| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitscyglem1.1 |
|
| 2 |
|
unitscyglem1.2 |
|
| 3 |
|
unitscyglem1.3 |
|
| 4 |
|
unitscyglem1.4 |
|
| 5 |
|
unitscyglem1.5 |
|
| 6 |
|
unitscyglem4.1 |
|
| 7 |
|
unitscyglem4.2 |
|
| 8 |
|
nfcv |
|
| 9 |
|
nfcv |
|
| 10 |
|
nfv |
|
| 11 |
|
nfv |
|
| 12 |
|
fveqeq2 |
|
| 13 |
8 9 10 11 12
|
cbvrabw |
|
| 14 |
13
|
fveq2i |
|
| 15 |
14
|
a1i |
|
| 16 |
7
|
adantr |
|
| 17 |
16
|
ex |
|
| 18 |
17
|
ancrd |
|
| 19 |
18
|
imdistani |
|
| 20 |
|
breq1 |
|
| 21 |
|
eqeq2 |
|
| 22 |
21
|
rabbidv |
|
| 23 |
22
|
neeq1d |
|
| 24 |
20 23
|
anbi12d |
|
| 25 |
22
|
fveq2d |
|
| 26 |
|
fveq2 |
|
| 27 |
25 26
|
eqeq12d |
|
| 28 |
24 27
|
imbi12d |
|
| 29 |
1 2 3 4 5
|
unitscyglem3 |
|
| 30 |
28 29 6
|
rspcdva |
|
| 31 |
30
|
imp |
|
| 32 |
19 31
|
syl |
|
| 33 |
15 32
|
eqtrd |
|
| 34 |
|
id |
|
| 35 |
34
|
necon1bi |
|
| 36 |
35
|
adantl |
|
| 37 |
3
|
adantr |
|
| 38 |
4
|
adantr |
|
| 39 |
1 37 38
|
hashfingrpnn |
|
| 40 |
1 2 37 38 39
|
grpods |
|
| 41 |
|
simpr |
|
| 42 |
41
|
eqcomd |
|
| 43 |
42
|
oveq1d |
|
| 44 |
3
|
adantr |
|
| 45 |
44
|
adantr |
|
| 46 |
|
simpr |
|
| 47 |
|
eqid |
|
| 48 |
|
simpr |
|
| 49 |
1 47 48
|
odcld |
|
| 50 |
49
|
adantr |
|
| 51 |
50
|
nn0zd |
|
| 52 |
|
simplr |
|
| 53 |
46 51 52
|
3jca |
|
| 54 |
1 2
|
mulgass |
|
| 55 |
45 53 54
|
syl2anc |
|
| 56 |
|
eqid |
|
| 57 |
1 47 2 56
|
odid |
|
| 58 |
52 57
|
syl |
|
| 59 |
58
|
oveq2d |
|
| 60 |
1 2 56
|
mulgz |
|
| 61 |
44 60
|
sylan |
|
| 62 |
59 61
|
eqtrd |
|
| 63 |
55 62
|
eqtrd |
|
| 64 |
63
|
adantr |
|
| 65 |
43 64
|
eqtrd |
|
| 66 |
4
|
adantr |
|
| 67 |
1 47
|
oddvds2 |
|
| 68 |
44 66 48 67
|
syl3anc |
|
| 69 |
49
|
nn0zd |
|
| 70 |
|
hashcl |
|
| 71 |
66 70
|
syl |
|
| 72 |
71
|
nn0zd |
|
| 73 |
|
divides |
|
| 74 |
69 72 73
|
syl2anc |
|
| 75 |
68 74
|
mpbid |
|
| 76 |
65 75
|
r19.29a |
|
| 77 |
76
|
rabeqcda |
|
| 78 |
77
|
adantr |
|
| 79 |
78
|
fveq2d |
|
| 80 |
40 79
|
eqtr2d |
|
| 81 |
|
nfv |
|
| 82 |
|
nfcv |
|
| 83 |
|
fzfid |
|
| 84 |
|
ssrab2 |
|
| 85 |
84
|
a1i |
|
| 86 |
83 85
|
ssfid |
|
| 87 |
38
|
adantr |
|
| 88 |
|
ssrab2 |
|
| 89 |
88
|
a1i |
|
| 90 |
87 89
|
ssfid |
|
| 91 |
|
hashcl |
|
| 92 |
90 91
|
syl |
|
| 93 |
92
|
nn0cnd |
|
| 94 |
|
breq1 |
|
| 95 |
|
1zzd |
|
| 96 |
39
|
nnzd |
|
| 97 |
39
|
nnge1d |
|
| 98 |
39
|
nnred |
