Metamath Proof Explorer


Theorem mhpmulcl

Description: A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024)

Ref Expression
Hypotheses mhpmulcl.h H=ImHomPR
mhpmulcl.y Y=ImPolyR
mhpmulcl.t ·˙=Y
mhpmulcl.i φIV
mhpmulcl.r φRRing
mhpmulcl.m φM0
mhpmulcl.n φN0
mhpmulcl.p φPHM
mhpmulcl.q φQHN
Assertion mhpmulcl φP·˙QHM+N

Proof

Step Hyp Ref Expression
1 mhpmulcl.h H=ImHomPR
2 mhpmulcl.y Y=ImPolyR
3 mhpmulcl.t ·˙=Y
4 mhpmulcl.i φIV
5 mhpmulcl.r φRRing
6 mhpmulcl.m φM0
7 mhpmulcl.n φN0
8 mhpmulcl.p φPHM
9 mhpmulcl.q φQHN
10 eqid BaseY=BaseY
11 eqid R=R
12 eqid h0I|h-1Fin=h0I|h-1Fin
13 1 2 10 4 5 6 8 mhpmpl φPBaseY
14 1 2 10 4 5 7 9 mhpmpl φQBaseY
15 2 10 11 3 12 13 14 mplmul φP·˙Q=dh0I|h-1FinRech0I|h-1Fin|cfdPeRQdfe
16 15 adantr φxh0I|h-1FinP·˙Q=dh0I|h-1FinRech0I|h-1Fin|cfdPeRQdfe
17 breq2 d=xcfdcfx
18 17 rabbidv d=xch0I|h-1Fin|cfd=ch0I|h-1Fin|cfx
19 fvoveq1 d=xQdfe=Qxfe
20 19 oveq2d d=xPeRQdfe=PeRQxfe
21 18 20 mpteq12dv d=xech0I|h-1Fin|cfdPeRQdfe=ech0I|h-1Fin|cfxPeRQxfe
22 21 oveq2d d=xRech0I|h-1Fin|cfdPeRQdfe=Rech0I|h-1Fin|cfxPeRQxfe
23 22 adantl φxh0I|h-1Find=xRech0I|h-1Fin|cfdPeRQdfe=Rech0I|h-1Fin|cfxPeRQxfe
24 simpr φxh0I|h-1Finxh0I|h-1Fin
25 ovexd φxh0I|h-1FinRech0I|h-1Fin|cfxPeRQxfeV
26 16 23 24 25 fvmptd φxh0I|h-1FinP·˙Qx=Rech0I|h-1Fin|cfxPeRQxfe
27 26 neeq1d φxh0I|h-1FinP·˙Qx0RRech0I|h-1Fin|cfxPeRQxfe0R
28 simp-4l φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMφ
29 oveq2 c=efld𝑠0c=fld𝑠0e
30 29 eqeq1d c=efld𝑠0c=Mfld𝑠0e=M
31 30 necon3bbid c=e¬fld𝑠0c=Mfld𝑠0eM
32 simplr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMech0I|h-1Fin|cfx
33 elrabi ech0I|h-1Fin|cfxeh0I|h-1Fin
34 32 33 syl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMeh0I|h-1Fin
35 simpr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMfld𝑠0eM
36 31 34 35 elrabd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMech0I|h-1Fin|¬fld𝑠0c=M
37 notrab h0I|h-1Finch0I|h-1Fin|fld𝑠0c=M=ch0I|h-1Fin|¬fld𝑠0c=M
38 36 37 eleqtrrdi φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMeh0I|h-1Finch0I|h-1Fin|fld𝑠0c=M
39 eqid BaseR=BaseR
40 2 39 10 12 13 mplelf φP:h0I|h-1FinBaseR
41 eqid 0R=0R
42 1 41 12 4 5 6 8 mhpdeg φPsupp0Rch0I|h-1Fin|fld𝑠0c=M
43 ovex 0IV
44 43 rabex h0I|h-1FinV
45 44 a1i φh0I|h-1FinV
46 fvexd φ0RV
47 40 42 45 46 suppssr φeh0I|h-1Finch0I|h-1Fin|fld𝑠0c=MPe=0R
48 28 38 47 syl2anc φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMPe=0R
49 48 oveq1d φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMPeRQxfe=0RRQxfe
50 5 ad4antr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMRRing
51 14 ad4antr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMQBaseY
52 2 39 10 12 51 mplelf φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMQ:h0I|h-1FinBaseR
53 simp-4r φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMxh0I|h-1Fin
54 eqid ch0I|h-1Fin|cfx=ch0I|h-1Fin|cfx
55 12 54 psrbagconcl xh0I|h-1Finech0I|h-1Fin|cfxxfech0I|h-1Fin|cfx
56 53 32 55 syl2anc φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMxfech0I|h-1Fin|cfx
57 elrabi xfech0I|h-1Fin|cfxxfeh0I|h-1Fin
58 56 57 syl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMxfeh0I|h-1Fin
59 52 58 ffvelcdmd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMQxfeBaseR
60 39 11 41 ringlz RRingQxfeBaseR0RRQxfe=0R
61 50 59 60 syl2anc φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eM0RRQxfe=0R
62 49 61 eqtrd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMPeRQxfe=0R
63 simp-4l φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNφ
64 oveq2 c=xfefld𝑠0c=fld𝑠0xfe
65 64 eqeq1d c=xfefld𝑠0c=Nfld𝑠0xfe=N
66 65 necon3bbid c=xfe¬fld𝑠0c=Nfld𝑠0xfeN
67 simp-4r φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNxh0I|h-1Fin
68 simplr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNech0I|h-1Fin|cfx
69 67 68 55 syl2anc φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNxfech0I|h-1Fin|cfx
70 69 57 syl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNxfeh0I|h-1Fin
71 simpr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNfld𝑠0xfeN
72 66 70 71 elrabd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNxfech0I|h-1Fin|¬fld𝑠0c=N
73 notrab h0I|h-1Finch0I|h-1Fin|fld𝑠0c=N=ch0I|h-1Fin|¬fld𝑠0c=N
74 72 73 eleqtrrdi φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNxfeh0I|h-1Finch0I|h-1Fin|fld𝑠0c=N
