Metamath Proof Explorer


Theorem poimirlem1

Description: Lemma for poimir - the vertices on either side of a skipped vertex differ in at least two dimensions. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem2.1 φ F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
poimirlem2.2 φ T : 1 N
poimirlem2.3 φ U : 1 N 1-1 onto 1 N
poimirlem1.4 φ M 1 N 1
Assertion poimirlem1 φ ¬ * n 1 N F M 1 n F M n

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem2.1 φ F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
3 poimirlem2.2 φ T : 1 N
4 poimirlem2.3 φ U : 1 N 1-1 onto 1 N
5 poimirlem1.4 φ M 1 N 1
6 f1of U : 1 N 1-1 onto 1 N U : 1 N 1 N
7 4 6 syl φ U : 1 N 1 N
8 1 nncnd φ N
9 npcan1 N N - 1 + 1 = N
10 8 9 syl φ N - 1 + 1 = N
11 1 nnzd φ N
12 peano2zm N N 1
13 uzid N 1 N 1 N 1
14 peano2uz N 1 N 1 N - 1 + 1 N 1
15 11 12 13 14 4syl φ N - 1 + 1 N 1
16 10 15 eqeltrrd φ N N 1
17 fzss2 N N 1 1 N 1 1 N
18 16 17 syl φ 1 N 1 1 N
19 18 5 sseldd φ M 1 N
20 7 19 ffvelrnd φ U M 1 N
21 fzp1elp1 M 1 N 1 M + 1 1 N - 1 + 1
22 5 21 syl φ M + 1 1 N - 1 + 1
23 10 oveq2d φ 1 N - 1 + 1 = 1 N
24 22 23 eleqtrd φ M + 1 1 N
25 7 24 ffvelrnd φ U M + 1 1 N
26 imassrn U M M + 1 ran U
27 frn U : 1 N 1 N ran U 1 N
28 4 6 27 3syl φ ran U 1 N
29 26 28 sstrid φ U M M + 1 1 N
30 29 sselda φ n U M M + 1 n 1 N
31 3 ffvelrnda φ n 1 N T n
32 31 zred φ n 1 N T n
33 32 ltp1d φ n 1 N T n < T n + 1
34 32 33 ltned φ n 1 N T n T n + 1
35 30 34 syldan φ n U M M + 1 T n T n + 1
36 breq1 y = M 1 y < M M 1 < M
37 id y = M 1 y = M 1
38 36 37 ifbieq1d y = M 1 if y < M y y + 1 = if M 1 < M M 1 y + 1
39 elfzelz M 1 N 1 M
40 5 39 syl φ M
41 40 zred φ M
42 41 ltm1d φ M 1 < M
43 42 iftrued φ if M 1 < M M 1 y + 1 = M 1
44 38 43 sylan9eqr φ y = M 1 if y < M y y + 1 = M 1
45 44 csbeq1d φ y = M 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = M 1 / j T + f U 1 j × 1 U j + 1 N × 0
46 11 12 syl φ N 1
47 elfzm1b M N 1 M 1 N 1 M 1 0 N - 1 - 1
48 40 46 47 syl2anc φ M 1 N 1 M 1 0 N - 1 - 1
49 5 48 mpbid φ M 1 0 N - 1 - 1
50 oveq2 j = M 1 1 j = 1 M 1
51 50 imaeq2d j = M 1 U 1 j = U 1 M 1
52 51 xpeq1d j = M 1 U 1 j × 1 = U 1 M 1 × 1
53 52 adantl φ j = M 1 U 1 j × 1 = U 1 M 1 × 1
54 oveq1 j = M 1 j + 1 = M - 1 + 1
55 40 zcnd φ M
56 npcan1 M M - 1 + 1 = M
57 55 56 syl φ M - 1 + 1 = M
58 54 57 sylan9eqr φ j = M 1 j + 1 = M
59 58 oveq1d φ j = M 1 j + 1 N = M N
