Metamath Proof Explorer


Theorem ptcmplem3

Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses ptcmp.1 S=kA,uFkwXwk-1u
ptcmp.2 X=nAFn
ptcmp.3 φAV
ptcmp.4 φF:AComp
ptcmp.5 φXUFLdomcard
ptcmplem2.5 φUranS
ptcmplem2.6 φX=U
ptcmplem2.7 φ¬z𝒫UFinX=z
ptcmplem3.8 K=uFk|wXwk-1uU
Assertion ptcmplem3 φffFnAkAfkFkK

Proof

Step Hyp Ref Expression
1 ptcmp.1 S=kA,uFkwXwk-1u
2 ptcmp.2 X=nAFn
3 ptcmp.3 φAV
4 ptcmp.4 φF:AComp
5 ptcmp.5 φXUFLdomcard
6 ptcmplem2.5 φUranS
7 ptcmplem2.6 φX=U
8 ptcmplem2.7 φ¬z𝒫UFinX=z
9 ptcmplem3.8 K=uFk|wXwk-1uU
10 rabexg AVnA|¬Fn1𝑜V
11 3 10 syl φnA|¬Fn1𝑜V
12 1 2 3 4 5 6 7 8 ptcmplem2 φknA|¬Fn1𝑜Fkdomcard
13 eldifi yFkKyFk
14 13 3ad2ant3 φyVyFkKyFk
15 14 rabssdv φyV|yFkKFk
16 15 ralrimivw φknA|¬Fn1𝑜yV|yFkKFk
17 ss2iun knA|¬Fn1𝑜yV|yFkKFkknA|¬Fn1𝑜yV|yFkKknA|¬Fn1𝑜Fk
18 16 17 syl φknA|¬Fn1𝑜yV|yFkKknA|¬Fn1𝑜Fk
19 ssnum knA|¬Fn1𝑜FkdomcardknA|¬Fn1𝑜yV|yFkKknA|¬Fn1𝑜FkknA|¬Fn1𝑜yV|yFkKdomcard
20 12 18 19 syl2anc φknA|¬Fn1𝑜yV|yFkKdomcard
21 elrabi knA|¬Fn1𝑜kA
22 8 adantr φkA¬z𝒫UFinX=z
23 ssdif0 FkKFkK=
24 4 ffvelcdmda φkAFkComp
25 24 adantr φkAFkKFkComp
26 9 ssrab3 KFk
27 26 a1i φkAFkKKFk
28 simpr φkAFkKFkK
29 uniss KFkKFk
30 26 29 mp1i φkAFkKKFk
31 28 30 eqssd φkAFkKFk=K
32 eqid Fk=Fk
33 32 cmpcov FkCompKFkFk=Kt𝒫KFinFk=t
34 25 27 31 33 syl3anc φkAFkKt𝒫KFinFk=t
35 elfpw t𝒫KFintKtFin
36 35 simplbi t𝒫KFintK
37 36 ad2antrl φkAFkKt𝒫KFinFk=ttK
38 37 sselda φkAFkKt𝒫KFinFk=txtxK
39 imaeq2 u=xwXwk-1u=wXwk-1x
40 39 eleq1d u=xwXwk-1uUwXwk-1xU
41 40 9 elrab2 xKxFkwXwk-1xU
42 41 simprbi xKwXwk-1xU
43 38 42 syl φkAFkKt𝒫KFinFk=txtwXwk-1xU
44 43 fmpttd φkAFkKt𝒫KFinFk=txtwXwk-1x:tU
45 44 frnd φkAFkKt𝒫KFinFk=tranxtwXwk-1xU
46 35 simprbi t𝒫KFintFin
47 46 ad2antrl φkAFkKt𝒫KFinFk=ttFin
48 eqid xtwXwk-1x=xtwXwk-1x
49 48 rnmpt ranxtwXwk-1x=f|xtf=wXwk-1x
50 abrexfi tFinf|xtf=wXwk-1xFin
51 49 50 eqeltrid tFinranxtwXwk-1xFin
52 47 51 syl φkAFkKt𝒫KFinFk=tranxtwXwk-1xFin
53 elfpw ranxtwXwk-1x𝒫UFinranxtwXwk-1xUranxtwXwk-1xFin
54 45 52 53 sylanbrc φkAFkKt𝒫KFinFk=tranxtwXwk-1x𝒫UFin
55 fveq2 n=kfn=fk
56 fveq2 n=kFn=Fk
57 56 unieqd n=kFn=Fk
58 55 57 eleq12d n=kfnFnfkFk
