Metamath Proof Explorer


Theorem mplbas2

Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mplbas2.p P=ImPolyR
mplbas2.s S=ImPwSerR
mplbas2.v V=ImVarR
mplbas2.a A=AlgSpanS
mplbas2.i φIW
mplbas2.r φRCRing
Assertion mplbas2 φAranV=BaseP

Proof

Step Hyp Ref Expression
1 mplbas2.p P=ImPolyR
2 mplbas2.s S=ImPwSerR
3 mplbas2.v V=ImVarR
4 mplbas2.a A=AlgSpanS
5 mplbas2.i φIW
6 mplbas2.r φRCRing
7 2 5 6 psrassa φSAssAlg
8 eqid BaseP=BaseP
9 eqid BaseS=BaseS
10 1 2 8 9 mplbasss BasePBaseS
11 10 a1i φBasePBaseS
12 crngring RCRingRRing
13 6 12 syl φRRing
14 2 3 9 5 13 mvrf φV:IBaseS
15 14 ffnd φVFnI
16 5 adantr φxIIW
17 13 adantr φxIRRing
18 simpr φxIxI
19 1 3 8 16 17 18 mvrcl φxIVxBaseP
20 19 ralrimiva φxIVxBaseP
21 ffnfv V:IBasePVFnIxIVxBaseP
22 15 20 21 sylanbrc φV:IBaseP
23 22 frnd φranVBaseP
24 4 9 aspss SAssAlgBasePBaseSranVBasePAranVABaseP
25 7 11 23 24 syl3anc φAranVABaseP
26 2 1 8 5 13 mplsubrg φBasePSubRingS
27 2 1 8 5 13 mpllss φBasePLSubSpS
28 eqid LSubSpS=LSubSpS
29 4 9 28 aspid SAssAlgBasePSubRingSBasePLSubSpSABaseP=BaseP
30 7 26 27 29 syl3anc φABaseP=BaseP
31 25 30 sseqtrd φAranVBaseP
32 eqid f0I|f-1Fin=f0I|f-1Fin
33 eqid 0R=0R
34 eqid 1R=1R
35 5 adantr φxBasePIW
36 eqid P=P
37 13 adantr φxBasePRRing
38 simpr φxBasePxBaseP
39 1 32 33 34 35 8 36 37 38 mplcoe1 φxBasePx=Pkf0I|f-1FinxkPyf0I|f-1Finify=k1R0R
40 eqid 0P=0P
41 1 mplring IWRRingPRing
42 5 13 41 syl2anc φPRing
43 ringabl PRingPAbel
44 42 43 syl φPAbel
45 44 adantr φxBasePPAbel
46 ovex 0IV
47 46 rabex f0I|f-1FinV
48 47 a1i φxBasePf0I|f-1FinV
49 14 frnd φranVBaseS
50 4 9 aspsubrg SAssAlgranVBaseSAranVSubRingS
51 7 49 50 syl2anc φAranVSubRingS
52 1 2 8 mplval2 P=S𝑠BaseP
53 52 subsubrg BasePSubRingSAranVSubRingPAranVSubRingSAranVBaseP
54 26 53 syl φAranVSubRingPAranVSubRingSAranVBaseP
55 51 31 54 mpbir2and φAranVSubRingP
56 subrgsubg AranVSubRingPAranVSubGrpP
57 55 56 syl φAranVSubGrpP
58 57 adantr φxBasePAranVSubGrpP
59 1 mpllmod IWRRingPLMod
60 5 13 59 syl2anc φPLMod
61 60 ad2antrr φxBasePkf0I|f-1FinPLMod
62 4 9 28 asplss SAssAlgranVBaseSAranVLSubSpS
63 7 49 62 syl2anc φAranVLSubSpS
64 2 5 13 psrlmod φSLMod
65 eqid LSubSpP=LSubSpP
66 52 28 65 lsslss SLModBasePLSubSpSAranVLSubSpPAranVLSubSpSAranVBaseP
67 64 27 66 syl2anc φAranVLSubSpPAranVLSubSpSAranVBaseP
68 63 31 67 mpbir2and φAranVLSubSpP
69 68 ad2antrr φxBasePkf0I|f-1FinAranVLSubSpP
70 eqid BaseR=BaseR
71 1 70 8 32 38 mplelf φxBasePx:f0I|f-1FinBaseR
72 71 ffvelcdmda φxBasePkf0I|f-1FinxkBaseR
73 1 35 37 mplsca φxBasePR=ScalarP
74 73 adantr φxBasePkf0I|f-1FinR=ScalarP
75 74 fveq2d φxBasePkf0I|f-1FinBaseR=BaseScalarP
