Metamath Proof Explorer


Theorem poimirlem1

Description: Lemma for poimir - the vertices on either side of a skipped vertex differ in at least two dimensions. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem2.1 φF=y0N1ify<Myy+1/jT+fU1j×1Uj+1N×0
poimirlem2.2 φT:1N
poimirlem2.3 φU:1N1-1 onto1N
poimirlem1.4 φM1N1
Assertion poimirlem1 φ¬*n1NFM1nFMn

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem2.1 φF=y0N1ify<Myy+1/jT+fU1j×1Uj+1N×0
3 poimirlem2.2 φT:1N
4 poimirlem2.3 φU:1N1-1 onto1N
5 poimirlem1.4 φM1N1
6 f1of U:1N1-1 onto1NU:1N1N
7 4 6 syl φU:1N1N
8 1 nncnd φN
9 npcan1 NN-1+1=N
10 8 9 syl φN-1+1=N
11 1 nnzd φN
12 peano2zm NN1
13 uzid N1N1N1
14 peano2uz N1N1N-1+1N1
15 11 12 13 14 4syl φN-1+1N1
16 10 15 eqeltrrd φNN1
17 fzss2 NN11N11N
18 16 17 syl φ1N11N
19 18 5 sseldd φM1N
20 7 19 ffvelcdmd φUM1N
21 fzp1elp1 M1N1M+11N-1+1
22 5 21 syl φM+11N-1+1
23 10 oveq2d φ1N-1+1=1N
24 22 23 eleqtrd φM+11N
25 7 24 ffvelcdmd φUM+11N
26 imassrn UMM+1ranU
27 frn U:1N1NranU1N
28 4 6 27 3syl φranU1N
29 26 28 sstrid φUMM+11N
30 29 sselda φnUMM+1n1N
31 3 ffvelcdmda φn1NTn
32 31 zred φn1NTn
33 32 ltp1d φn1NTn<Tn+1
34 32 33 ltned φn1NTnTn+1
35 30 34 syldan φnUMM+1TnTn+1
36 breq1 y=M1y<MM1<M
37 id y=M1y=M1
38 36 37 ifbieq1d y=M1ify<Myy+1=ifM1<MM1y+1
39 elfzelz M1N1M
40 5 39 syl φM
41 40 zred φM
42 41 ltm1d φM1<M
43 42 iftrued φifM1<MM1y+1=M1
44 38 43 sylan9eqr φy=M1ify<Myy+1=M1
45 44 csbeq1d φy=M1ify<Myy+1/jT+fU1j×1Uj+1N×0=M1/jT+fU1j×1Uj+1N×0
46 11 12 syl φN1
47 elfzm1b MN1M1N1M10N-1-1
48 40 46 47 syl2anc φM1N1M10N-1-1
49 5 48 mpbid φM10N-1-1
50 oveq2 j=M11j=1M1
51 50 imaeq2d j=M1U1j=U1M1
52 51 xpeq1d j=M1U1j×1=U1M1×1
53 52 adantl φj=M1U1j×1=U1M1×1
54 oveq1 j=M1j+1=M-1+1
55 40 zcnd φM
56 npcan1 MM-1+1=M
57 55 56 syl φM-1+1=M
58 54 57 sylan9eqr φj=M1j+1=M
59 58 oveq1d φj=M1j+1N=MN
60 59 imaeq2d φj=M1Uj+1N=UMN
61 60 xpeq1d φj=M1Uj+1N×0=UMN×0
62 53 61 uneq12d φj=M1U1j×1Uj+1N×0=U1M1×1UMN×0