60 59 imaeq2d φ j = M 1 U j + 1 N = U M N
61 60 xpeq1d φ j = M 1 U j + 1 N × 0 = U M N × 0
62 53 61 uneq12d φ j = M 1 U 1 j × 1 U j + 1 N × 0 = U 1 M 1 × 1 U M N × 0
63 62 oveq2d φ j = M 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 M 1 × 1 U M N × 0
64 49 63 csbied φ M 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 M 1 × 1 U M N × 0
65 64 adantr φ y = M 1 M 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 M 1 × 1 U M N × 0
66 45 65 eqtrd φ y = M 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 M 1 × 1 U M N × 0
67 46 zcnd φ N 1
68 npcan1 N 1 N 1 - 1 + 1 = N 1
69 67 68 syl φ N 1 - 1 + 1 = N 1
70 peano2zm N 1 N - 1 - 1
71 uzid N - 1 - 1 N - 1 - 1 N - 1 - 1
72 peano2uz N - 1 - 1 N - 1 - 1 N 1 - 1 + 1 N - 1 - 1
73 46 70 71 72 4syl φ N 1 - 1 + 1 N - 1 - 1
74 69 73 eqeltrrd φ N 1 N - 1 - 1
75 fzss2 N 1 N - 1 - 1 0 N - 1 - 1 0 N 1
76 74 75 syl φ 0 N - 1 - 1 0 N 1
77 76 49 sseldd φ M 1 0 N 1
78 ovexd φ T + f U 1 M 1 × 1 U M N × 0 V
79 2 66 77 78 fvmptd φ F M 1 = T + f U 1 M 1 × 1 U M N × 0
80 79 fveq1d φ F M 1 n = T + f U 1 M 1 × 1 U M N × 0 n
81 80 adantr φ n U M M + 1 F M 1 n = T + f U 1 M 1 × 1 U M N × 0 n
82 3 ffnd φ T Fn 1 N
83 82 adantr φ n U M M + 1 T Fn 1 N
84 1ex 1 V
85 fnconstg 1 V U 1 M 1 × 1 Fn U 1 M 1
86 84 85 ax-mp U 1 M 1 × 1 Fn U 1 M 1
87 c0ex 0 V
88 fnconstg 0 V U M N × 0 Fn U M N
89 87 88 ax-mp U M N × 0 Fn U M N
90 86 89 pm3.2i U 1 M 1 × 1 Fn U 1 M 1 U M N × 0 Fn U M N
91 dff1o3 U : 1 N 1-1 onto 1 N U : 1 N onto 1 N Fun U -1
92 91 simprbi U : 1 N 1-1 onto 1 N Fun U -1
93 imain Fun U -1 U 1 M 1 M N = U 1 M 1 U M N
94 4 92 93 3syl φ U 1 M 1 M N = U 1 M 1 U M N
95 fzdisj M 1 < M 1 M 1 M N =
96 42 95 syl φ 1 M 1 M N =
97 96 imaeq2d φ U 1 M 1 M N = U
98 ima0 U =
99 97 98 eqtrdi φ U 1 M 1 M N =
100 94 99 eqtr3d φ U 1 M 1 U M N =
101 fnun U 1 M 1 × 1 Fn U 1 M 1 U M N × 0 Fn U M N U 1 M 1 U M N = U 1 M 1 × 1 U M N × 0 Fn U 1 M 1 U M N
102 90 100 101 sylancr φ U 1 M 1 × 1 U M N × 0 Fn U 1 M 1 U M N
103 elfzuz M 1 N 1 M 1
104 5 103 syl φ M 1
105 57 104 eqeltrd φ M - 1 + 1 1
106 peano2zm M M 1
107 uzid M 1 M 1 M 1
108 peano2uz M 1 M 1 M - 1 + 1 M 1
109 40 106 107 108 4syl φ M - 1 + 1 M 1
110 57 109 eqeltrrd φ M M 1
111 peano2uz M M 1 M + 1 M 1
112 uzss M + 1 M 1 M + 1 M 1
113 110 111 112 3syl φ M + 1 M 1
114 elfzuz3 M 1 N 1 N 1 M