76 72 75 eleqtrd φxBasePkf0I|f-1FinxkBaseScalarP
77 5 ad2antrr φxBasePkf0I|f-1FinIW
78 eqid mulGrpP=mulGrpP
79 eqid mulGrpP=mulGrpP
80 6 ad2antrr φxBasePkf0I|f-1FinRCRing
81 simpr φxBasePkf0I|f-1Finkf0I|f-1Fin
82 1 32 33 34 77 78 79 3 80 81 mplcoe2 φxBasePkf0I|f-1Finyf0I|f-1Finify=k1R0R=mulGrpPzIkzmulGrpPVz
83 eqid 1P=1P
84 78 83 ringidval 1P=0mulGrpP
85 1 mplcrng IWRCRingPCRing
86 5 6 85 syl2anc φPCRing
87 78 crngmgp PCRingmulGrpPCMnd
88 86 87 syl φmulGrpPCMnd
89 88 ad2antrr φxBasePkf0I|f-1FinmulGrpPCMnd
90 55 ad2antrr φxBasePkf0I|f-1FinAranVSubRingP
91 78 subrgsubm AranVSubRingPAranVSubMndmulGrpP
92 90 91 syl φxBasePkf0I|f-1FinAranVSubMndmulGrpP
93 simplll φxBasePkf0I|f-1FinzIφ
94 32 psrbag IWkf0I|f-1Fink:I0k-1Fin
95 35 94 syl φxBasePkf0I|f-1Fink:I0k-1Fin
96 95 biimpa φxBasePkf0I|f-1Fink:I0k-1Fin
97 96 simpld φxBasePkf0I|f-1Fink:I0
98 97 ffvelcdmda φxBasePkf0I|f-1FinzIkz0
99 4 9 aspssid SAssAlgranVBaseSranVAranV
100 7 49 99 syl2anc φranVAranV
101 100 ad3antrrr φxBasePkf0I|f-1FinzIranVAranV
102 15 ad2antrr φxBasePkf0I|f-1FinVFnI
103 fnfvelrn VFnIzIVzranV
104 102 103 sylan φxBasePkf0I|f-1FinzIVzranV
105 101 104 sseldd φxBasePkf0I|f-1FinzIVzAranV
106 78 8 mgpbas BaseP=BasemulGrpP
107 eqid P=P
108 78 107 mgpplusg P=+mulGrpP
109 107 subrgmcl AranVSubRingPuAranVvAranVuPvAranV
110 55 109 syl3an1 φuAranVvAranVuPvAranV
111 83 subrg1cl AranVSubRingP1PAranV
112 55 111 syl φ1PAranV
113 106 79 108 88 31 110 84 112 mulgnn0subcl φkz0VzAranVkzmulGrpPVzAranV
114 93 98 105 113 syl3anc φxBasePkf0I|f-1FinzIkzmulGrpPVzAranV
115 114 fmpttd φxBasePkf0I|f-1FinzIkzmulGrpPVz:IAranV
116 5 mptexd φzIkzmulGrpPVzV
117 116 ad2antrr φxBasePkf0I|f-1FinzIkzmulGrpPVzV
118 funmpt FunzIkzmulGrpPVz
119 118 a1i φxBasePkf0I|f-1FinFunzIkzmulGrpPVz
120 fvexd φxBasePkf0I|f-1Fin1PV
121 96 simprd φxBasePkf0I|f-1Fink-1Fin
122 elrabi kf0I|f-1Fink0I
123 elmapi k0Ik:I0
124 123 adantl φxBasePk0Ik:I0
125 5 ad2antrr φxBasePk0IIW
126 fcdmnn0supp IWk:I0ksupp0=k-1
127 125 124 126 syl2anc φxBasePk0Iksupp0=k-1
128 eqimss ksupp0=k-1ksupp0k-1
129 127 128 syl φxBasePk0Iksupp0k-1
130 c0ex 0V
131 130 a1i φxBasePk0I0V
132 124 129 125 131 suppssr φxBasePk0IzIk-1kz=0
133 122 132 sylanl2 φxBasePkf0I|f-1FinzIk-1kz=0
134 133 oveq1d φxBasePkf0I|f-1FinzIk-1kzmulGrpPVz=0mulGrpPVz
135 5 ad3antrrr φxBasePkf0I|f-1FinzIk-1IW
136 13 ad3antrrr φxBasePkf0I|f-1FinzIk-1RRing
137 eldifi zIk-1zI
138 137 adantl φxBasePkf0I|f-1FinzIk-1zI
139 1 3 8 135 136 138 mvrcl φxBasePkf0I|f-1FinzIk-1VzBaseP
140 106 84 79 mulg0 VzBaseP0mulGrpPVz=1P
141 139 140 syl φxBasePkf0I|f-1FinzIk-10mulGrpPVz=1P