63 62 oveq2d φj=M1T+fU1j×1Uj+1N×0=T+fU1M1×1UMN×0
64 49 63 csbied φM1/jT+fU1j×1Uj+1N×0=T+fU1M1×1UMN×0
65 64 adantr φy=M1M1/jT+fU1j×1Uj+1N×0=T+fU1M1×1UMN×0
66 45 65 eqtrd φy=M1ify<Myy+1/jT+fU1j×1Uj+1N×0=T+fU1M1×1UMN×0
67 46 zcnd φN1
68 npcan1 N1N1-1+1=N1
69 67 68 syl φN1-1+1=N1
70 peano2zm N1N-1-1
71 uzid N-1-1N-1-1N-1-1
72 peano2uz N-1-1N-1-1N1-1+1N-1-1
73 46 70 71 72 4syl φN1-1+1N-1-1
74 69 73 eqeltrrd φN1N-1-1
75 fzss2 N1N-1-10N-1-10N1
76 74 75 syl φ0N-1-10N1
77 76 49 sseldd φM10N1
78 ovexd φT+fU1M1×1UMN×0V
79 2 66 77 78 fvmptd φFM1=T+fU1M1×1UMN×0
80 79 fveq1d φFM1n=T+fU1M1×1UMN×0n
81 80 adantr φnUMM+1FM1n=T+fU1M1×1UMN×0n
82 3 ffnd φTFn1N
83 82 adantr φnUMM+1TFn1N
84 1ex 1V
85 fnconstg 1VU1M1×1FnU1M1
86 84 85 ax-mp U1M1×1FnU1M1
87 c0ex 0V
88 fnconstg 0VUMN×0FnUMN
89 87 88 ax-mp UMN×0FnUMN
90 86 89 pm3.2i U1M1×1FnU1M1UMN×0FnUMN
91 dff1o3 U:1N1-1 onto1NU:1Nonto1NFunU-1
92 91 simprbi U:1N1-1 onto1NFunU-1
93 imain FunU-1U1M1MN=U1M1UMN
94 4 92 93 3syl φU1M1MN=U1M1UMN
95 fzdisj M1<M1M1MN=
96 42 95 syl φ1M1MN=
97 96 imaeq2d φU1M1MN=U
98 ima0 U=
99 97 98 eqtrdi φU1M1MN=
100 94 99 eqtr3d φU1M1UMN=
101 fnun U1M1×1FnU1M1UMN×0FnUMNU1M1UMN=U1M1×1UMN×0FnU1M1UMN
102 90 100 101 sylancr φU1M1×1UMN×0FnU1M1UMN
103 elfzuz M1N1M1
104 5 103 syl φM1
105 57 104 eqeltrd φM-1+11
106 peano2zm MM1
107 uzid M1M1M1
108 peano2uz M1M1M-1+1M1
109 40 106 107 108 4syl φM-1+1M1
110 57 109 eqeltrrd φMM1
111 peano2uz MM1M+1M1
112 uzss M+1M1M+1M1
113 110 111 112 3syl φM+1M1
114 elfzuz3 M1N1N1M
115 eluzp1p1 N1MN-1+1M+1
116 5 114 115 3syl φN-1+1M+1
117 10 116 eqeltrrd φNM+1
118 113 117 sseldd φNM1
119 fzsplit2 M-1+11NM11N=1M1M-1+1N
120 105 118 119 syl2anc φ1N=1M1M-1+1N
121 57 oveq1d φM-1+1N=MN
122 121 uneq2d φ1M1M-1+1N=1M1MN
123 120 122 eqtrd φ1N=1M1MN
124 123 imaeq2d φU1N=U1M1MN
125 imaundi U1M1MN=U1M1UMN
126 124 125 eqtrdi φU1N=U1M1UMN
127 f1ofo U:1N1-1 onto1NU:1Nonto1N
128 foima U:1Nonto1NU1N=1N