115 eluzp1p1 N 1 M N - 1 + 1 M + 1
116 5 114 115 3syl φ N - 1 + 1 M + 1
117 10 116 eqeltrrd φ N M + 1
118 113 117 sseldd φ N M 1
119 fzsplit2 M - 1 + 1 1 N M 1 1 N = 1 M 1 M - 1 + 1 N
120 105 118 119 syl2anc φ 1 N = 1 M 1 M - 1 + 1 N
121 57 oveq1d φ M - 1 + 1 N = M N
122 121 uneq2d φ 1 M 1 M - 1 + 1 N = 1 M 1 M N
123 120 122 eqtrd φ 1 N = 1 M 1 M N
124 123 imaeq2d φ U 1 N = U 1 M 1 M N
125 imaundi U 1 M 1 M N = U 1 M 1 U M N
126 124 125 eqtrdi φ U 1 N = U 1 M 1 U M N
127 f1ofo U : 1 N 1-1 onto 1 N U : 1 N onto 1 N
128 foima U : 1 N onto 1 N U 1 N = 1 N
129 4 127 128 3syl φ U 1 N = 1 N
130 126 129 eqtr3d φ U 1 M 1 U M N = 1 N
131 130 fneq2d φ U 1 M 1 × 1 U M N × 0 Fn U 1 M 1 U M N U 1 M 1 × 1 U M N × 0 Fn 1 N
132 102 131 mpbid φ U 1 M 1 × 1 U M N × 0 Fn 1 N
133 132 adantr φ n U M M + 1 U 1 M 1 × 1 U M N × 0 Fn 1 N
134 ovexd φ n U M M + 1 1 N V
135 inidm 1 N 1 N = 1 N
136 eqidd φ n U M M + 1 n 1 N T n = T n
137 100 adantr φ n U M M + 1 U 1 M 1 U M N =
138 fzss2 N M + 1 M M + 1 M N
139 imass2 M M + 1 M N U M M + 1 U M N
140 117 138 139 3syl φ U M M + 1 U M N
141 140 sselda φ n U M M + 1 n U M N
142 fvun2 U 1 M 1 × 1 Fn U 1 M 1 U M N × 0 Fn U M N U 1 M 1 U M N = n U M N U 1 M 1 × 1 U M N × 0 n = U M N × 0 n
143 86 89 142 mp3an12 U 1 M 1 U M N = n U M N U 1 M 1 × 1 U M N × 0 n = U M N × 0 n
144 137 141 143 syl2anc φ n U M M + 1 U 1 M 1 × 1 U M N × 0 n = U M N × 0 n
145 87 fvconst2 n U M N U M N × 0 n = 0
146 141 145 syl φ n U M M + 1 U M N × 0 n = 0
147 144 146 eqtrd φ n U M M + 1 U 1 M 1 × 1 U M N × 0 n = 0
148 147 adantr φ n U M M + 1 n 1 N U 1 M 1 × 1 U M N × 0 n = 0
149 83 133 134 134 135 136 148 ofval φ n U M M + 1 n 1 N T + f U 1 M 1 × 1 U M N × 0 n = T n + 0
150 30 149 mpdan φ n U M M + 1 T + f U 1 M 1 × 1 U M N × 0 n = T n + 0
151 31 zcnd φ n 1 N T n
152 151 addid1d φ n 1 N T n + 0 = T n
153 30 152 syldan φ n U M M + 1 T n + 0 = T n
154 81 150 153 3eqtrd φ n U M M + 1 F M 1 n = T n
155 breq1 y = M y < M M < M
156 oveq1 y = M y + 1 = M + 1
157 155 156 ifbieq2d y = M if y < M y y + 1 = if M < M y M + 1
158 41 ltnrd φ ¬ M < M
159 158 iffalsed φ if M < M y M + 1 = M + 1
160 157 159 sylan9eqr φ y = M if y < M y y + 1 = M + 1
161 160 csbeq1d φ y = M if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = M + 1 / j T + f U 1 j × 1 U j + 1 N × 0
162 ovex M + 1 V
163 oveq2 j = M + 1 1 j = 1 M + 1
