Metamath Proof Explorer


Theorem mhpmulcl

Description: A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024) Remove closure hypotheses. (Revised by SN, 4-Sep-2025)

Ref Expression
Hypotheses mhpmulcl.h H = I mHomP R
mhpmulcl.y Y = I mPoly R
mhpmulcl.t · ˙ = Y
mhpmulcl.r φ R Ring
mhpmulcl.p φ P H M
mhpmulcl.q φ Q H N
Assertion mhpmulcl φ P · ˙ Q H M + N

Proof

Step Hyp Ref Expression
1 mhpmulcl.h H = I mHomP R
2 mhpmulcl.y Y = I mPoly R
3 mhpmulcl.t · ˙ = Y
4 mhpmulcl.r φ R Ring
5 mhpmulcl.p φ P H M
6 mhpmulcl.q φ Q H N
7 breq2 d = x c f d c f x
8 7 rabbidv d = x c h 0 I | h -1 Fin | c f d = c h 0 I | h -1 Fin | c f x
9 fvoveq1 d = x Q d f e = Q x f e
10 9 oveq2d d = x P e R Q d f e = P e R Q x f e
11 8 10 mpteq12dv d = x e c h 0 I | h -1 Fin | c f d P e R Q d f e = e c h 0 I | h -1 Fin | c f x P e R Q x f e
12 11 oveq2d d = x R e c h 0 I | h -1 Fin | c f d P e R Q d f e = R e c h 0 I | h -1 Fin | c f x P e R Q x f e
13 eqid Base Y = Base Y
14 eqid R = R
15 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
16 1 2 13 5 mhpmpl φ P Base Y
17 1 2 13 6 mhpmpl φ Q Base Y
18 2 13 14 3 15 16 17 mplmul φ P · ˙ Q = d h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f d P e R Q d f e
19 18 adantr φ x h 0 I | h -1 Fin P · ˙ Q = d h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f d P e R Q d f e
20 simpr φ x h 0 I | h -1 Fin x h 0 I | h -1 Fin
21 ovexd φ x h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f x P e R Q x f e V
22 12 19 20 21 fvmptd4 φ x h 0 I | h -1 Fin P · ˙ Q x = R e c h 0 I | h -1 Fin | c f x P e R Q x f e
23 22 neeq1d φ x h 0 I | h -1 Fin P · ˙ Q x 0 R R e c h 0 I | h -1 Fin | c f x P e R Q x f e 0 R
24 simp-4l φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M φ
25 oveq2 c = e fld 𝑠 0 c = fld 𝑠 0 e
26 25 eqeq1d c = e fld 𝑠 0 c = M fld 𝑠 0 e = M
27 26 necon3bbid c = e ¬ fld 𝑠 0 c = M fld 𝑠 0 e M
28 elrabi e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin
29 28 ad2antlr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M e h 0 I | h -1 Fin
30 simpr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M fld 𝑠 0 e M
31 27 29 30 elrabd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M e c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = M
32 notrab h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = M = c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = M
33 31 32 eleqtrrdi φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = M
34 eqid Base R = Base R
35 2 34 13 15 16 mplelf φ P : h 0 I | h -1 Fin Base R
36 eqid 0 R = 0 R
37 1 36 15 5 mhpdeg φ P supp 0 R c h 0 I | h -1 Fin | fld 𝑠 0 c = M
38 fvexd φ 0 R V
39 35 37 5 38 suppssrg φ e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = M P e = 0 R
40 24 33 39 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M P e = 0 R
41 40 oveq1d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M P e R Q x f e = 0 R R Q x f e
42 4 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M R Ring
43 17 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M Q Base Y
44 2 34 13 15 43 mplelf φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M Q : h 0 I | h -1 Fin Base R
45 eqid c h 0 I | h -1 Fin | c f x = c h 0 I | h -1 Fin | c f x
46 15 45 psrbagconcl x h 0 I | h -1 Fin e c h 0 I | h -1 Fin | c f x x f e c h 0 I | h -1 Fin | c f x
47 46 ad5ant24 φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M x f e c h 0 I | h -1 Fin | c f x
48 elrabi x f e c h 0 I | h -1 Fin | c f x x f e h 0 I | h -1 Fin
49 47 48 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M x f e h 0 I | h -1 Fin
50 44 49 ffvelcdmd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M Q x f e Base R
51 34 14 36 42 50 ringlzd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M 0 R R Q x f e = 0 R
52 41 51 eqtrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M P e R Q x f e = 0 R
53 simp-4l φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N φ
54 oveq2 c = x f e fld 𝑠 0 c = fld 𝑠 0 x f e
55 54 eqeq1d c = x f e fld 𝑠 0 c = N fld 𝑠 0 x f e = N
56 55 necon3bbid c = x f e ¬ fld 𝑠 0 c = N fld 𝑠 0 x f e N
57 46 ad5ant24 φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e c h 0 I | h -1 Fin | c f x
58 57 48 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e h 0 I | h -1 Fin
59 simpr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N fld 𝑠 0 x f e N
60 56 58 59 elrabd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = N
61 notrab h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = N = c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = N