|
| 99 |
98
|
leidd |
|
| 100 |
95 96 96 97 99
|
elfzd |
|
| 101 |
|
iddvds |
|
| 102 |
96 101
|
syl |
|
| 103 |
94 100 102
|
elrabd |
|
| 104 |
|
eqeq2 |
|
| 105 |
104
|
rabbidv |
|
| 106 |
105
|
fveq2d |
|
| 107 |
81 82 86 93 103 106
|
fsumsplit1 |
|
| 108 |
|
ssrab2 |
|
| 109 |
108
|
a1i |
|
| 110 |
38 109
|
ssfid |
|
| 111 |
|
hashcl |
|
| 112 |
110 111
|
syl |
|
| 113 |
112
|
nn0red |
|
| 114 |
|
diffi |
|
| 115 |
86 114
|
syl |
|
| 116 |
38
|
adantr |
|
| 117 |
88
|
a1i |
|
| 118 |
116 117
|
ssfid |
|
| 119 |
118 91
|
syl |
|
| 120 |
115 119
|
fsumnn0cl |
|
| 121 |
120
|
nn0red |
|
| 122 |
39
|
phicld |
|
| 123 |
122
|
nnred |
|
| 124 |
|
eldifi |
|
| 125 |
|
breq1 |
|
| 126 |
125
|
elrab |
|
| 127 |
126
|
biimpi |
|
| 128 |
|
elfzelz |
|
| 129 |
|
elfzle1 |
|
| 130 |
128 129
|
jca |
|
| 131 |
130
|
adantr |
|
| 132 |
127 131
|
syl |
|
| 133 |
124 132
|
syl |
|
| 134 |
133
|
adantl |
|
| 135 |
|
elnnz1 |
|
| 136 |
134 135
|
sylibr |
|
| 137 |
|
phicl |
|
| 138 |
136 137
|
syl |
|
| 139 |
138
|
nnred |
|
| 140 |
115 139
|
fsumrecl |
|
| 141 |
|
simplll |
|
| 142 |
|
simplr |
|
| 143 |
141 142
|
jca |
|
| 144 |
|
simpr |
|
| 145 |
143 144
|
jca |
|
| 146 |
|
fveqeq2 |
|
| 147 |
3
|
ad2antrr |
|
| 148 |
7
|
ad2antrr |
|
| 149 |
6
|
ad2antrr |
|
| 150 |
149
|
nnzd |
|
| 151 |
149
|
nnne0d |
|
| 152 |
4
|
ad2antrr |
|
| 153 |
152 70
|
syl |
|
| 154 |
153
|
nn0zd |
|
| 155 |
|
dvdsval2 |
|
| 156 |
150 151 154 155
|
syl3anc |
|
| 157 |
148 156
|
mpbid |
|
| 158 |
|
simplr |
|
| 159 |
1 2 147 157 158
|
mulgcld |
|
| 160 |
153
|
nn0cnd |
|
| 161 |
6
|
nncnd |
|
| 162 |
161
|
ad2antrr |
|
| 163 |
1 147 152
|
hashfingrpnn |
|
| 164 |
163
|
nnne0d |
|
| 165 |
160 160 162 164 151
|
divdiv2d |
|
| 166 |
162 160 164
|
divcan3d |
|
| 167 |
165 166
|
eqtr2d |
|
| 168 |
|
simpr |
|
| 169 |
168
|
oveq2d |
|
| 170 |
4 70
|
syl |
|
| 171 |
170
|
nn0cnd |
|
| 172 |
6
|
nnne0d |
|
| 173 |
171 161 172
|
divcan2d |
|
| 174 |
173
|
eqcomd |
|
| 175 |
174
|
adantr |
|
| 176 |
175
|
adantr |
|
| 177 |
176
|
oveq2d |
|
| 178 |
|
nndivdvds |
|
| 179 |
163 149 178
|
syl2anc |
|
| 180 |
148 179
|
mpbid |
|
| 181 |
180
|
nnnn0d |
|
| 182 |
181 150
|
gcdmultipled |
|
| 183 |
177 182
|
eqtrd |
|
| 184 |
169 183
|
eqtrd |
|
| 185 |
184
|
eqcomd |
|
| 186 |
185
|
oveq2d |
|
| 187 |
167 186
|
eqtrd |
|
| 188 |