75 2 39 10 12 14 mplelf φQ:h0I|h-1FinBaseR
76 1 41 12 4 5 7 9 mhpdeg φQsupp0Rch0I|h-1Fin|fld𝑠0c=N
77 75 76 45 46 suppssr φxfeh0I|h-1Finch0I|h-1Fin|fld𝑠0c=NQxfe=0R
78 63 74 77 syl2anc φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNQxfe=0R
79 78 oveq2d φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNPeRQxfe=PeR0R
80 5 ad4antr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNRRing
81 13 ad4antr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNPBaseY
82 2 39 10 12 81 mplelf φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNP:h0I|h-1FinBaseR
83 33 adantl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxeh0I|h-1Fin
84 83 adantr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNeh0I|h-1Fin
85 82 84 ffvelcdmd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNPeBaseR
86 39 11 41 ringrz RRingPeBaseRPeR0R=0R
87 80 85 86 syl2anc φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNPeR0R=0R
88 79 87 eqtrd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xfeNPeRQxfe=0R
89 nn0subm 0SubMndfld
90 eqid fld𝑠0=fld𝑠0
91 90 submbas 0SubMndfld0=Basefld𝑠0
92 89 91 ax-mp 0=Basefld𝑠0
93 cnfld0 0=0fld
94 90 93 subm0 0SubMndfld0=0fld𝑠0
95 89 94 ax-mp 0=0fld𝑠0
96 nn0ex 0V
97 cnfldadd +=+fld
98 90 97 ressplusg 0V+=+fld𝑠0
99 96 98 ax-mp +=+fld𝑠0
100 cnring fldRing
101 ringcmn fldRingfldCMnd
102 100 101 ax-mp fldCMnd
103 90 submcmn fldCMnd0SubMndfldfld𝑠0CMnd
104 102 89 103 mp2an fld𝑠0CMnd
105 104 a1i φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0CMnd
106 4 ad3antrrr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxIV
107 12 psrbagf eh0I|h-1Fine:I0
108 83 107 syl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxe:I0
109 simpllr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxxh0I|h-1Fin
110 12 psrbagf xh0I|h-1Finx:I0
111 109 110 syl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxx:I0
112 111 ffnd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxxFnI
113 108 ffnd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxeFnI
114 inidm II=I
115 eqidd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxiIxi=xi
116 eqidd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxiIei=ei
117 112 113 106 106 114 115 116 offval φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxxfe=iIxiei
118 simpl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxiIφxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfx
119 simplr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxiIech0I|h-1Fin|cfx
120 breq1 c=ecfxefx
121 120 elrab ech0I|h-1Fin|cfxeh0I|h-1Finefx
122 121 simprbi ech0I|h-1Fin|cfxefx
123 119 122 syl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxiIefx
124 simpr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxiIiI
125 113 112 106 106 114 116 115 ofrval φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxefxiIeixi
126 118 123 124 125 syl3anc φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxiIeixi
127 108 ffvelcdmda φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxiIei0
128 111 ffvelcdmda φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxiIxi0
129 nn0sub ei0xi0eixixiei0
130 127 128 129 syl2anc φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxiIeixixiei0
131 126 130 mpbid φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxiIxiei0
132 117 131 fmpt3d φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxxfe:I0
133 108 ffund φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxFune
134 c0ex 0V
135 106 134 jctir φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxIV0V
136 fsuppeq IV0Ve:I0esupp0=e-100
137 135 108 136 sylc φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxesupp0=e-100
138 dfn2 =00
139 138 imaeq2i e-1=e-100
140 137 139 eqtr4di φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxesupp0=e-1
141 12 psrbag IVeh0I|h-1Fine:I0e-1Fin
142 106 141 syl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxeh0I|h-1Fine:I0e-1Fin
143 83 142 mpbid φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxe:I0e-1Fin
144 143 simprd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxe-1Fin
145 140 144 eqeltrd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxesupp0Fin
146 83 elexd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxeV
147 isfsupp eV0VfinSupp0eFuneesupp0Fin
