzaddlem.2 φ ran H Z ran H
14 gsumzaddlem.3 φ ran F + ˙ f H Z ran F + ˙ f H
15 gsumzaddlem.4 φ x A k A x F k Z G H x
16 1 2 mndidcl G Mnd 0 ˙ B
17 5 16 syl φ 0 ˙ B
18 1 3 2 mndlid G Mnd 0 ˙ B 0 ˙ + ˙ 0 ˙ = 0 ˙
19 5 17 18 syl2anc φ 0 ˙ + ˙ 0 ˙ = 0 ˙
20 19 adantr φ W = 0 ˙ + ˙ 0 ˙ = 0 ˙
21 2 fvexi 0 ˙ V
22 21 a1i φ 0 ˙ V
23 fex H : A B A V H V
24 11 6 23 syl2anc φ H V
25 24 suppun φ F supp 0 ˙ F H supp 0 ˙
26 25 9 sseqtrrdi φ F supp 0 ˙ W
27 10 6 22 26 gsumcllem φ W = F = x A 0 ˙
28 27 oveq2d φ W = G F = G x A 0 ˙
29 2 gsumz G Mnd A V G x A 0 ˙ = 0 ˙
30 5 6 29 syl2anc φ G x A 0 ˙ = 0 ˙
31 30 adantr φ W = G x A 0 ˙ = 0 ˙
32 28 31 eqtrd φ W = G F = 0 ˙
33 fex F : A B A V F V
34 10 6 33 syl2anc φ F V
35 34 suppun φ H supp 0 ˙ H F supp 0 ˙
36 uncom F H = H F
37 36 oveq1i F H supp 0 ˙ = H F supp 0 ˙
38 35 37 sseqtrrdi φ H supp 0 ˙ F H supp 0 ˙
39 38 9 sseqtrrdi φ H supp 0 ˙ W
40 11 6 22 39 gsumcllem φ W = H = x A 0 ˙
41 40 oveq2d φ W = G H = G x A 0 ˙
42 41 31 eqtrd φ W = G H = 0 ˙
43 32 42 oveq12d φ W = G F + ˙ G H = 0 ˙ + ˙ 0 ˙
44 6 adantr φ W = A V
45 17 ad2antrr φ W = x A 0 ˙ B
46 44 45 45 27 40 offval2 φ W = F + ˙ f H = x A 0 ˙ + ˙ 0 ˙
47 20 mpteq2dv φ W = x A 0 ˙ + ˙ 0 ˙ = x A 0 ˙
48 46 47 eqtrd φ W = F + ˙ f H = x A 0 ˙
49 48 oveq2d φ W = G F + ˙ f H = G x A 0 ˙
50 49 31 eqtrd φ W = G F + ˙ f H = 0 ˙
51 20 43 50 3eqtr4rd φ W = G F + ˙ f H = G F + ˙ G H
52 51 ex φ W = G F + ˙ f H = G F + ˙ G H
53 5 adantr φ W f : 1 W 1-1 onto W G Mnd
54 1 3 mndcl G Mnd z B w B z + ˙ w B
55 54 3expb G Mnd z B w B z + ˙ w B
56 53 55 sylan φ W f : 1 W 1-1 onto W z B w B z + ˙ w B
57 56 caovclg φ W f : 1 W 1-1 onto W x B y B x + ˙ y B
58 simprl φ W f : 1 W 1-1 onto W W
59 nnuz = 1
60 58 59 eleqtrdi φ W f : 1 W 1-1 onto W W 1
61 10 adantr φ W f : 1 W 1-1 onto W F : A B
62 f1of1 f : 1 W 1-1 onto W f : 1 W 1-1 W
63 62 ad2antll φ W f : 1 W 1-1 onto W f : 1 W 1-1 W
64 suppssdm F H supp 0 ˙ dom F H
65 64 a1i φ F H supp 0 ˙ dom F H
66 9 a1i φ W = F H supp 0 ˙
67 dmun dom F H = dom F dom H
68 10 fdmd φ dom F = A
69 11 fdmd φ dom H = A
70 68 69 uneq12d φ dom F dom H = A A
71 unidm A A = A
72 70 71 eqtrdi φ dom F dom H = A
73 67 72 syl5req φ A = dom F H
74 65 66 73 3sstr4d φ W A
75 74 adantr φ W f : 1 W 1-1 onto W W A
76 f1ss f : 1 W 1-1 W W A f : 1 W 1-1 A
77 63 75 76 syl2anc φ W f : 1 W 1-1 onto W f : 1 W 1-1 A
78 f1f f : 1 W 1-1 A f : 1 W A
79 77 78 syl φ W f : 1 W 1-1 onto W f : 1 W A
80 fco F : A B f : 1 W A F f : 1 W B
81 61 79 80 syl2anc φ W f : 1 W 1-1 onto W F f : 1 W B
82 81 ffvelrnda φ W f : 1 W 1-1 onto W k 1 W F f k B
83 11 adantr φ W f : 1 W 1-1 onto W H : A B
