Metamath Proof Explorer


Theorem logdivsqrle

Description: Conditions for ( ( log x ) / ( sqrt x ) ) to be decreasing. (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Hypotheses logdivsqrle.a φA+
logdivsqrle.b φB+
logdivsqrle.1 φe2A
logdivsqrle.2 φAB
Assertion logdivsqrle φlogBBlogAA

Proof

Step Hyp Ref Expression
1 logdivsqrle.a φA+
2 logdivsqrle.b φB+
3 logdivsqrle.1 φe2A
4 logdivsqrle.2 φAB
5 ioorp 0+∞=+
6 5 eqcomi +=0+∞
7 simpr φx+x+
8 7 relogcld φx+logx
9 7 rpsqrtcld φx+x+
10 9 rpred φx+x
11 rpsqrtcl x+x+
12 rpne0 x+x0
13 11 12 syl x+x0
14 13 adantl φx+x0
15 8 10 14 redivcld φx+logxx
16 15 fmpttd φx+logxx:+
17 rpcn x+x
18 17 adantl φx+x
19 rpne0 x+x0
20 19 adantl φx+x0
21 18 20 logcld φx+logx
22 18 sqrtcld φx+x
23 21 22 14 divrecd φx+logxx=logx1x
24 2cnd φ2
25 24 adantr φx+2
26 2ne0 20
27 26 a1i φx+20
28 25 27 reccld φx+12
29 18 20 28 cxpnegd φx+x12=1x12
30 cxpsqrt xx12=x
31 18 30 syl φx+x12=x
32 31 oveq2d φx+1x12=1x
33 29 32 eqtrd φx+x12=1x
34 33 oveq2d φx+logxx12=logx1x
35 23 34 eqtr4d φx+logxx=logxx12
36 35 mpteq2dva φx+logxx=x+logxx12
37 36 oveq2d φdx+logxxdx=dx+logxx12dx
38 reelprrecn
39 38 a1i φ
40 7 rpreccld φx+1x+
41 logf1o log:01-1 ontoranlog
42 f1of log:01-1 ontoranloglog:0ranlog
43 41 42 ax-mp log:0ranlog
44 43 a1i φlog:0ranlog
45 17 ssriv +
46 0nrp ¬0+
47 ssdifsn +0+¬0+
48 45 46 47 mpbir2an +0
49 48 a1i φ+0
50 44 49 feqresmpt φlog+=x+logx
51 50 oveq2d φDlog+=dx+logxdx
52 dvrelog Dlog+=x+1x
53 51 52 eqtr3di φdx+logxdx=x+1x
54 1cnd φ1
55 54 halfcld φ12
56 55 negcld φ12
57 56 adantr φx+12
58 18 57 cxpcld φx+x12
59 54 adantr φx+1
60 57 59 subcld φx+-12-1
61 18 60 cxpcld φx+x-12-1
62 57 61 mulcld φx+12x-12-1
63 dvcxp1 12dx+x12dx=x+12x-12-1
64 56 63 syl φdx+x12dx=x+12x-12-1
65 39 21 40 53 58 62 64 dvmptmul φdx+logxx12dx=x+1xx12+12x-12-1logx
66 37 65 eqtrd φdx+logxxdx=x+1xx12+12x-12-1logx
67 ax-resscn
68 67 a1i φ
69 eqid TopOpenfld=TopOpenfld
70 69 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
71 70 a1i φ+TopOpenfld×tTopOpenfldCnTopOpenfld
72 45 a1i φ+
73 ssid
74 73 a1i φ
75 cncfmptc 1+x+1:+cn
76 54 72 74 75 syl3anc φx+1:+cn
77 difss 0
78 cncfmptid +00x+x:+cn0
79 49 77 78 sylancl φx+x:+cn0
80 76 79 divcncf φx+1x:+cn
81 ax-1 x+xx+
82 17 81 jca x+xxx+
83 eqid −∞0=−∞0
84 83 ellogdm x−∞0xxx+
85 82 84 sylibr x+x−∞0
86 85 ssriv +−∞0
87 86 a1i φ+−∞0
88 56 87 cxpcncf1 φx+x12:+cn
89 80 88 mulcncf φx+1xx12:+cn
90 cncfmptc 12+x+12:+cn