142 134 141 eqtrd φxBasePkf0I|f-1FinzIk-1kzmulGrpPVz=1P
143 142 77 suppss2 φxBasePkf0I|f-1FinzIkzmulGrpPVzsupp1Pk-1
144 suppssfifsupp zIkzmulGrpPVzVFunzIkzmulGrpPVz1PVk-1FinzIkzmulGrpPVzsupp1Pk-1finSupp1PzIkzmulGrpPVz
145 117 119 120 121 143 144 syl32anc φxBasePkf0I|f-1FinfinSupp1PzIkzmulGrpPVz
146 84 89 77 92 115 145 gsumsubmcl φxBasePkf0I|f-1FinmulGrpPzIkzmulGrpPVzAranV
147 82 146 eqeltrd φxBasePkf0I|f-1Finyf0I|f-1Finify=k1R0RAranV
148 eqid ScalarP=ScalarP
149 eqid BaseScalarP=BaseScalarP
150 148 36 149 65 lssvscl PLModAranVLSubSpPxkBaseScalarPyf0I|f-1Finify=k1R0RAranVxkPyf0I|f-1Finify=k1R0RAranV
151 61 69 76 147 150 syl22anc φxBasePkf0I|f-1FinxkPyf0I|f-1Finify=k1R0RAranV
152 151 fmpttd φxBasePkf0I|f-1FinxkPyf0I|f-1Finify=k1R0R:f0I|f-1FinAranV
153 46 mptrabex kf0I|f-1FinxkPyf0I|f-1Finify=k1R0RV
154 funmpt Funkf0I|f-1FinxkPyf0I|f-1Finify=k1R0R
155 fvex 0PV
156 153 154 155 3pm3.2i kf0I|f-1FinxkPyf0I|f-1Finify=k1R0RVFunkf0I|f-1FinxkPyf0I|f-1Finify=k1R0R0PV
157 156 a1i φxBasePkf0I|f-1FinxkPyf0I|f-1Finify=k1R0RVFunkf0I|f-1FinxkPyf0I|f-1Finify=k1R0R0PV
158 1 2 9 33 8 mplelbas xBasePxBaseSfinSupp0Rx
159 158 simprbi xBasePfinSupp0Rx
160 159 adantl φxBasePfinSupp0Rx
161 160 fsuppimpd φxBasePxsupp0RFin
162 ssidd φxBasePxsupp0Rxsupp0R
163 fvexd φxBaseP0RV
164 71 162 48 163 suppssr φxBasePkf0I|f-1Finsupp0Rxxk=0R
165 73 fveq2d φxBaseP0R=0ScalarP
166 165 adantr φxBasePkf0I|f-1Finsupp0Rx0R=0ScalarP
167 164 166 eqtrd φxBasePkf0I|f-1Finsupp0Rxxk=0ScalarP
168 167 oveq1d φxBasePkf0I|f-1Finsupp0RxxkPyf0I|f-1Finify=k1R0R=0ScalarPPyf0I|f-1Finify=k1R0R
169 eldifi kf0I|f-1Finsupp0Rxkf0I|f-1Fin
170 13 ad2antrr φxBasePkf0I|f-1FinRRing
171 1 8 33 34 32 77 170 81 mplmon φxBasePkf0I|f-1Finyf0I|f-1Finify=k1R0RBaseP
172 eqid 0ScalarP=0ScalarP
173 8 148 36 172 40 lmod0vs PLModyf0I|f-1Finify=k1R0RBaseP0ScalarPPyf0I|f-1Finify=k1R0R=0P
174 61 171 173 syl2anc φxBasePkf0I|f-1Fin0ScalarPPyf0I|f-1Finify=k1R0R=0P
175 169 174 sylan2 φxBasePkf0I|f-1Finsupp0Rx0ScalarPPyf0I|f-1Finify=k1R0R=0P
176 168 175 eqtrd φxBasePkf0I|f-1Finsupp0RxxkPyf0I|f-1Finify=k1R0R=0P
177 176 48 suppss2 φxBasePkf0I|f-1FinxkPyf0I|f-1Finify=k1R0Rsupp0Pxsupp0R
178 suppssfifsupp kf0I|f-1FinxkPyf0I|f-1Finify=k1R0RVFunkf0I|f-1FinxkPyf0I|f-1Finify=k1R0R0PVxsupp0RFinkf0I|f-1FinxkPyf0I|f-1Finify=k1R0Rsupp0Pxsupp0RfinSupp0Pkf0I|f-1FinxkPyf0I|f-1Finify=k1R0R
179 157 161 177 178 syl12anc φxBasePfinSupp0Pkf0I|f-1FinxkPyf0I|f-1Finify=k1R0R
180 40 45 48 58 152 179 gsumsubgcl φxBasePPkf0I|f-1FinxkPyf0I|f-1Finify=k1R0RAranV
181 39 180 eqeltrd φxBasePxAranV
182 31 181 eqelssd φAranV=BaseP