Metamath Proof Explorer


Theorem mhpmulcl

Description: A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024)

Ref Expression
Hypotheses mhpmulcl.h H = I mHomP R
mhpmulcl.y Y = I mPoly R
mhpmulcl.t · ˙ = Y
mhpmulcl.i φ I V
mhpmulcl.r φ R Ring
mhpmulcl.m φ M 0
mhpmulcl.n φ N 0
mhpmulcl.p φ P H M
mhpmulcl.q φ Q H N
Assertion mhpmulcl φ P · ˙ Q H M + N

Proof

Step Hyp Ref Expression
1 mhpmulcl.h H = I mHomP R
2 mhpmulcl.y Y = I mPoly R
3 mhpmulcl.t · ˙ = Y
4 mhpmulcl.i φ I V
5 mhpmulcl.r φ R Ring
6 mhpmulcl.m φ M 0
7 mhpmulcl.n φ N 0
8 mhpmulcl.p φ P H M
9 mhpmulcl.q φ Q H N
10 eqid Base Y = Base Y
11 eqid R = R
12 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
13 1 2 10 4 5 6 8 mhpmpl φ P Base Y
14 1 2 10 4 5 7 9 mhpmpl φ Q Base Y
15 2 10 11 3 12 13 14 mplmul φ P · ˙ Q = d h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f d P e R Q d f e
16 15 adantr φ x h 0 I | h -1 Fin P · ˙ Q = d h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f d P e R Q d f e
17 breq2 d = x c f d c f x
18 17 rabbidv d = x c h 0 I | h -1 Fin | c f d = c h 0 I | h -1 Fin | c f x
19 fvoveq1 d = x Q d f e = Q x f e
20 19 oveq2d d = x P e R Q d f e = P e R Q x f e
21 18 20 mpteq12dv d = x e c h 0 I | h -1 Fin | c f d P e R Q d f e = e c h 0 I | h -1 Fin | c f x P e R Q x f e
22 21 oveq2d d = x R e c h 0 I | h -1 Fin | c f d P e R Q d f e = R e c h 0 I | h -1 Fin | c f x P e R Q x f e
23 22 adantl φ x h 0 I | h -1 Fin d = x R e c h 0 I | h -1 Fin | c f d P e R Q d f e = R e c h 0 I | h -1 Fin | c f x P e R Q x f e
24 simpr φ x h 0 I | h -1 Fin x h 0 I | h -1 Fin
25 ovexd φ x h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f x P e R Q x f e V
26 16 23 24 25 fvmptd φ x h 0 I | h -1 Fin P · ˙ Q x = R e c h 0 I | h -1 Fin | c f x P e R Q x f e
27 26 neeq1d φ x h 0 I | h -1 Fin P · ˙ Q x 0 R R e c h 0 I | h -1 Fin | c f x P e R Q x f e 0 R
28 simp-4l φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M φ
29 oveq2 c = e fld 𝑠 0 c = fld 𝑠 0 e
30 29 eqeq1d c = e fld 𝑠 0 c = M fld 𝑠 0 e = M
31 30 necon3bbid c = e ¬ fld 𝑠 0 c = M fld 𝑠 0 e M
32 simplr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M e c h 0 I | h -1 Fin | c f x
33 elrabi e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin
34 32 33 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M e h 0 I | h -1 Fin
35 simpr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M fld 𝑠 0 e M
36 31 34 35 elrabd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M e c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = M
37 notrab h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = M = c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = M
38 36 37 eleqtrrdi φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = M
39 eqid Base R = Base R
40 2 39 10 12 13 mplelf φ P : h 0 I | h -1 Fin Base R
41 eqid 0 R = 0 R
42 1 41 12 4 5 6 8 mhpdeg φ P supp 0 R c h 0 I | h -1 Fin | fld 𝑠 0 c = M
43 ovex 0 I V
44 43 rabex h 0 I | h -1 Fin V
45 44 a1i φ h 0 I | h -1 Fin V
46 fvexd φ 0 R V
47 40 42 45 46 suppssr φ e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = M P e = 0 R
48 28 38 47 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M P e = 0 R
49 48 oveq1d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M P e R Q x f e = 0 R R Q x f e
50 5 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M R Ring
51 14 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M Q Base Y
52 2 39 10 12 51 mplelf φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M Q : h 0 I | h -1 Fin Base R
53 simp-4r φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M x h 0 I | h -1 Fin
54 eqid c h 0 I | h -1 Fin | c f x = c h 0 I | h -1 Fin | c f x
55 12 54 psrbagconcl x h 0 I | h -1 Fin e c h 0 I | h -1 Fin | c f x x f e c h 0 I | h -1 Fin | c f x
56 53 32 55 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M x f e c h 0 I | h -1 Fin | c f x
57 elrabi x f e c h 0 I | h -1 Fin | c f x x f e h 0 I | h -1 Fin
58 56 57 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M x f e h 0 I | h -1 Fin
59 52 58 ffvelrnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M Q x f e Base R
60 39 11 41 ringlz R Ring Q x f e Base R 0 R R Q x f e = 0 R
61 50 59 60 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M 0 R R Q x f e = 0 R
62 49 61 eqtrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M P e R Q x f e = 0 R
63 simp-4l φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N φ
64 oveq2 c = x f e fld 𝑠 0 c = fld 𝑠 0 x f e
65 64 eqeq1d c = x f e fld 𝑠 0 c = N fld 𝑠 0 x f e = N
66 65 necon3bbid c = x f e ¬ fld 𝑠 0 c = N fld 𝑠 0 x f e N
67 simp-4r φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x h 0 I | h -1 Fin
68 simplr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N e c h 0 I | h -1 Fin | c f x
69 67 68 55 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e c h 0 I | h -1 Fin | c f x