168
|
eqcomd |
|
| 189 |
1 47 2
|
odmulg |
|
| 190 |
147 158 157 189
|
syl3anc |
|
| 191 |
188 190
|
eqtrd |
|
| 192 |
191
|
eqcomd |
|
| 193 |
157
|
zcnd |
|
| 194 |
184 193
|
eqeltrd |
|
| 195 |
1 47 159
|
odcld |
|
| 196 |
195
|
nn0cnd |
|
| 197 |
168 154
|
eqeltrd |
|
| 198 |
168 164
|
eqnetrd |
|
| 199 |
157 197 198
|
3jca |
|
| 200 |
|
gcd2n0cl |
|
| 201 |
199 200
|
syl |
|
| 202 |
201
|
nnne0d |
|
| 203 |
160 194 196 202
|
divmuld |
|
| 204 |
192 203
|
mpbird |
|
| 205 |
187 204
|
eqtr2d |
|
| 206 |
146 159 205
|
elrabd |
|
| 207 |
|
ne0i |
|
| 208 |
206 207
|
syl |
|
| 209 |
145 208
|
syl |
|
| 210 |
|
rabn0 |
|
| 211 |
|
nfv |
|
| 212 |
|
nfv |
|
| 213 |
|
fveqeq2 |
|
| 214 |
211 212 213
|
cbvrexw |
|
| 215 |
210 214
|
bitri |
|
| 216 |
215
|
biimpi |
|
| 217 |
216
|
adantl |
|
| 218 |
209 217
|
r19.29a |
|
| 219 |
218
|
ex |
|
| 220 |
219
|
necon4d |
|
| 221 |
220
|
imp |
|
| 222 |
221
|
fveq2d |
|
| 223 |
|
hash0 |
|
| 224 |
223
|
a1i |
|
| 225 |
222 224
|
eqtrd |
|
| 226 |
122
|
nngt0d |
|
| 227 |
225 226
|
eqbrtrd |
|
| 228 |
|
eldif |
|
| 229 |
228
|
biimpi |
|
| 230 |
229
|
adantl |
|
| 231 |
|
breq1 |
|
| 232 |
231
|
elrab |
|
| 233 |
232
|
biimpi |
|
| 234 |
233
|
adantr |
|
| 235 |
|
velsn |
|
| 236 |
235
|
bicomi |
|
| 237 |
236
|
biimpi |
|
| 238 |
237
|
necon3bi |
|
| 239 |
238
|
adantl |
|
| 240 |
234 239
|
jca |
|
| 241 |
240
|
adantl |
|
| 242 |
|
1zzd |
|
| 243 |
4
|
adantr |
|
| 244 |
243 70
|
syl |
|
| 245 |
244
|
nn0zd |
|
| 246 |
245 242
|
zsubcld |
|
| 247 |
|
elfzelz |
|
| 248 |
247
|
adantr |
|
| 249 |
248
|
adantr |
|
| 250 |
249
|
adantl |
|
| 251 |
|
elfzle1 |
|
| 252 |
251
|
adantr |
|
| 253 |
252
|
adantr |
|
| 254 |
253
|
adantl |
|
| 255 |
|
elfzle2 |
|
| 256 |
255
|
adantr |
|
| 257 |
256
|
adantr |
|
| 258 |
257
|
adantl |
|
| 259 |
|
simprr |
|
| 260 |
259
|
necomd |
|
| 261 |
258 260
|
jca |
|
| 262 |
250
|
zred |
|
| 263 |
244
|
nn0red |
|
| 264 |
262 263
|
ltlend |
|
| 265 |
261 264
|
mpbird |
|
| 266 |
250 245
|
zltlem1d |
|
| 267 |
265 266
|
mpbid |
|
| 268 |
242 246 250 254 267
|
elfzd |
|
| 269 |
|
simprlr |
|
| 270 |
231 268 269
|
elrabd |
|
| 271 |
270
|
ex |
|
| 272 |
271
|
adantr |
|
| 273 |
241 272
|
mpd |
|
| 274 |
273
|
ex |
|
| 275 |
274
|
adantr |
|
| 276 |
230 275
|
mpd |
|
| 277 |
276
|
ex |
|
| 278 |
277
|
ssrdv |
|
| 279 |