59 simpr φkAFkKt𝒫KFinFk=tfXfX
60 59 2 eleqtrdi φkAFkKt𝒫KFinFk=tfXfnAFn
61 vex fV
62 61 elixp fnAFnfFnAnAfnFn
63 62 simprbi fnAFnnAfnFn
64 60 63 syl φkAFkKt𝒫KFinFk=tfXnAfnFn
65 simp-4r φkAFkKt𝒫KFinFk=tfXkA
66 58 64 65 rspcdva φkAFkKt𝒫KFinFk=tfXfkFk
67 simplrr φkAFkKt𝒫KFinFk=tfXFk=t
68 66 67 eleqtrd φkAFkKt𝒫KFinFk=tfXfkt
69 eluni2 fktxtfkx
70 68 69 sylib φkAFkKt𝒫KFinFk=tfXxtfkx
71 fveq1 w=fwk=fk
72 71 eleq1d w=fwkxfkx
73 eqid wXwk=wXwk
74 73 mptpreima wXwk-1x=wX|wkx
75 72 74 elrab2 fwXwk-1xfXfkx
76 75 baib fXfwXwk-1xfkx
77 76 ad2antlr φkAFkKt𝒫KFinFk=tfXxtfwXwk-1xfkx
78 77 rexbidva φkAFkKt𝒫KFinFk=tfXxtfwXwk-1xxtfkx
79 70 78 mpbird φkAFkKt𝒫KFinFk=tfXxtfwXwk-1x
80 eliun fxtwXwk-1xxtfwXwk-1x
81 79 80 sylibr φkAFkKt𝒫KFinFk=tfXfxtwXwk-1x
82 81 ex φkAFkKt𝒫KFinFk=tfXfxtwXwk-1x
83 82 ssrdv φkAFkKt𝒫KFinFk=tXxtwXwk-1x
84 43 ralrimiva φkAFkKt𝒫KFinFk=txtwXwk-1xU
85 dfiun2g xtwXwk-1xUxtwXwk-1x=f|xtf=wXwk-1x
86 84 85 syl φkAFkKt𝒫KFinFk=txtwXwk-1x=f|xtf=wXwk-1x
87 49 unieqi ranxtwXwk-1x=f|xtf=wXwk-1x
88 86 87 eqtr4di φkAFkKt𝒫KFinFk=txtwXwk-1x=ranxtwXwk-1x
89 83 88 sseqtrd φkAFkKt𝒫KFinFk=tXranxtwXwk-1x
90 45 unissd φkAFkKt𝒫KFinFk=tranxtwXwk-1xU
91 7 ad3antrrr φkAFkKt𝒫KFinFk=tX=U
92 90 91 sseqtrrd φkAFkKt𝒫KFinFk=tranxtwXwk-1xX
93 89 92 eqssd φkAFkKt𝒫KFinFk=tX=ranxtwXwk-1x
94 unieq z=ranxtwXwk-1xz=ranxtwXwk-1x
95 94 rspceeqv ranxtwXwk-1x𝒫UFinX=ranxtwXwk-1xz𝒫UFinX=z
96 54 93 95 syl2anc φkAFkKt𝒫KFinFk=tz𝒫UFinX=z
97 34 96 rexlimddv φkAFkKz𝒫UFinX=z
98 97 ex φkAFkKz𝒫UFinX=z
99 23 98 biimtrrid φkAFkK=z𝒫UFinX=z
100 22 99 mtod φkA¬FkK=
101 neq0 ¬FkK=yyFkK
102 100 101 sylib φkAyyFkK
103 rexv yVyFkKyyFkK
104 102 103 sylibr φkAyVyFkK
105 21 104 sylan2 φknA|¬Fn1𝑜yVyFkK
106 105 ralrimiva φknA|¬Fn1𝑜yVyFkK
107 eleq1 y=gkyFkKgkFkK
108 107 ac6num nA|¬Fn1𝑜VknA|¬Fn1𝑜yV|yFkKdomcardknA|¬Fn1𝑜yVyFkKgg:nA|¬Fn1𝑜VknA|¬Fn1𝑜gkFkK
109 11 20 106 108 syl3anc φgg:nA|¬Fn1𝑜VknA|¬Fn1𝑜gkFkK
110 3 adantr φg:nA|¬Fn1𝑜VknA|¬Fn1𝑜gkFkKAV
111 110 mptexd φg:nA|¬Fn1𝑜VknA|¬Fn1𝑜gkFkKmAifFm1𝑜FmgmV
112 fvex FmV
113 112 uniex FmV
114 113 uniex FmV
115 fvex gmV
116 114 115 ifex ifFm1𝑜FmgmV
117 116 rgenw mAifFm1𝑜FmgmV