62 60 61 eleqtrrdi φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = N
63 2 34 13 15 17 mplelf φ Q : h 0 I | h -1 Fin Base R
64 1 36 15 6 mhpdeg φ Q supp 0 R c h 0 I | h -1 Fin | fld 𝑠 0 c = N
65 63 64 6 38 suppssrg φ x f e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = N Q x f e = 0 R
66 53 62 65 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N Q x f e = 0 R
67 66 oveq2d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e R Q x f e = P e R 0 R
68 4 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N R Ring
69 16 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P Base Y
70 2 34 13 15 69 mplelf φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P : h 0 I | h -1 Fin Base R
71 28 ad2antlr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N e h 0 I | h -1 Fin
72 70 71 ffvelcdmd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e Base R
73 34 14 36 68 72 ringrzd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e R 0 R = 0 R
74 67 73 eqtrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e R Q x f e = 0 R
75 nn0subm 0 SubMnd fld
76 eqid fld 𝑠 0 = fld 𝑠 0
77 76 submbas 0 SubMnd fld 0 = Base fld 𝑠 0
78 75 77 ax-mp 0 = Base fld 𝑠 0
79 cnfld0 0 = 0 fld
80 76 79 subm0 0 SubMnd fld 0 = 0 fld 𝑠 0
81 75 80 ax-mp 0 = 0 fld 𝑠 0
82 nn0ex 0 V
83 cnfldadd + = + fld
84 76 83 ressplusg 0 V + = + fld 𝑠 0
85 82 84 ax-mp + = + fld 𝑠 0
86 cnring fld Ring
87 ringcmn fld Ring fld CMnd
88 86 87 ax-mp fld CMnd
89 76 submcmn fld CMnd 0 SubMnd fld fld 𝑠 0 CMnd
90 88 75 89 mp2an fld 𝑠 0 CMnd
91 90 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 CMnd
92 reldmmhp Rel dom mHomP
93 92 1 5 elfvov1 φ I V
94 93 ad3antrrr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x I V
95 28 adantl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin
96 15 psrbagf e h 0 I | h -1 Fin e : I 0
97 95 96 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e : I 0
98 15 psrbagf x h 0 I | h -1 Fin x : I 0
99 98 ad3antlr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x : I 0
100 99 ffnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x Fn I
101 97 ffnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e Fn I
102 inidm I I = I
103 eqidd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I x i = x i
104 eqidd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i = e i
105 100 101 94 94 102 103 104 offval φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e = i I x i e i
106 simpl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x
107 breq1 c = e c f x e f x
108 107 elrab e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin e f x
109 108 simprbi e c h 0 I | h -1 Fin | c f x e f x
110 109 ad2antlr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e f x
111 simpr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I i I
112 101 100 94 94 102 104 103 ofrval φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e f x i I e i x i
113 106 110 111 112 syl3anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i x i
114 97 ffvelcdmda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i 0
115 99 ffvelcdmda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I x i 0
116 nn0sub e i 0 x i 0 e i x i x i e i 0
117 114 115 116 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i x i x i e i 0
118 113 117 mpbid φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I x i e i 0
119 105 118 fmpt3d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e : I 0
120 97 ffund φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x Fun e
121 c0ex 0 V
122 94 121 jctir φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x I V 0 V
123 fsuppeq I V 0 V e : I 0 e supp 0 = e -1 0 0
124 122 97 123 sylc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e supp 0 = e -1 0 0
125 dfn2 = 0 0
126 125 imaeq2i e -1 = e -1 0 0
127 124 126 eqtr4di φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e supp 0 = e -1
128 15 psrbag I V e h 0 I | h -1 Fin e : I 0 e -1 Fin
129 94 128 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin e : I 0 e -1 Fin
130 95 129 mpbid φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e : I 0 e -1 Fin
131 130 simprd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e -1 Fin
132 127 131 eqeltrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e supp 0 Fin
133 95 elexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e V
134 isfsupp e V 0 V finSupp 0 e Fun e e supp 0 Fin
135 133 121 134 sylancl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 e Fun e e supp 0 Fin