129 4 127 128 3syl φU1N=1N
130 126 129 eqtr3d φU1M1UMN=1N
131 130 fneq2d φU1M1×1UMN×0FnU1M1UMNU1M1×1UMN×0Fn1N
132 102 131 mpbid φU1M1×1UMN×0Fn1N
133 132 adantr φnUMM+1U1M1×1UMN×0Fn1N
134 ovexd φnUMM+11NV
135 inidm 1N1N=1N
136 eqidd φnUMM+1n1NTn=Tn
137 100 adantr φnUMM+1U1M1UMN=
138 fzss2 NM+1MM+1MN
139 imass2 MM+1MNUMM+1UMN
140 117 138 139 3syl φUMM+1UMN
141 140 sselda φnUMM+1nUMN
142 fvun2 U1M1×1FnU1M1UMN×0FnUMNU1M1UMN=nUMNU1M1×1UMN×0n=UMN×0n
143 86 89 142 mp3an12 U1M1UMN=nUMNU1M1×1UMN×0n=UMN×0n
144 137 141 143 syl2anc φnUMM+1U1M1×1UMN×0n=UMN×0n
145 87 fvconst2 nUMNUMN×0n=0
146 141 145 syl φnUMM+1UMN×0n=0
147 144 146 eqtrd φnUMM+1U1M1×1UMN×0n=0
148 147 adantr φnUMM+1n1NU1M1×1UMN×0n=0
149 83 133 134 134 135 136 148 ofval φnUMM+1n1NT+fU1M1×1UMN×0n=Tn+0
150 30 149 mpdan φnUMM+1T+fU1M1×1UMN×0n=Tn+0
151 31 zcnd φn1NTn
152 151 addridd φn1NTn+0=Tn
153 30 152 syldan φnUMM+1Tn+0=Tn
154 81 150 153 3eqtrd φnUMM+1FM1n=Tn
155 breq1 y=My<MM<M
156 oveq1 y=My+1=M+1
157 155 156 ifbieq2d y=Mify<Myy+1=ifM<MyM+1
158 41 ltnrd φ¬M<M
159 158 iffalsed φifM<MyM+1=M+1
160 157 159 sylan9eqr φy=Mify<Myy+1=M+1
161 160 csbeq1d φy=Mify<Myy+1/jT+fU1j×1Uj+1N×0=M+1/jT+fU1j×1Uj+1N×0
162 ovex M+1V
163 oveq2 j=M+11j=1M+1
164 163 imaeq2d j=M+1U1j=U1M+1
165 164 xpeq1d j=M+1U1j×1=U1M+1×1
166 oveq1 j=M+1j+1=M+1+1
167 166 oveq1d j=M+1j+1N=M+1+1N
168 167 imaeq2d j=M+1Uj+1N=UM+1+1N
169 168 xpeq1d j=M+1Uj+1N×0=UM+1+1N×0
170 165 169 uneq12d j=M+1U1j×1Uj+1N×0=U1M+1×1UM+1+1N×0
171 170 oveq2d j=M+1T+fU1j×1Uj+1N×0=T+fU1M+1×1UM+1+1N×0
172 162 171 csbie M+1/jT+fU1j×1Uj+1N×0=T+fU1M+1×1UM+1+1N×0
173 161 172 eqtrdi φy=Mify<Myy+1/jT+fU1j×1Uj+1N×0=T+fU1M+1×1UM+1+1N×0
174 fz1ssfz0 1N10N1
175 174 5 sselid φM0N1
176 ovexd φT+fU1M+1×1UM+1+1N×0V
177 2 173 175 176 fvmptd φFM=T+fU1M+1×1UM+1+1N×0
178 177 fveq1d φFMn=T+fU1M+1×1UM+1+1N×0n
179 178 adantr φnUMM+1FMn=T+fU1M+1×1UM+1+1N×0n
180 fnconstg 1VU1M+1×1FnU1M+1
181 84 180 ax-mp U1M+1×1FnU1M+1