164 163 imaeq2d j = M + 1 U 1 j = U 1 M + 1
165 164 xpeq1d j = M + 1 U 1 j × 1 = U 1 M + 1 × 1
166 oveq1 j = M + 1 j + 1 = M + 1 + 1
167 166 oveq1d j = M + 1 j + 1 N = M + 1 + 1 N
168 167 imaeq2d j = M + 1 U j + 1 N = U M + 1 + 1 N
169 168 xpeq1d j = M + 1 U j + 1 N × 0 = U M + 1 + 1 N × 0
170 165 169 uneq12d j = M + 1 U 1 j × 1 U j + 1 N × 0 = U 1 M + 1 × 1 U M + 1 + 1 N × 0
171 170 oveq2d j = M + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 M + 1 × 1 U M + 1 + 1 N × 0
172 162 171 csbie M + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 M + 1 × 1 U M + 1 + 1 N × 0
173 161 172 eqtrdi φ y = M if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 M + 1 × 1 U M + 1 + 1 N × 0
174 fz1ssfz0 1 N 1 0 N 1
175 174 5 sseldi φ M 0 N 1
176 ovexd φ T + f U 1 M + 1 × 1 U M + 1 + 1 N × 0 V
177 2 173 175 176 fvmptd φ F M = T + f U 1 M + 1 × 1 U M + 1 + 1 N × 0
178 177 fveq1d φ F M n = T + f U 1 M + 1 × 1 U M + 1 + 1 N × 0 n
179 178 adantr φ n U M M + 1 F M n = T + f U 1 M + 1 × 1 U M + 1 + 1 N × 0 n
180 fnconstg 1 V U 1 M + 1 × 1 Fn U 1 M + 1
181 84 180 ax-mp U 1 M + 1 × 1 Fn U 1 M + 1
182 fnconstg 0 V U M + 1 + 1 N × 0 Fn U M + 1 + 1 N
183 87 182 ax-mp U M + 1 + 1 N × 0 Fn U M + 1 + 1 N
184 181 183 pm3.2i U 1 M + 1 × 1 Fn U 1 M + 1 U M + 1 + 1 N × 0 Fn U M + 1 + 1 N
185 imain Fun U -1 U 1 M + 1 M + 1 + 1 N = U 1 M + 1 U M + 1 + 1 N
186 4 92 185 3syl φ U 1 M + 1 M + 1 + 1 N = U 1 M + 1 U M + 1 + 1 N
187 peano2re M M + 1
188 41 187 syl φ M + 1
189 188 ltp1d φ M + 1 < M + 1 + 1
190 fzdisj M + 1 < M + 1 + 1 1 M + 1 M + 1 + 1 N =
191 189 190 syl φ 1 M + 1 M + 1 + 1 N =
192 191 imaeq2d φ U 1 M + 1 M + 1 + 1 N = U
193 186 192 eqtr3d φ U 1 M + 1 U M + 1 + 1 N = U
194 193 98 eqtrdi φ U 1 M + 1 U M + 1 + 1 N =
195 fnun U 1 M + 1 × 1 Fn U 1 M + 1 U M + 1 + 1 N × 0 Fn U M + 1 + 1 N U 1 M + 1 U M + 1 + 1 N = U 1 M + 1 × 1 U M + 1 + 1 N × 0 Fn U 1 M + 1 U M + 1 + 1 N
196 184 194 195 sylancr φ U 1 M + 1 × 1 U M + 1 + 1 N × 0 Fn U 1 M + 1 U M + 1 + 1 N
197 fzsplit M + 1 1 N 1 N = 1 M + 1 M + 1 + 1 N
198 24 197 syl φ 1 N = 1 M + 1 M + 1 + 1 N
199 198 imaeq2d φ U 1 N = U 1 M + 1 M + 1 + 1 N
200 imaundi U 1 M + 1 M + 1 + 1 N = U 1 M + 1 U M + 1 + 1 N
201 199 200 eqtrdi φ U 1 N = U 1 M + 1 U M + 1 + 1 N
202 201 129 eqtr3d φ U 1 M + 1 U M + 1 + 1 N = 1 N