136 120 132 135 mpbir2and φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 e
137 ovexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e V
138 0nn0 0 0
139 138 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x 0 0
140 100 101 94 94 offun φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x Fun x f e
141 15 psrbagfsupp x h 0 I | h -1 Fin finSupp 0 x
142 141 ad3antlr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 x
143 142 136 fsuppunfi φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x supp 0 x supp 0 e Fin
144 0m0e0 0 0 = 0
145 144 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x 0 0 = 0
146 94 139 99 97 145 suppofssd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e supp 0 supp 0 x supp 0 e
147 143 146 ssfid φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e supp 0 Fin
148 137 139 140 147 isfsuppd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 x f e
149 78 81 85 91 94 97 119 136 148 gsumadd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + f x f e = fld 𝑠 0 e + fld 𝑠 0 x f e
150 97 ffvelcdmda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b 0
151 150 nn0cnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b
152 99 ffvelcdmda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I x b 0
153 152 nn0cnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I x b
154 151 153 pncan3d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b + x b - e b = x b
155 154 mpteq2dva φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b + x b - e b = b I x b
156 fvexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b V
157 ovexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I x b e b V
158 97 feqmptd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e = b I e b
159 99 feqmptd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x = b I x b
160 94 152 150 159 158 offval2 φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e = b I x b e b
161 94 156 157 158 160 offval2 φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e + f x f e = b I e b + x b - e b
162 155 161 159 3eqtr4d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e + f x f e = x
163 162 oveq2d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + f x f e = fld 𝑠 0 x
164 149 163 eqtr3d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + fld 𝑠 0 x f e = fld 𝑠 0 x
165 simplr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x M + N
166 164 165 eqnetrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + fld 𝑠 0 x f e M + N
167 oveq12 fld 𝑠 0 e = M fld 𝑠 0 x f e = N fld 𝑠 0 e + fld 𝑠 0 x f e = M + N
168 167 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e = M fld 𝑠 0 x f e = N fld 𝑠 0 e + fld 𝑠 0 x f e = M + N
169 168 necon3ad φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + fld 𝑠 0 x f e M + N ¬ fld 𝑠 0 e = M fld 𝑠 0 x f e = N
170 166 169 mpd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x ¬ fld 𝑠 0 e = M fld 𝑠 0 x f e = N
171 neorian fld 𝑠 0 e M fld 𝑠 0 x f e N ¬ fld 𝑠 0 e = M fld 𝑠 0 x f e = N
172 170 171 sylibr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M fld 𝑠 0 x f e N
173 52 74 172 mpjaodan φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x P e R Q x f e = 0 R
174 173 mpteq2dva φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x P e R Q x f e = e c h 0 I | h -1 Fin | c f x 0 R
175 174 oveq2d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x P e R Q x f e = R e c h 0 I | h -1 Fin | c f x 0 R
176 ringmnd R Ring R Mnd
177 4 176 syl φ R Mnd
178 177 ad2antrr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R Mnd
179 ovex 0 I V
180 179 rabex h 0 I | h -1 Fin V
181 180 rabex c h 0 I | h -1 Fin | c f x V
182 36 gsumz R Mnd c h 0 I | h -1 Fin | c f x V R e c h 0 I | h -1 Fin | c f x 0 R = 0 R
183 178 181 182 sylancl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x 0 R = 0 R
184 175 183 eqtrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x P e R Q x f e = 0 R
185 184 ex φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x P e R Q x f e = 0 R
186 185 necon1d φ x h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f x P e R Q x f e 0 R fld 𝑠 0 x = M + N
187 23 186 sylbid φ x h 0 I | h -1 Fin P · ˙ Q x 0 R fld 𝑠 0 x = M + N
188 187 ralrimiva φ x h 0 I | h -1 Fin P · ˙ Q x 0 R fld 𝑠 0 x = M + N
189 1 5 mhprcl φ M 0
190 1 6 mhprcl φ N 0
191 189 190 nn0addcld φ M + N 0
192 2 93 4 mplringd φ Y Ring
193 13 3 192 16 17 ringcld φ P · ˙ Q Base Y
194 1 2 13 36 15 93 4 191 193 ismhp3 φ P · ˙ Q H M + N x h 0 I | h -1 Fin P · ˙ Q x 0 R fld 𝑠 0 x = M + N
195 188 194 mpbird φ P · ˙ Q H M + N