182 fnconstg 0VUM+1+1N×0FnUM+1+1N
183 87 182 ax-mp UM+1+1N×0FnUM+1+1N
184 181 183 pm3.2i U1M+1×1FnU1M+1UM+1+1N×0FnUM+1+1N
185 imain FunU-1U1M+1M+1+1N=U1M+1UM+1+1N
186 4 92 185 3syl φU1M+1M+1+1N=U1M+1UM+1+1N
187 peano2re MM+1
188 41 187 syl φM+1
189 188 ltp1d φM+1<M+1+1
190 fzdisj M+1<M+1+11M+1M+1+1N=
191 189 190 syl φ1M+1M+1+1N=
192 191 imaeq2d φU1M+1M+1+1N=U
193 186 192 eqtr3d φU1M+1UM+1+1N=U
194 193 98 eqtrdi φU1M+1UM+1+1N=
195 fnun U1M+1×1FnU1M+1UM+1+1N×0FnUM+1+1NU1M+1UM+1+1N=U1M+1×1UM+1+1N×0FnU1M+1UM+1+1N
196 184 194 195 sylancr φU1M+1×1UM+1+1N×0FnU1M+1UM+1+1N
197 fzsplit M+11N1N=1M+1M+1+1N
198 24 197 syl φ1N=1M+1M+1+1N
199 198 imaeq2d φU1N=U1M+1M+1+1N
200 imaundi U1M+1M+1+1N=U1M+1UM+1+1N
201 199 200 eqtrdi φU1N=U1M+1UM+1+1N
202 201 129 eqtr3d φU1M+1UM+1+1N=1N
203 202 fneq2d φU1M+1×1UM+1+1N×0FnU1M+1UM+1+1NU1M+1×1UM+1+1N×0Fn1N
204 196 203 mpbid φU1M+1×1UM+1+1N×0Fn1N
205 204 adantr φnUMM+1U1M+1×1UM+1+1N×0Fn1N
206 194 adantr φnUMM+1U1M+1UM+1+1N=
207 fzss1 M1MM+11M+1
208 imass2 MM+11M+1UMM+1U1M+1
209 104 207 208 3syl φUMM+1U1M+1
210 209 sselda φnUMM+1nU1M+1
211 fvun1 U1M+1×1FnU1M+1UM+1+1N×0FnUM+1+1NU1M+1UM+1+1N=nU1M+1U1M+1×1UM+1+1N×0n=U1M+1×1n
212 181 183 211 mp3an12 U1M+1UM+1+1N=nU1M+1U1M+1×1UM+1+1N×0n=U1M+1×1n
213 206 210 212 syl2anc φnUMM+1U1M+1×1UM+1+1N×0n=U1M+1×1n
214 84 fvconst2 nU1M+1U1M+1×1n=1
215 210 214 syl φnUMM+1U1M+1×1n=1
216 213 215 eqtrd φnUMM+1U1M+1×1UM+1+1N×0n=1
217 216 adantr φnUMM+1n1NU1M+1×1UM+1+1N×0n=1
218 83 205 134 134 135 136 217 ofval φnUMM+1n1NT+fU1M+1×1UM+1+1N×0n=Tn+1
219 30 218 mpdan φnUMM+1T+fU1M+1×1UM+1+1N×0n=Tn+1
220 179 219 eqtrd φnUMM+1FMn=Tn+1
221 35 154 220 3netr4d φnUMM+1FM1nFMn
222 221 ralrimiva φnUMM+1FM1nFMn
223 fzpr MMM+1=MM+1
224 5 39 223 3syl φMM+1=MM+1
225 224 imaeq2d φUMM+1=UMM+1
226 f1ofn U:1N1-1 onto1NUFn1N
227 4 226 syl φUFn1N
228 fnimapr UFn1NM1NM+11NUMM+1=UMUM+1
229 227 19 24 228 syl3anc φUMM+1=UMUM+1
230 225 229 eqtrd φUMM+1=UMUM+1