84 fco H : A B f : 1 W A H f : 1 W B
85 83 79 84 syl2anc φ W f : 1 W 1-1 onto W H f : 1 W B
86 85 ffvelrnda φ W f : 1 W 1-1 onto W k 1 W H f k B
87 61 ffnd φ W f : 1 W 1-1 onto W F Fn A
88 83 ffnd φ W f : 1 W 1-1 onto W H Fn A
89 6 adantr φ W f : 1 W 1-1 onto W A V
90 ovexd φ W f : 1 W 1-1 onto W 1 W V
91 inidm A A = A
92 87 88 79 89 89 90 91 ofco φ W f : 1 W 1-1 onto W F + ˙ f H f = F f + ˙ f H f
93 92 fveq1d φ W f : 1 W 1-1 onto W F + ˙ f H f k = F f + ˙ f H f k
94 93 adantr φ W f : 1 W 1-1 onto W k 1 W F + ˙ f H f k = F f + ˙ f H f k
95 fnfco F Fn A f : 1 W A F f Fn 1 W
96 87 79 95 syl2anc φ W f : 1 W 1-1 onto W F f Fn 1 W
97 fnfco H Fn A f : 1 W A H f Fn 1 W
98 88 79 97 syl2anc φ W f : 1 W 1-1 onto W H f Fn 1 W
99 inidm 1 W 1 W = 1 W
100 eqidd φ W f : 1 W 1-1 onto W k 1 W F f k = F f k
101 eqidd φ W f : 1 W 1-1 onto W k 1 W H f k = H f k
102 96 98 90 90 99 100 101 ofval φ W f : 1 W 1-1 onto W k 1 W F f + ˙ f H f k = F f k + ˙ H f k
103 94 102 eqtrd φ W f : 1 W 1-1 onto W k 1 W F + ˙ f H f k = F f k + ˙ H f k
104 5 ad2antrr φ W f : 1 W 1-1 onto W n 1 ..^ W G Mnd
105 elfzouz n 1 ..^ W n 1
106 105 adantl φ W f : 1 W 1-1 onto W n 1 ..^ W n 1
107 elfzouz2 n 1 ..^ W W n
108 107 adantl φ W f : 1 W 1-1 onto W n 1 ..^ W W n
109 fzss2 W n 1 n 1 W
110 108 109 syl φ W f : 1 W 1-1 onto W n 1 ..^ W 1 n 1 W
111 110 sselda φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 n k 1 W
112 82 adantlr φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 W F f k B
113 111 112 syldan φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 n F f k B
114 1 3 mndcl G Mnd k B x B k + ˙ x B
115 114 3expb G Mnd k B x B k + ˙ x B
116 104 115 sylan φ W f : 1 W 1-1 onto W n 1 ..^ W k B x B k + ˙ x B
117 106 113 116 seqcl φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ F f n B
118 86 adantlr φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 W H f k B
119 111 118 syldan φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 n H f k B
120 106 119 116 seqcl φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ H f n B
121 fzofzp1 n 1 ..^ W n + 1 1 W
122 ffvelrn F f : 1 W B n + 1 1 W F f n + 1 B
123 81 121 122 syl2an φ W f : 1 W 1-1 onto W n 1 ..^ W F f n + 1 B
124 ffvelrn H f : 1 W B n + 1 1 W H f n + 1 B
125 85 121 124 syl2an φ W f : 1 W 1-1 onto W n 1 ..^ W H f n + 1 B
126 fvco3 f : 1 W A n + 1 1 W F f n + 1 = F f n + 1
127 79 121 126 syl2an φ W f : 1 W 1-1 onto W n 1 ..^ W F f n + 1 = F f n + 1
128 fveq2 k = f n + 1 F k = F f n + 1
129 128 eleq1d k = f n + 1 F k Z G H f 1 n F f n + 1 Z G H f 1 n
130 15 expr φ x A k A x F k Z G H x
131 130 ralrimiv φ x A k A x F k Z G H x