203 202 fneq2d φ U 1 M + 1 × 1 U M + 1 + 1 N × 0 Fn U 1 M + 1 U M + 1 + 1 N U 1 M + 1 × 1 U M + 1 + 1 N × 0 Fn 1 N
204 196 203 mpbid φ U 1 M + 1 × 1 U M + 1 + 1 N × 0 Fn 1 N
205 204 adantr φ n U M M + 1 U 1 M + 1 × 1 U M + 1 + 1 N × 0 Fn 1 N
206 194 adantr φ n U M M + 1 U 1 M + 1 U M + 1 + 1 N =
207 fzss1 M 1 M M + 1 1 M + 1
208 imass2 M M + 1 1 M + 1 U M M + 1 U 1 M + 1
209 104 207 208 3syl φ U M M + 1 U 1 M + 1
210 209 sselda φ n U M M + 1 n U 1 M + 1
211 fvun1 U 1 M + 1 × 1 Fn U 1 M + 1 U M + 1 + 1 N × 0 Fn U M + 1 + 1 N U 1 M + 1 U M + 1 + 1 N = n U 1 M + 1 U 1 M + 1 × 1 U M + 1 + 1 N × 0 n = U 1 M + 1 × 1 n
212 181 183 211 mp3an12 U 1 M + 1 U M + 1 + 1 N = n U 1 M + 1 U 1 M + 1 × 1 U M + 1 + 1 N × 0 n = U 1 M + 1 × 1 n
213 206 210 212 syl2anc φ n U M M + 1 U 1 M + 1 × 1 U M + 1 + 1 N × 0 n = U 1 M + 1 × 1 n
214 84 fvconst2 n U 1 M + 1 U 1 M + 1 × 1 n = 1
215 210 214 syl φ n U M M + 1 U 1 M + 1 × 1 n = 1
216 213 215 eqtrd φ n U M M + 1 U 1 M + 1 × 1 U M + 1 + 1 N × 0 n = 1
217 216 adantr φ n U M M + 1 n 1 N U 1 M + 1 × 1 U M + 1 + 1 N × 0 n = 1
218 83 205 134 134 135 136 217 ofval φ n U M M + 1 n 1 N T + f U 1 M + 1 × 1 U M + 1 + 1 N × 0 n = T n + 1
219 30 218 mpdan φ n U M M + 1 T + f U 1 M + 1 × 1 U M + 1 + 1 N × 0 n = T n + 1
220 179 219 eqtrd φ n U M M + 1 F M n = T n + 1
221 35 154 220 3netr4d φ n U M M + 1 F M 1 n F M n
222 221 ralrimiva φ n U M M + 1 F M 1 n F M n
223 fzpr M M M + 1 = M M + 1
224 5 39 223 3syl φ M M + 1 = M M + 1
225 224 imaeq2d φ U M M + 1 = U M M + 1
226 f1ofn U : 1 N 1-1 onto 1 N U Fn 1 N
227 4 226 syl φ U Fn 1 N
228 fnimapr U Fn 1 N M 1 N M + 1 1 N U M M + 1 = U M U M + 1
229 227 19 24 228 syl3anc φ U M M + 1 = U M U M + 1
230 225 229 eqtrd φ U M M + 1 = U M U M + 1
231 230 raleqdv φ n U M M + 1 F M 1 n F M n n U M U M + 1 F M 1 n F M n
232 222 231 mpbid φ n U M U M + 1 F M 1 n F M n
233 fvex U M V
234 fvex U M + 1 V
235 fveq2 n = U M F M 1 n = F M 1 U M
236 fveq2 n = U M F M n = F M U M
237 235 236 neeq12d n = U M F M 1 n F M n F M 1 U M F M U M
238 fveq2 n = U M + 1 F M 1 n = F M 1 U M + 1
239 fveq2 n = U M + 1 F M n = F M U M + 1
240 238 239 neeq12d n = U M + 1 F M 1 n F M n F M 1 U M + 1 F M U M + 1
241 233 234 237 240 ralpr n U M U M + 1 F M 1 n F M n F M 1 U M F M U M F M 1 U M + 1 F M U M + 1
242 232 241 sylib φ F M 1 U M F M U M F M 1 U M + 1 F M U M + 1
243 41 ltp1d φ M < M + 1
244 41 243 ltned φ M M + 1