70 69 57 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e h 0 I | h -1 Fin
71 simpr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N fld 𝑠 0 x f e N
72 66 70 71 elrabd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = N
73 notrab h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = N = c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = N
74 72 73 eleqtrrdi φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = N
75 2 39 10 12 14 mplelf φ Q : h 0 I | h -1 Fin Base R
76 1 41 12 4 5 7 9 mhpdeg φ Q supp 0 R c h 0 I | h -1 Fin | fld 𝑠 0 c = N
77 75 76 45 46 suppssr φ x f e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = N Q x f e = 0 R
78 63 74 77 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N Q x f e = 0 R
79 78 oveq2d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e R Q x f e = P e R 0 R
80 5 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N R Ring
81 13 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P Base Y
82 2 39 10 12 81 mplelf φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P : h 0 I | h -1 Fin Base R
83 33 adantl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin
84 83 adantr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N e h 0 I | h -1 Fin
85 82 84 ffvelrnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e Base R
86 39 11 41 ringrz R Ring P e Base R P e R 0 R = 0 R
87 80 85 86 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e R 0 R = 0 R
88 79 87 eqtrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e R Q x f e = 0 R
89 nn0subm 0 SubMnd fld
90 eqid fld 𝑠 0 = fld 𝑠 0
91 90 submbas 0 SubMnd fld 0 = Base fld 𝑠 0
92 89 91 ax-mp 0 = Base fld 𝑠 0
93 cnfld0 0 = 0 fld
94 90 93 subm0 0 SubMnd fld 0 = 0 fld 𝑠 0
95 89 94 ax-mp 0 = 0 fld 𝑠 0
96 nn0ex 0 V
97 cnfldadd + = + fld
98 90 97 ressplusg 0 V + = + fld 𝑠 0
99 96 98 ax-mp + = + fld 𝑠 0
100 cnring fld Ring
101 ringcmn fld Ring fld CMnd
102 100 101 ax-mp fld CMnd
103 90 submcmn fld CMnd 0 SubMnd fld fld 𝑠 0 CMnd
104 102 89 103 mp2an fld 𝑠 0 CMnd
105 104 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 CMnd
106 4 ad3antrrr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x I V
107 12 psrbagf e h 0 I | h -1 Fin e : I 0
108 83 107 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e : I 0
109 simpllr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x h 0 I | h -1 Fin
110 12 psrbagf x h 0 I | h -1 Fin x : I 0
111 109 110 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x : I 0
112 111 ffnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x Fn I
113 108 ffnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e Fn I
114 inidm I I = I
115 eqidd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I x i = x i
116 eqidd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i = e i
117 112 113 106 106 114 115 116 offval φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e = i I x i e i
118 simpl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x
119 simplr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e c h 0 I | h -1 Fin | c f x
120 breq1 c = e c f x e f x
121 120 elrab e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin e f x
122 121 simprbi e c h 0 I | h -1 Fin | c f x e f x
123 119 122 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e f x
124 simpr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I i I
125 113 112 106 106 114 116 115 ofrval φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e f x i I e i x i
126 118 123 124 125 syl3anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i x i
127 108 ffvelrnda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i 0
128 111 ffvelrnda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I x i 0
129 nn0sub e i 0 x i 0 e i x i x i e i 0
130 127 128 129 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i x i x i e i 0
131 126 130 mpbid φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I x i e i 0
132 117 131 fmpt3d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e : I 0
133 108 ffund φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x Fun e
134 c0ex 0 V
135 106 134 jctir φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x I V 0 V
136 frnsuppeq I V 0 V e : I 0 e supp 0 = e -1 0 0
137 135 108 136 sylc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e supp 0 = e -1 0 0
138 dfn2 = 0 0
139 138 imaeq2i e -1 = e -1 0 0
140 137 139 eqtr4di φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e supp 0 = e -1
141 12 psrbag I V e h 0 I | h -1 Fin e : I 0 e -1 Fin
142 106 141 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin e : I 0 e -1 Fin
143 83 142 mpbid φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e : I 0 e -1 Fin
144 143 simprd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e -1 Fin
145 140 144 eqeltrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e supp 0 Fin
146 83 elexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e V