148 146 134 147 sylancl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfinSupp0eFuneesupp0Fin
149 133 145 148 mpbir2and φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfinSupp0e
150 112 113 106 106 offun φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxFunxfe
151 12 psrbagfsupp xh0I|h-1FinfinSupp0x
152 109 151 syl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfinSupp0x
153 152 149 fsuppunfi φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxsupp0xsupp0eFin
154 0nn0 00
155 154 a1i φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfx00
156 0m0e0 00=0
157 156 a1i φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfx00=0
158 106 155 111 108 157 suppofssd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxxfesupp0supp0xsupp0e
159 153 158 ssfid φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxxfesupp0Fin
160 ovexd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxxfeV
161 isfsupp xfeV0VfinSupp0xfeFunxfexfesupp0Fin
162 160 134 161 sylancl φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfinSupp0xfeFunxfexfesupp0Fin
163 150 159 162 mpbir2and φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfinSupp0xfe
164 92 95 99 105 106 108 132 149 163 gsumadd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0e+fxfe=fld𝑠0e+fld𝑠0xfe
165 108 ffvelcdmda φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxbIeb0
166 165 nn0cnd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxbIeb
167 111 ffvelcdmda φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxbIxb0
168 167 nn0cnd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxbIxb
169 166 168 pncan3d φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxbIeb+xb-eb=xb
170 169 mpteq2dva φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxbIeb+xb-eb=bIxb
171 fvexd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxbIebV
172 ovexd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxbIxbebV
173 108 feqmptd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxe=bIeb
174 111 feqmptd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxx=bIxb
175 106 167 165 174 173 offval2 φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxxfe=bIxbeb
176 106 171 172 173 175 offval2 φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxe+fxfe=bIeb+xb-eb
177 170 176 174 3eqtr4d φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxe+fxfe=x
178 177 oveq2d φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0e+fxfe=fld𝑠0x
179 164 178 eqtr3d φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0e+fld𝑠0xfe=fld𝑠0x
180 simplr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0xM+N
181 179 180 eqnetrd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0e+fld𝑠0xfeM+N
182 oveq12 fld𝑠0e=Mfld𝑠0xfe=Nfld𝑠0e+fld𝑠0xfe=M+N
183 182 a1i φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0e=Mfld𝑠0xfe=Nfld𝑠0e+fld𝑠0xfe=M+N
184 183 necon3ad φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0e+fld𝑠0xfeM+N¬fld𝑠0e=Mfld𝑠0xfe=N
185 181 184 mpd φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfx¬fld𝑠0e=Mfld𝑠0xfe=N
186 neorian fld𝑠0eMfld𝑠0xfeN¬fld𝑠0e=Mfld𝑠0xfe=N
187 185 186 sylibr φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxfld𝑠0eMfld𝑠0xfeN
188 62 88 187 mpjaodan φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxPeRQxfe=0R
189 188 mpteq2dva φxh0I|h-1Finfld𝑠0xM+Nech0I|h-1Fin|cfxPeRQxfe=ech0I|h-1Fin|cfx0R
190 189 oveq2d φxh0I|h-1Finfld𝑠0xM+NRech0I|h-1Fin|cfxPeRQxfe=Rech0I|h-1Fin|cfx0R
191 ringmnd RRingRMnd
192 5 191 syl φRMnd
193 192 ad2antrr φxh0I|h-1Finfld𝑠0xM+NRMnd
194 44 rabex ch0I|h-1Fin|cfxV
195 41 gsumz RMndch0I|h-1Fin|cfxVRech0I|h-1Fin|cfx0R=0R
196 193 194 195 sylancl φxh0I|h-1Finfld𝑠0xM+NRech0I|h-1Fin|cfx0R=0R
197 190 196 eqtrd φxh0I|h-1Finfld𝑠0xM+NRech0I|h-1Fin|cfxPeRQxfe=0R
198 197 ex φxh0I|h-1Finfld𝑠0xM+NRech0I|h-1Fin|cfxPeRQxfe=0R
199 198 necon1d φxh0I|h-1FinRech0I|h-1Fin|cfxPeRQxfe0Rfld𝑠0x=M+N
200 27 199 sylbid φxh0I|h-1FinP·˙Qx0Rfld𝑠0x=M+N
201 200 ralrimiva φxh0I|h-1FinP·˙Qx0Rfld𝑠0x=M+N
202 6 7 nn0addcld φM+N0
203 2 mplring IVRRingYRing
204 4 5 203 syl2anc φYRing
205 10 3 ringcl YRingPBaseYQBaseYP·˙QBaseY
206 204 13 14 205 syl3anc φP·˙QBaseY
207 1 2 10 41 12 4 5 202 206 ismhp3 φP·˙QHM+Nxh0I|h-1FinP·˙Qx0Rfld𝑠0x=M+N
208 201 207 mpbird φP·˙QHM+N