132 131 ex φ x A k A x F k Z G H x
133 132 alrimiv φ x x A k A x F k Z G H x
134 133 ad2antrr φ W f : 1 W 1-1 onto W n 1 ..^ W x x A k A x F k Z G H x
135 imassrn f 1 n ran f
136 79 adantr φ W f : 1 W 1-1 onto W n 1 ..^ W f : 1 W A
137 136 frnd φ W f : 1 W 1-1 onto W n 1 ..^ W ran f A
138 135 137 sstrid φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n A
139 vex f V
140 139 imaex f 1 n V
141 sseq1 x = f 1 n x A f 1 n A
142 difeq2 x = f 1 n A x = A f 1 n
143 reseq2 x = f 1 n H x = H f 1 n
144 143 oveq2d x = f 1 n G H x = G H f 1 n
145 144 sneqd x = f 1 n G H x = G H f 1 n
146 145 fveq2d x = f 1 n Z G H x = Z G H f 1 n
147 146 eleq2d x = f 1 n F k Z G H x F k Z G H f 1 n
148 142 147 raleqbidv x = f 1 n k A x F k Z G H x k A f 1 n F k Z G H f 1 n
149 141 148 imbi12d x = f 1 n x A k A x F k Z G H x f 1 n A k A f 1 n F k Z G H f 1 n
150 140 149 spcv x x A k A x F k Z G H x f 1 n A k A f 1 n F k Z G H f 1 n
151 134 138 150 sylc φ W f : 1 W 1-1 onto W n 1 ..^ W k A f 1 n F k Z G H f 1 n
152 ffvelrn f : 1 W A n + 1 1 W f n + 1 A
153 79 121 152 syl2an φ W f : 1 W 1-1 onto W n 1 ..^ W f n + 1 A
154 fzp1nel ¬ n + 1 1 n
155 77 adantr φ W f : 1 W 1-1 onto W n 1 ..^ W f : 1 W 1-1 A
156 121 adantl φ W f : 1 W 1-1 onto W n 1 ..^ W n + 1 1 W
157 f1elima f : 1 W 1-1 A n + 1 1 W 1 n 1 W f n + 1 f 1 n n + 1 1 n
158 155 156 110 157 syl3anc φ W f : 1 W 1-1 onto W n 1 ..^ W f n + 1 f 1 n n + 1 1 n
159 154 158 mtbiri φ W f : 1 W 1-1 onto W n 1 ..^ W ¬ f n + 1 f 1 n
160 153 159 eldifd φ W f : 1 W 1-1 onto W n 1 ..^ W f n + 1 A f 1 n
161 129 151 160 rspcdva φ W f : 1 W 1-1 onto W n 1 ..^ W F f n + 1 Z G H f 1 n
162 127 161 eqeltrd φ W f : 1 W 1-1 onto W n 1 ..^ W F f n + 1 Z G H f 1 n
163 140 a1i φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n V
164 11 ad2antrr φ W f : 1 W 1-1 onto W n 1 ..^ W H : A B
165 164 138 fssresd φ W f : 1 W 1-1 onto W n 1 ..^ W H f 1 n : f 1 n B
166 13 ad2antrr φ W f : 1 W 1-1 onto W n 1 ..^ W ran H Z ran H
167 resss H f 1 n H
168 167 rnssi ran H f 1 n ran H
169 4 cntzidss ran H Z ran H ran H f 1 n ran H ran H f 1 n Z ran H f 1 n
170 166 168 169 sylancl φ W f : 1 W 1-1 onto W n 1 ..^ W ran H f 1 n Z ran H f 1 n
171 106 59 eleqtrrdi φ W f : 1 W 1-1 onto W n 1 ..^ W n
172 f1ores f : 1 W 1-1 A 1 n 1 W f 1 n : 1 n 1-1 onto f 1 n
173 155 110 172 syl2anc φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n : 1 n 1-1 onto f 1 n
174 f1of1 f 1 n : 1 n 1-1 onto f 1 n f 1 n : 1 n 1-1 f 1 n
175 173 174 syl φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n : 1 n 1-1 f 1 n
176 suppssdm H f 1 n supp 0 ˙ dom H f 1 n
177 dmres dom H f 1 n = f 1 n dom H