231 230 raleqdv φnUMM+1FM1nFMnnUMUM+1FM1nFMn
232 222 231 mpbid φnUMUM+1FM1nFMn
233 fvex UMV
234 fvex UM+1V
235 fveq2 n=UMFM1n=FM1UM
236 fveq2 n=UMFMn=FMUM
237 235 236 neeq12d n=UMFM1nFMnFM1UMFMUM
238 fveq2 n=UM+1FM1n=FM1UM+1
239 fveq2 n=UM+1FMn=FMUM+1
240 238 239 neeq12d n=UM+1FM1nFMnFM1UM+1FMUM+1
241 233 234 237 240 ralpr nUMUM+1FM1nFMnFM1UMFMUMFM1UM+1FMUM+1
242 232 241 sylib φFM1UMFMUMFM1UM+1FMUM+1
243 41 ltp1d φM<M+1
244 41 243 ltned φMM+1
245 f1of1 U:1N1-1 onto1NU:1N1-11N
246 4 245 syl φU:1N1-11N
247 f1veqaeq U:1N1-11NM1NM+11NUM=UM+1M=M+1
248 246 19 24 247 syl12anc φUM=UM+1M=M+1
249 248 necon3d φMM+1UMUM+1
250 244 249 mpd φUMUM+1
251 237 anbi1d n=UMFM1nFMnFM1mFMmFM1UMFMUMFM1mFMm
252 neeq1 n=UMnmUMm
253 251 252 anbi12d n=UMFM1nFMnFM1mFMmnmFM1UMFMUMFM1mFMmUMm
254 fveq2 m=UM+1FM1m=FM1UM+1
255 fveq2 m=UM+1FMm=FMUM+1
256 254 255 neeq12d m=UM+1FM1mFMmFM1UM+1FMUM+1
257 256 anbi2d m=UM+1FM1UMFMUMFM1mFMmFM1UMFMUMFM1UM+1FMUM+1
258 neeq2 m=UM+1UMmUMUM+1
259 257 258 anbi12d m=UM+1FM1UMFMUMFM1mFMmUMmFM1UMFMUMFM1UM+1FMUM+1UMUM+1
260 253 259 rspc2ev UM1NUM+11NFM1UMFMUMFM1UM+1FMUM+1UMUM+1n1Nm1NFM1nFMnFM1mFMmnm
261 20 25 242 250 260 syl112anc φn1Nm1NFM1nFMnFM1mFMmnm
262 dfrex2 n1Nm1NFM1nFMnFM1mFMmnm¬n1N¬m1NFM1nFMnFM1mFMmnm
263 fveq2 n=mFM1n=FM1m
264 fveq2 n=mFMn=FMm
265 263 264 neeq12d n=mFM1nFMnFM1mFMm
266 265 rmo4 *n1NFM1nFMnn1Nm1NFM1nFMnFM1mFMmn=m
267 dfral2 m1NFM1nFMnFM1mFMmn=m¬m1N¬FM1nFMnFM1mFMmn=m
268 df-ne nm¬n=m
269 268 anbi2i FM1nFMnFM1mFMmnmFM1nFMnFM1mFMm¬n=m
270 annim FM1nFMnFM1mFMm¬n=m¬FM1nFMnFM1mFMmn=m
271 269 270 bitri FM1nFMnFM1mFMmnm¬FM1nFMnFM1mFMmn=m
272 271 rexbii m1NFM1nFMnFM1mFMmnmm1N¬FM1nFMnFM1mFMmn=m
273 267 272 xchbinxr m1NFM1nFMnFM1mFMmn=m¬m1NFM1nFMnFM1mFMmnm
274 273 ralbii n1Nm1NFM1nFMnFM1mFMmn=mn1N¬m1NFM1nFMnFM1mFMmnm
275 266 274 bitri *n1NFM1nFMnn1N¬m1NFM1nFMnFM1mFMmnm
276 262 275 xchbinxr n1Nm1NFM1nFMnFM1mFMmnm¬*n1NFM1nFMn
277 261 276 sylib φ¬*n1NFM1nFMn