147 isfsupp e V 0 V finSupp 0 e Fun e e supp 0 Fin
148 146 134 147 sylancl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 e Fun e e supp 0 Fin
149 133 145 148 mpbir2and φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 e
150 112 113 106 106 offun φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x Fun x f e
151 12 psrbagfsupp x h 0 I | h -1 Fin finSupp 0 x
152 109 151 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 x
153 152 149 fsuppunfi φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x supp 0 x supp 0 e Fin
154 0nn0 0 0
155 154 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x 0 0
156 0m0e0 0 0 = 0
157 156 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x 0 0 = 0
158 106 155 111 108 157 suppofssd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e supp 0 supp 0 x supp 0 e
159 153 158 ssfid φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e supp 0 Fin
160 ovexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e V
161 isfsupp x f e V 0 V finSupp 0 x f e Fun x f e x f e supp 0 Fin
162 160 134 161 sylancl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 x f e Fun x f e x f e supp 0 Fin
163 150 159 162 mpbir2and φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 x f e
164 92 95 99 105 106 108 132 149 163 gsumadd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + f x f e = fld 𝑠 0 e + fld 𝑠 0 x f e
165 108 ffvelrnda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b 0
166 165 nn0cnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b
167 111 ffvelrnda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I x b 0
168 167 nn0cnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I x b
169 166 168 pncan3d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b + x b - e b = x b
170 169 mpteq2dva φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b + x b - e b = b I x b
171 fvexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b V
172 ovexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I x b e b V
173 108 feqmptd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e = b I e b
174 111 feqmptd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x = b I x b
175 106 167 165 174 173 offval2 φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e = b I x b e b
176 106 171 172 173 175 offval2 φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e + f x f e = b I e b + x b - e b
177 170 176 174 3eqtr4d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e + f x f e = x
178 177 oveq2d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + f x f e = fld 𝑠 0 x
179 164 178 eqtr3d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + fld 𝑠 0 x f e = fld 𝑠 0 x
180 simplr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x M + N
181 179 180 eqnetrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + fld 𝑠 0 x f e M + N
182 oveq12 fld 𝑠 0 e = M fld 𝑠 0 x f e = N fld 𝑠 0 e + fld 𝑠 0 x f e = M + N
183 182 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e = M fld 𝑠 0 x f e = N fld 𝑠 0 e + fld 𝑠 0 x f e = M + N
184 183 necon3ad φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + fld 𝑠 0 x f e M + N ¬ fld 𝑠 0 e = M fld 𝑠 0 x f e = N
185 181 184 mpd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x ¬ fld 𝑠 0 e = M fld 𝑠 0 x f e = N
186 neorian fld 𝑠 0 e M fld 𝑠 0 x f e N ¬ fld 𝑠 0 e = M fld 𝑠 0 x f e = N
187 185 186 sylibr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M fld 𝑠 0 x f e N
188 62 88 187 mpjaodan φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x P e R Q x f e = 0 R
189 188 mpteq2dva φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x P e R Q x f e = e c h 0 I | h -1 Fin | c f x 0 R
190 189 oveq2d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x P e R Q x f e = R e c h 0 I | h -1 Fin | c f x 0 R
191 ringmnd R Ring R Mnd
192 5 191 syl φ R Mnd
193 192 ad2antrr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R Mnd
194 44 rabex c h 0 I | h -1 Fin | c f x V
195 41 gsumz R Mnd c h 0 I | h -1 Fin | c f x V R e c h 0 I | h -1 Fin | c f x 0 R = 0 R
196 193 194 195 sylancl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x 0 R = 0 R
197 190 196 eqtrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x P e R Q x f e = 0 R
198 197 ex φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x P e R Q x f e = 0 R
199 198 necon1d φ x h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f x P e R Q x f e 0 R fld 𝑠 0 x = M + N
200 27 199 sylbid φ x h 0 I | h -1 Fin P · ˙ Q x 0 R fld 𝑠 0 x = M + N
201 200 ralrimiva φ x h 0 I | h -1 Fin P · ˙ Q x 0 R fld 𝑠 0 x = M + N
202 6 7 nn0addcld φ M + N 0
203 2 mplring I V R Ring Y Ring
204 4 5 203 syl2anc φ Y Ring
205 10 3 ringcl Y Ring P Base Y Q Base Y P · ˙ Q Base Y
206 204 13 14 205 syl3anc φ P · ˙ Q Base Y
207 1 2 10 41 12 4 5 202 206 ismhp3 φ P · ˙ Q H M + N x h 0 I | h -1 Fin P · ˙ Q x 0 R fld 𝑠 0 x = M + N
208 201 207 mpbird φ P · ˙ Q H M + N