|
1zzd |
|
| 280 |
170
|
nn0zd |
|
| 281 |
280
|
adantr |
|
| 282 |
|
elfzelz |
|
| 283 |
282
|
adantl |
|
| 284 |
|
elfzle1 |
|
| 285 |
284
|
adantl |
|
| 286 |
283
|
zred |
|
| 287 |
281
|
zred |
|
| 288 |
|
1red |
|
| 289 |
287 288
|
resubcld |
|
| 290 |
|
elfzle2 |
|
| 291 |
290
|
adantl |
|
| 292 |
287
|
lem1d |
|
| 293 |
286 289 287 291 292
|
letrd |
|
| 294 |
279 281 283 285 293
|
elfzd |
|
| 295 |
294
|
ex |
|
| 296 |
295
|
ssrdv |
|
| 297 |
|
rabss2 |
|
| 298 |
296 297
|
syl |
|
| 299 |
298
|
sseld |
|
| 300 |
299
|
imp |
|
| 301 |
170
|
ad2antrr |
|
| 302 |
301
|
nn0red |
|
| 303 |
302
|
leidd |
|
| 304 |
|
simpr |
|
| 305 |
304
|
eqcomd |
|
| 306 |
231
|
elrab |
|
| 307 |
306
|
biimpi |
|
| 308 |
307
|
adantl |
|
| 309 |
291
|
adantrr |
|
| 310 |
309
|
ex |
|
| 311 |
310
|
adantr |
|
| 312 |
308 311
|
mpd |
|
| 313 |
300 233 248
|
3syl |
|
| 314 |
280
|
adantr |
|
| 315 |
313 314
|
zltlem1d |
|
| 316 |
312 315
|
mpbird |
|
| 317 |
316
|
adantr |
|
| 318 |
305 317
|
eqbrtrd |
|
| 319 |
302 302
|
ltnled |
|
| 320 |
318 319
|
mpbid |
|
| 321 |
303 320
|
pm2.21dd |
|
| 322 |
|
simpr |
|
| 323 |
321 322
|
pm2.61dane |
|
| 324 |
300 323
|
eldifsnd |
|
| 325 |
324
|
ex |
|
| 326 |
325
|
ssrdv |
|
| 327 |
278 326
|
eqssd |
|
| 328 |
327
|
sumeq1d |
|
| 329 |
|
fzfid |
|
| 330 |
|
ssrab2 |
|
| 331 |
330
|
a1i |
|
| 332 |
329 331
|
ssfid |
|
| 333 |
4
|
adantr |
|
| 334 |
88
|
a1i |
|
| 335 |
333 334
|
ssfid |
|
| 336 |
335 91
|
syl |
|
| 337 |
336
|
nn0red |
|
| 338 |
125
|
elrab |
|
| 339 |
338
|
biimpi |
|
| 340 |
339
|
adantl |
|
| 341 |
|
elfzelz |
|
| 342 |
|
elfzle1 |
|
| 343 |
341 342
|
jca |
|
| 344 |
343
|
adantr |
|
| 345 |
344
|
adantl |
|
| 346 |
345 135
|
sylibr |
|
| 347 |
346
|
ex |
|
| 348 |
347
|
adantr |
|
| 349 |
340 348
|
mpd |
|
| 350 |
349
|
phicld |
|
| 351 |
350
|
nnred |
|
| 352 |
|
simpll |
|
| 353 |
338
|
biimpri |
|
| 354 |
353
|
adantl |
|
| 355 |
354
|
adantr |
|
| 356 |
352 355
|
jca |
|
| 357 |
356 337
|
syl |
|
| 358 |
|
simpr |
|
| 359 |
356 358
|
jca |
|
| 360 |
340
|
simprd |
|
| 361 |
360
|
adantr |
|
| 362 |
|
simpr |
|
| 363 |
361 362
|
jca |
|
| 364 |
|
breq1 |
|
| 365 |
|
eqeq2 |
|
| 366 |
365
|
rabbidv |
|
| 367 |
366
|
neeq1d |
|
| 368 |
364 367
|
anbi12d |
|
| 369 |
366
|
fveq2d |
|
| 370 |
|
fveq2 |
|
| 371 |
369 370
|
eqeq12d |
|
| 372 |