91 56 72 74 90 syl3anc φx+12:+cn
92 56 54 subcld φ-12-1
93 92 87 cxpcncf1 φx+x-12-1:+cn
94 91 93 mulcncf φx+12x-12-1:+cn
95 cncfss +cn+cn
96 67 73 95 mp2an +cn+cn
97 relogcn log+:+cn
98 50 97 eqeltrrdi φx+logx:+cn
99 96 98 sselid φx+logx:+cn
100 94 99 mulcncf φx+12x-12-1logx:+cn
101 69 71 89 100 cncfmpt2f φx+1xx12+12x-12-1logx:+cn
102 rpre x+x
103 102 19 rereccld x+1x
104 rpge0 x+0x
105 halfre 12
106 105 renegcli 12
107 106 a1i x+12
108 102 104 107 recxpcld x+x12
109 103 108 remulcld x+1xx12
110 1re 1
111 106 110 resubcli -12-1
112 111 a1i x+-12-1
113 102 104 112 recxpcld x+x-12-1
114 107 113 remulcld x+12x-12-1
115 relogcl x+logx
116 114 115 remulcld x+12x-12-1logx
117 109 116 readdcld x+1xx12+12x-12-1logx
118 117 adantl φx+1xx12+12x-12-1logx
119 118 fmpttd φx+1xx12+12x-12-1logx:+
120 cncfcdm x+1xx12+12x-12-1logx:+cnx+1xx12+12x-12-1logx:+cnx+1xx12+12x-12-1logx:+
121 120 biimpar x+1xx12+12x-12-1logx:+cnx+1xx12+12x-12-1logx:+x+1xx12+12x-12-1logx:+cn
122 68 101 119 121 syl21anc φx+1xx12+12x-12-1logx:+cn
123 66 122 eqeltrd φdx+logxxdx:+cn
124 66 fveq1d φdx+logxxdxy=x+1xx12+12x-12-1logxy
125 124 adantr φyABdx+logxxdxy=x+1xx12+12x-12-1logxy
126 59 negcld φx+1
127 cxpadd xx0121x-12+-1=x12x1
128 18 20 57 126 127 syl211anc φx+x-12+-1=x12x1
129 61 mullidd φx+1x-12-1=x-12-1
130 57 59 negsubd φx+-12+-1=-12-1
131 130 oveq2d φx+x-12+-1=x-12-1
132 129 131 eqtr4d φx+1x-12-1=x-12+-1
133 45 40 sselid φx+1x
134 133 58 mulcomd φx+1xx12=x121x
135 cxpneg xx01x1=1x1
136 18 20 59 135 syl3anc φx+x1=1x1
137 18 cxp1d φx+x1=x
138 137 oveq2d φx+1x1=1x
139 136 138 eqtr2d φx+1x=x1
140 139 oveq2d φx+x121x=x12x1
141 134 140 eqtrd φx+1xx12=x12x1
142 128 132 141 3eqtr4rd φx+1xx12=1x-12-1
143 57 61 21 mul32d φx+12x-12-1logx=12logxx-12-1
144 142 143 oveq12d φx+1xx12+12x-12-1logx=1x-12-1+12logxx-12-1
145 57 21 mulcld φx+12logx
146 59 145 61 adddird φx+1+12logxx-12-1=1x-12-1+12logxx-12-1
147 144 146 eqtr4d φx+1xx12+12x-12-1logx=1+12logxx-12-1
148 147 mpteq2dva φx+1xx12+12x-12-1logx=x+1+12logxx-12-1
149 148 fveq1d φx+1xx12+12x-12-1logxy=x+1+12logxx-12-1y
150 149 adantr φyABx+1xx12+12x-12-1logxy=x+1+12logxx-12-1y
151 eqidd φyABx+1+12logxx-12-1=x+1+12logxx-12-1
152 simpr φyABx=yx=y
153 152 fveq2d φyABx=ylogx=logy
154 153 oveq2d φyABx=y12logx=12logy
155 154 oveq2d φyABx=y1+12logx=1+12logy
156 152 oveq1d φyABx=yx-12-1=y-12-1
157 155 156 oveq12d φyABx=y1+12logxx-12-1=1+12logyy-12-1