118 eqid mAifFm1𝑜Fmgm=mAifFm1𝑜Fmgm
119 118 fnmpt mAifFm1𝑜FmgmVmAifFm1𝑜FmgmFnA
120 117 119 mp1i φg:nA|¬Fn1𝑜VknA|¬Fn1𝑜gkFkKmAifFm1𝑜FmgmFnA
121 57 breq1d n=kFn1𝑜Fk1𝑜
122 121 notbid n=k¬Fn1𝑜¬Fk1𝑜
123 122 ralrab knA|¬Fn1𝑜gkFkKkA¬Fk1𝑜gkFkK
124 iftrue Fk1𝑜ifFk1𝑜Fkgk=Fk
125 124 ad2antll φg:nA|¬Fn1𝑜VkAFk1𝑜ifFk1𝑜Fkgk=Fk
126 102 adantrr φkAFk1𝑜yyFkK
127 13 adantl φkAFk1𝑜yFkKyFk
128 simplrr φkAFk1𝑜yFkKFk1𝑜
129 en1b Fk1𝑜Fk=Fk
130 128 129 sylib φkAFk1𝑜yFkKFk=Fk
131 127 130 eleqtrd φkAFk1𝑜yFkKyFk
132 elsni yFky=Fk
133 131 132 syl φkAFk1𝑜yFkKy=Fk
134 simpr φkAFk1𝑜yFkKyFkK
135 133 134 eqeltrrd φkAFk1𝑜yFkKFkFkK
136 126 135 exlimddv φkAFk1𝑜FkFkK
137 136 adantlr φg:nA|¬Fn1𝑜VkAFk1𝑜FkFkK
138 125 137 eqeltrd φg:nA|¬Fn1𝑜VkAFk1𝑜ifFk1𝑜FkgkFkK
139 138 a1d φg:nA|¬Fn1𝑜VkAFk1𝑜¬Fk1𝑜gkFkKifFk1𝑜FkgkFkK
140 139 expr φg:nA|¬Fn1𝑜VkAFk1𝑜¬Fk1𝑜gkFkKifFk1𝑜FkgkFkK
141 pm2.27 ¬Fk1𝑜¬Fk1𝑜gkFkKgkFkK
142 iffalse ¬Fk1𝑜ifFk1𝑜Fkgk=gk
143 142 eleq1d ¬Fk1𝑜ifFk1𝑜FkgkFkKgkFkK
144 141 143 sylibrd ¬Fk1𝑜¬Fk1𝑜gkFkKifFk1𝑜FkgkFkK
145 140 144 pm2.61d1 φg:nA|¬Fn1𝑜VkA¬Fk1𝑜gkFkKifFk1𝑜FkgkFkK
146 145 ralimdva φg:nA|¬Fn1𝑜VkA¬Fk1𝑜gkFkKkAifFk1𝑜FkgkFkK
147 123 146 biimtrid φg:nA|¬Fn1𝑜VknA|¬Fn1𝑜gkFkKkAifFk1𝑜FkgkFkK
148 147 impr φg:nA|¬Fn1𝑜VknA|¬Fn1𝑜gkFkKkAifFk1𝑜FkgkFkK
149 fneq1 f=mAifFm1𝑜FmgmfFnAmAifFm1𝑜FmgmFnA
150 fveq1 f=mAifFm1𝑜Fmgmfk=mAifFm1𝑜Fmgmk
151 fveq2 m=kFm=Fk
152 151 unieqd m=kFm=Fk
153 152 breq1d m=kFm1𝑜Fk1𝑜
154 152 unieqd m=kFm=Fk
155 fveq2 m=kgm=gk
156 153 154 155 ifbieq12d m=kifFm1𝑜Fmgm=ifFk1𝑜Fkgk
157 fvex FkV
158 157 uniex FkV
159 158 uniex FkV
160 fvex gkV
161 159 160 ifex ifFk1𝑜FkgkV
162 156 118 161 fvmpt kAmAifFm1𝑜Fmgmk=ifFk1𝑜Fkgk
163 150 162 sylan9eq f=mAifFm1𝑜FmgmkAfk=ifFk1𝑜Fkgk
164 163 eleq1d f=mAifFm1𝑜FmgmkAfkFkKifFk1𝑜FkgkFkK
165 164 ralbidva f=mAifFm1𝑜FmgmkAfkFkKkAifFk1𝑜FkgkFkK
166 149 165 anbi12d f=mAifFm1𝑜FmgmfFnAkAfkFkKmAifFm1𝑜FmgmFnAkAifFk1𝑜FkgkFkK
167 166 spcegv mAifFm1𝑜FmgmVmAifFm1𝑜FmgmFnAkAifFk1𝑜FkgkFkKffFnAkAfkFkK
168 167 3impib mAifFm1𝑜FmgmVmAifFm1𝑜FmgmFnAkAifFk1𝑜FkgkFkKffFnAkAfkFkK
169 111 120 148 168 syl3anc φg:nA|¬Fn1𝑜VknA|¬Fn1𝑜gkFkKffFnAkAfkFkK
170 109 169 exlimddv φffFnAkAfkFkK