368 371
|
imbi12d |
|
| 373 |
29
|
adantr |
|
| 374 |
372 373 349
|
rspcdva |
|
| 375 |
374
|
adantr |
|
| 376 |
363 375
|
mpd |
|
| 377 |
359 376
|
syl |
|
| 378 |
357 377
|
eqled |
|
| 379 |
|
id |
|
| 380 |
379
|
necon1bi |
|
| 381 |
380
|
adantl |
|
| 382 |
381
|
fveq2d |
|
| 383 |
223
|
a1i |
|
| 384 |
382 383
|
eqtrd |
|
| 385 |
346
|
adantr |
|
| 386 |
385
|
phicld |
|
| 387 |
386
|
nnnn0d |
|
| 388 |
387
|
nn0ge0d |
|
| 389 |
384 388
|
eqbrtrd |
|
| 390 |
378 389
|
pm2.61dan |
|
| 391 |
390
|
ex |
|
| 392 |
391
|
adantr |
|
| 393 |
340 392
|
mpd |
|
| 394 |
332 337 351 393
|
fsumle |
|
| 395 |
327
|
sumeq1d |
|
| 396 |
395
|
eqcomd |
|
| 397 |
394 396
|
breqtrd |
|
| 398 |
328 397
|
eqbrtrd |
|
| 399 |
398
|
adantr |
|
| 400 |
113 121 123 140 227 399
|
ltleaddd |
|
| 401 |
|
nfcv |
|
| 402 |
|
simpll |
|
| 403 |
127
|
adantl |
|
| 404 |
402 403
|
jca |
|
| 405 |
131
|
adantl |
|
| 406 |
405
|
adantl |
|
| 407 |
406 135
|
sylibr |
|
| 408 |
407
|
ex |
|
| 409 |
404 408
|
mpd |
|
| 410 |
409
|
phicld |
|
| 411 |
410
|
nncnd |
|
| 412 |
|
fveq2 |
|
| 413 |
81 401 86 411 103 412
|
fsumsplit1 |
|
| 414 |
400 413
|
breqtrrd |
|
| 415 |
107 414
|
eqbrtrd |
|
| 416 |
|
elfzelz |
|
| 417 |
|
elfzle1 |
|
| 418 |
416 417
|
jca |
|
| 419 |
418
|
adantr |
|
| 420 |
419
|
adantl |
|
| 421 |
|
elnnz1 |
|
| 422 |
420 421
|
sylibr |
|
| 423 |
422
|
rabss3d |
|
| 424 |
|
simpl |
|
| 425 |
|
simprl |
|
| 426 |
424 425
|
jca |
|
| 427 |
|
simprr |
|
| 428 |
426 427
|
jca |
|
| 429 |
|
1zzd |
|
| 430 |
280
|
adantr |
|
| 431 |
430
|
adantr |
|
| 432 |
425
|
anassrs |
|
| 433 |
432
|
nnzd |
|
| 434 |
432
|
nnge1d |
|
| 435 |
|
nnz |
|
| 436 |
435
|
adantl |
|
| 437 |
1 3 4
|
hashfingrpnn |
|
| 438 |
437
|
adantr |
|
| 439 |
|
dvdsle |
|
| 440 |
436 438 439
|
syl2anc |
|
| 441 |
440
|
imp |
|
| 442 |
429 431 433 434 441
|
elfzd |
|
| 443 |
428 442
|
syl |
|
| 444 |
443
|
rabss3d |
|
| 445 |
423 444
|
eqssd |
|
| 446 |
445
|
adantr |
|
| 447 |
446
|
sumeq1d |
|
| 448 |
415 447
|
breqtrd |
|
| 449 |
|
phisum |
|
| 450 |
39 449
|
syl |
|
| 451 |
448 450
|
breqtrd |
|
| 452 |
80 451
|
eqbrtrd |
|
| 453 |
170
|
adantr |
|
| 454 |
453
|
nn0red |
|
| 455 |
454
|
ltnrd |
|
| 456 |
452 455
|
pm2.21dd |
|
| 457 |
456
|
ex |
|
| 458 |
457
|
adantr |
|
| 459 |
36 458
|
mpd |
|
| 460 |
33 459
|
pm2.61dan |
|