158 ioossicc ABAB
159 158 a1i φABAB
160 6 1 2 fct2relem φAB+
161 159 160 sstrd φAB+
162 161 sselda φyABy+
163 ovexd φyAB1+12logyy-12-1V
164 151 157 162 163 fvmptd φyABx+1+12logxx-12-1y=1+12logyy-12-1
165 110 a1i φyAB1
166 106 a1i φyAB12
167 162 relogcld φyABlogy
168 166 167 remulcld φyAB12logy
169 165 168 readdcld φyAB1+12logy
170 0red φyAB0
171 rpcxpcl y+-12-1y-12-1+
172 162 111 171 sylancl φyABy-12-1+
173 172 rpred φyABy-12-1
174 172 rpge0d φyAB0y-12-1
175 2cn 2
176 175 mullidi 12=2
177 2re 2
178 177 a1i φyAB2
179 178 reefcld φyABe2
180 1 rpred φA
181 180 adantr φyABA
182 162 rpred φyABy
183 3 adantr φyABe2A
184 eliooord yABA<yy<B
185 184 simpld yABA<y
186 185 adantl φyABA<y
187 181 182 186 ltled φyABAy
188 179 181 182 183 187 letrd φyABe2y
189 reeflog y+elogy=y
190 162 189 syl φyABelogy=y
191 188 190 breqtrrd φyABe2elogy
192 efle 2logy2logye2elogy
193 177 167 192 sylancr φyAB2logye2elogy
194 191 193 mpbird φyAB2logy
195 176 194 eqbrtrid φyAB12logy
196 2rp 2+
197 196 a1i φyAB2+
198 165 167 197 lemuldivd φyAB12logy1logy2
199 195 198 mpbid φyAB1logy2
200 67 167 sselid φyABlogy
201 24 adantr φyAB2
202 26 a1i φyAB20
203 200 201 202 divrec2d φyABlogy2=12logy
204 199 203 breqtrd φyAB112logy
205 55 adantr φyAB12
206 205 200 mulneg1d φyAB12logy=12logy
207 206 oveq2d φyAB012logy=012logy
208 67 170 sselid φyAB0
209 205 200 mulcld φyAB12logy
210 208 209 subnegd φyAB012logy=0+12logy
211 209 addlidd φyAB0+12logy=12logy
212 207 210 211 3eqtrd φyAB012logy=12logy
213 204 212 breqtrrd φyAB1012logy
214 leaddsub 112logy01+12logy01012logy
215 165 168 170 214 syl3anc φyAB1+12logy01012logy
216 213 215 mpbird φyAB1+12logy0
217 169 170 173 174 216 lemul1ad φyAB1+12logyy-12-10y-12-1
218 45 172 sselid φyABy-12-1
219 218 mul02d φyAB0y-12-1=0
220 217 219 breqtrd φyAB1+12logyy-12-10
221 164 220 eqbrtrd φyABx+1+12logxx-12-1y0
222 150 221 eqbrtrd φyABx+1xx12+12x-12-1logxy0
223 125 222 eqbrtrd φyABdx+logxxdxy0
224 6 1 2 16 123 4 223 fdvnegge φx+logxxBx+logxxA
225 eqidd φx+logxx=x+logxx
226 simpr φx=Bx=B
227 226 fveq2d φx=Blogx=logB
228 226 fveq2d φx=Bx=B
229 227 228 oveq12d φx=Blogxx=logBB
230 ovex logBBV
231 230 a1i φlogBBV
232 225 229 2 231 fvmptd φx+logxxB=logBB
233 simpr φx=Ax=A
234 233 fveq2d φx=Alogx=logA
235 233 fveq2d φx=Ax=A
236 234 235 oveq12d φx=Alogxx=logAA
237 ovex logAAV
238 237 a1i φlogAAV
239 225 236 1 238 fvmptd φx+logxxA=logAA
240 224 232 239 3brtr3d φlogBBlogAA