178 177 a1i φ W f : 1 W 1-1 onto W n 1 ..^ W dom H f 1 n = f 1 n dom H
179 176 178 sseqtrid φ W f : 1 W 1-1 onto W n 1 ..^ W H f 1 n supp 0 ˙ f 1 n dom H
180 inss1 f 1 n dom H f 1 n
181 df-ima f 1 n = ran f 1 n
182 181 a1i φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n = ran f 1 n
183 180 182 sseqtrid φ W f : 1 W 1-1 onto W n 1 ..^ W f 1 n dom H ran f 1 n
184 179 183 sstrd φ W f : 1 W 1-1 onto W n 1 ..^ W H f 1 n supp 0 ˙ ran f 1 n
185 eqid H f 1 n f 1 n supp 0 ˙ = H f 1 n f 1 n supp 0 ˙
186 1 2 3 4 104 163 165 170 171 175 184 185 gsumval3 φ W f : 1 W 1-1 onto W n 1 ..^ W G H f 1 n = seq 1 + ˙ H f 1 n f 1 n n
187 181 eqimss2i ran f 1 n f 1 n
188 cores ran f 1 n f 1 n H f 1 n f 1 n = H f 1 n
189 187 188 ax-mp H f 1 n f 1 n = H f 1 n
190 resco H f 1 n = H f 1 n
191 189 190 eqtr4i H f 1 n f 1 n = H f 1 n
192 191 fveq1i H f 1 n f 1 n k = H f 1 n k
193 fvres k 1 n H f 1 n k = H f k
194 192 193 syl5eq k 1 n H f 1 n f 1 n k = H f k
195 194 adantl φ W f : 1 W 1-1 onto W n 1 ..^ W k 1 n H f 1 n f 1 n k = H f k
196 106 195 seqfveq φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ H f 1 n f 1 n n = seq 1 + ˙ H f n
197 186 196 eqtr2d φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ H f n = G H f 1 n
198 fvex seq 1 + ˙ H f n V
199 198 elsn seq 1 + ˙ H f n G H f 1 n seq 1 + ˙ H f n = G H f 1 n
200 197 199 sylibr φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ H f n G H f 1 n
201 3 4 cntzi F f n + 1 Z G H f 1 n seq 1 + ˙ H f n G H f 1 n F f n + 1 + ˙ seq 1 + ˙ H f n = seq 1 + ˙ H f n + ˙ F f n + 1
202 162 200 201 syl2anc φ W f : 1 W 1-1 onto W n 1 ..^ W F f n + 1 + ˙ seq 1 + ˙ H f n = seq 1 + ˙ H f n + ˙ F f n + 1
203 202 eqcomd φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ H f n + ˙ F f n + 1 = F f n + 1 + ˙ seq 1 + ˙ H f n
204 1 3 104 117 120 123 125 203 mnd4g φ W f : 1 W 1-1 onto W n 1 ..^ W seq 1 + ˙ F f n + ˙ seq 1 + ˙ H f n + ˙ F f n + 1 + ˙ H f n + 1 = seq 1 + ˙ F f n + ˙ F f n + 1 + ˙ seq 1 + ˙ H f n + ˙ H f n + 1
205 57 57 60 82 86 103 204 seqcaopr3 φ W f : 1 W 1-1 onto W seq 1 + ˙ F + ˙ f H f W = seq 1 + ˙ F f W + ˙ seq 1 + ˙ H f W
206 56 61 83 89 89 91 off φ W f : 1 W 1-1 onto W F + ˙ f H : A B
207 14 adantr φ W f : 1 W 1-1 onto W ran F + ˙ f H Z ran F + ˙ f H
208 53 115 sylan φ W f : 1 W 1-1 onto W k B x B k + ˙ x B
209 208 61 83 89 89 91 off φ W f : 1 W 1-1 onto W F + ˙ f H : A B
210 eldifi x A ran f x A
211 eqidd φ W f : 1 W 1-1 onto W x A F x = F x
212 eqidd φ W f : 1 W 1-1 onto W x A H x = H x
213 87 88 89 89 91 211 212 ofval φ W f : 1 W 1-1 onto W x A F + ˙ f H x = F x + ˙ H x
214 210 213 sylan2 φ W f : 1 W 1-1 onto W x A ran f F + ˙ f H x = F x + ˙ H x