245 f1of1 U : 1 N 1-1 onto 1 N U : 1 N 1-1 1 N
246 4 245 syl φ U : 1 N 1-1 1 N
247 f1veqaeq U : 1 N 1-1 1 N M 1 N M + 1 1 N U M = U M + 1 M = M + 1
248 246 19 24 247 syl12anc φ U M = U M + 1 M = M + 1
249 248 necon3d φ M M + 1 U M U M + 1
250 244 249 mpd φ U M U M + 1
251 237 anbi1d n = U M F M 1 n F M n F M 1 m F M m F M 1 U M F M U M F M 1 m F M m
252 neeq1 n = U M n m U M m
253 251 252 anbi12d n = U M F M 1 n F M n F M 1 m F M m n m F M 1 U M F M U M F M 1 m F M m U M m
254 fveq2 m = U M + 1 F M 1 m = F M 1 U M + 1
255 fveq2 m = U M + 1 F M m = F M U M + 1
256 254 255 neeq12d m = U M + 1 F M 1 m F M m F M 1 U M + 1 F M U M + 1
257 256 anbi2d m = U M + 1 F M 1 U M F M U M F M 1 m F M m F M 1 U M F M U M F M 1 U M + 1 F M U M + 1
258 neeq2 m = U M + 1 U M m U M U M + 1
259 257 258 anbi12d m = U M + 1 F M 1 U M F M U M F M 1 m F M m U M m F M 1 U M F M U M F M 1 U M + 1 F M U M + 1 U M U M + 1
260 253 259 rspc2ev U M 1 N U M + 1 1 N F M 1 U M F M U M F M 1 U M + 1 F M U M + 1 U M U M + 1 n 1 N m 1 N F M 1 n F M n F M 1 m F M m n m
261 20 25 242 250 260 syl112anc φ n 1 N m 1 N F M 1 n F M n F M 1 m F M m n m
262 dfrex2 n 1 N m 1 N F M 1 n F M n F M 1 m F M m n m ¬ n 1 N ¬ m 1 N F M 1 n F M n F M 1 m F M m n m
263 fveq2 n = m F M 1 n = F M 1 m
264 fveq2 n = m F M n = F M m
265 263 264 neeq12d n = m F M 1 n F M n F M 1 m F M m
266 265 rmo4 * n 1 N F M 1 n F M n n 1 N m 1 N F M 1 n F M n F M 1 m F M m n = m
267 dfral2 m 1 N F M 1 n F M n F M 1 m F M m n = m ¬ m 1 N ¬ F M 1 n F M n F M 1 m F M m n = m
268 df-ne n m ¬ n = m
269 268 anbi2i F M 1 n F M n F M 1 m F M m n m F M 1 n F M n F M 1 m F M m ¬ n = m
270 annim F M 1 n F M n F M 1 m F M m ¬ n = m ¬ F M 1 n F M n F M 1 m F M m n = m
271 269 270 bitri F M 1 n F M n F M 1 m F M m n m ¬ F M 1 n F M n F M 1 m F M m n = m
272 271 rexbii m 1 N F M 1 n F M n F M 1 m F M m n m m 1 N ¬ F M 1 n F M n F M 1 m F M m n = m
273 267 272 xchbinxr m 1 N F M 1 n F M n F M 1 m F M m n = m ¬ m 1 N F M 1 n F M n F M 1 m F M m n m
274 273 ralbii n 1 N m 1 N F M 1 n F M n F M 1 m F M m n = m n 1 N ¬ m 1 N F M 1 n F M n F M 1 m F M m n m
275 266 274 bitri * n 1 N F M 1 n F M n n 1 N ¬ m 1 N F M 1 n F M n F M 1 m F M m n m
276 262 275 xchbinxr n 1 N m 1 N F M 1 n F M n F M 1 m F M m n m ¬ * n 1 N F M 1 n F M n
277 261 276 sylib φ ¬ * n 1 N F M 1 n F M n