215 25 adantr φ W f : 1 W 1-1 onto W F supp 0 ˙ F H supp 0 ˙
216 f1ofo f : 1 W 1-1 onto W f : 1 W onto W
217 forn f : 1 W onto W ran f = W
218 216 217 syl f : 1 W 1-1 onto W ran f = W
219 218 9 eqtrdi f : 1 W 1-1 onto W ran f = F H supp 0 ˙
220 219 sseq2d f : 1 W 1-1 onto W F supp 0 ˙ ran f F supp 0 ˙ F H supp 0 ˙
221 220 ad2antll φ W f : 1 W 1-1 onto W F supp 0 ˙ ran f F supp 0 ˙ F H supp 0 ˙
222 215 221 mpbird φ W f : 1 W 1-1 onto W F supp 0 ˙ ran f
223 21 a1i φ W f : 1 W 1-1 onto W 0 ˙ V
224 61 222 89 223 suppssr φ W f : 1 W 1-1 onto W x A ran f F x = 0 ˙
225 35 adantr φ W f : 1 W 1-1 onto W H supp 0 ˙ H F supp 0 ˙
226 225 37 sseqtrrdi φ W f : 1 W 1-1 onto W H supp 0 ˙ F H supp 0 ˙
227 219 sseq2d f : 1 W 1-1 onto W H supp 0 ˙ ran f H supp 0 ˙ F H supp 0 ˙
228 227 ad2antll φ W f : 1 W 1-1 onto W H supp 0 ˙ ran f H supp 0 ˙ F H supp 0 ˙
229 226 228 mpbird φ W f : 1 W 1-1 onto W H supp 0 ˙ ran f
230 83 229 89 223 suppssr φ W f : 1 W 1-1 onto W x A ran f H x = 0 ˙
231 224 230 oveq12d φ W f : 1 W 1-1 onto W x A ran f F x + ˙ H x = 0 ˙ + ˙ 0 ˙
232 19 ad2antrr φ W f : 1 W 1-1 onto W x A ran f 0 ˙ + ˙ 0 ˙ = 0 ˙
233 214 231 232 3eqtrd φ W f : 1 W 1-1 onto W x A ran f F + ˙ f H x = 0 ˙
234 209 233 suppss φ W f : 1 W 1-1 onto W F + ˙ f H supp 0 ˙ ran f
235 ovex F + ˙ f H V
236 235 139 coex F + ˙ f H f V
237 suppimacnv F + ˙ f H f V 0 ˙ V F + ˙ f H f supp 0 ˙ = F + ˙ f H f -1 V 0 ˙
238 237 eqcomd F + ˙ f H f V 0 ˙ V F + ˙ f H f -1 V 0 ˙ = F + ˙ f H f supp 0 ˙
239 236 21 238 mp2an F + ˙ f H f -1 V 0 ˙ = F + ˙ f H f supp 0 ˙
240 1 2 3 4 53 89 206 207 58 77 234 239 gsumval3 φ W f : 1 W 1-1 onto W G F + ˙ f H = seq 1 + ˙ F + ˙ f H f W
241 12 adantr φ W f : 1 W 1-1 onto W ran F Z ran F
242 eqid F f supp 0 ˙ = F f supp 0 ˙
243 1 2 3 4 53 89 61 241 58 77 222 242 gsumval3 φ W f : 1 W 1-1 onto W G F = seq 1 + ˙ F f W
244 13 adantr φ W f : 1 W 1-1 onto W ran H Z ran H
245 eqid H f supp 0 ˙ = H f supp 0 ˙
246 1 2 3 4 53 89 83 244 58 77 229 245 gsumval3 φ W f : 1 W 1-1 onto W G H = seq 1 + ˙ H f W
247 243 246 oveq12d φ W f : 1 W 1-1 onto W G F + ˙ G H = seq 1 + ˙ F f W + ˙ seq 1 + ˙ H f W
248 205 240 247 3eqtr4d φ W f : 1 W 1-1 onto W G F + ˙ f H = G F + ˙ G H
249 248 expr φ W f : 1 W 1-1 onto W G F + ˙ f H = G F + ˙ G H
250 249 exlimdv φ W f f : 1 W 1-1 onto W G F + ˙ f H = G F + ˙ G H
251 250 expimpd φ W f f : 1 W 1-1 onto W G F + ˙ f H = G F + ˙ G H
252 7 8 fsuppun φ F H supp 0 ˙ Fin
253 9 252 eqeltrid φ W Fin
254 fz1f1o W Fin W = W f f : 1 W 1-1 onto W
255 253 254 syl φ W = W f f : 1 W 1-1 onto W
256 52 251 255 mpjaod φ G F + ˙ f H = G F + ˙ G H