Metamath Proof Explorer


Theorem wallispilem4

Description: F maps to explicit expression for the ratio of two consecutive values of I . (Contributed by Glauco Siliprandi, 30-Jun-2017)

Ref Expression
Hypotheses wallispilem4.1 F=k2k2k12k2k+1
wallispilem4.2 I=n00πsinzndz
wallispilem4.3 G=nI2nI2n+1
wallispilem4.4 H=nπ21seq1×Fn
Assertion wallispilem4 G=H

Proof

Step Hyp Ref Expression
1 wallispilem4.1 F=k2k2k12k2k+1
2 wallispilem4.2 I=n00πsinzndz
3 wallispilem4.3 G=nI2nI2n+1
4 wallispilem4.4 H=nπ21seq1×Fn
5 oveq2 x=12x=21
6 5 fveq2d x=1I2x=I21
7 5 fvoveq1d x=1I2x+1=I21+1
8 6 7 oveq12d x=1I2xI2x+1=I21I21+1
9 fveq2 x=1seq1×Fx=seq1×F1
10 9 oveq2d x=11seq1×Fx=1seq1×F1
11 10 oveq2d x=1π21seq1×Fx=π21seq1×F1
12 8 11 eqeq12d x=1I2xI2x+1=π21seq1×FxI21I21+1=π21seq1×F1
13 oveq2 x=y2x=2y
14 13 fveq2d x=yI2x=I2y
15 13 fvoveq1d x=yI2x+1=I2y+1
16 14 15 oveq12d x=yI2xI2x+1=I2yI2y+1
17 fveq2 x=yseq1×Fx=seq1×Fy
18 17 oveq2d x=y1seq1×Fx=1seq1×Fy
19 18 oveq2d x=yπ21seq1×Fx=π21seq1×Fy
20 16 19 eqeq12d x=yI2xI2x+1=π21seq1×FxI2yI2y+1=π21seq1×Fy
21 oveq2 x=y+12x=2y+1
22 21 fveq2d x=y+1I2x=I2y+1
23 21 fvoveq1d x=y+1I2x+1=I2y+1+1
24 22 23 oveq12d x=y+1I2xI2x+1=I2y+1I2y+1+1
25 fveq2 x=y+1seq1×Fx=seq1×Fy+1
26 25 oveq2d x=y+11seq1×Fx=1seq1×Fy+1
27 26 oveq2d x=y+1π21seq1×Fx=π21seq1×Fy+1
28 24 27 eqeq12d x=y+1I2xI2x+1=π21seq1×FxI2y+1I2y+1+1=π21seq1×Fy+1
29 oveq2 x=n2x=2n
30 29 fveq2d x=nI2x=I2n
31 29 fvoveq1d x=nI2x+1=I2n+1
32 30 31 oveq12d x=nI2xI2x+1=I2nI2n+1
33 fveq2 x=nseq1×Fx=seq1×Fn
34 33 oveq2d x=n1seq1×Fx=1seq1×Fn
35 34 oveq2d x=nπ21seq1×Fx=π21seq1×Fn
36 32 35 eqeq12d x=nI2xI2x+1=π21seq1×FxI2nI2n+1=π21seq1×Fn
37 2t1e2 21=2
38 37 fveq2i I21=I2
39 37 oveq1i 21+1=2+1
40 2p1e3 2+1=3
41 39 40 eqtri 21+1=3
42 41 fveq2i I21+1=I3
43 38 42 oveq12i I21I21+1=I2I3
44 2z 2
45 uzid 222
46 44 45 ax-mp 22
47 2 wallispilem2 I0=πI1=222I2=212I22
48 47 simp3i 22I2=212I22
49 46 48 ax-mp I2=212I22
50 2m1e1 21=1
51 50 oveq1i 212=12
52 2cn 2
53 52 subidi 22=0
54 53 fveq2i I22=I0
55 47 simp1i I0=π
56 54 55 eqtri I22=π
57 51 56 oveq12i 212I22=12π
58 ax-1cn 1
59 2cnne0 220
60 picn π
61 div32 1220π12π=1π2
62 58 59 60 61 mp3an 12π=1π2
63 2ne0 20
64 60 52 63 divcli π2
65 64 mullidi 1π2=π2
66 62 65 eqtri 12π=π2
67 49 57 66 3eqtri I2=π2
68 3z 3
69 2re 2
70 3re 3
71 2lt3 2<3
72 69 70 71 ltleii 23
73 eluz2 322323
74 44 68 72 73 mpbir3an 32
75 2 wallispilem2 I0=πI1=232I3=313I32
76 75 simp3i 32I3=313I32
77 74 76 ax-mp I3=313I32
78 3m1e2 31=2
79 78 eqcomi 2=31
80 79 oveq1i 23=313
81 3cn 3
82 81 52 58 40 subaddrii 32=1
83 82 fveq2i I32=I1
84 47 simp2i I1=2
85 83 84 eqtr2i 2=I32
86 80 85 oveq12i 232=313I32
87 3ne0 30
88 52 81 87 divcli 23
89 88 52 mulcomi 232=223
90 77 86 89 3eqtr2i I3=223
91 67 90 oveq12i I2I3=π2223
92 1z 1
93 seq1 1seq1×F1=F1
94 92 93 ax-mp seq1×F1=F1
95 1nn 1
96 oveq2 k=12k=21
97 96 37 eqtrdi k=12k=2
98 96 oveq1d k=12k1=211
99 37 oveq1i 211=21
100 99 50 eqtri 211=1
101 98 100 eqtrdi k=12k1=1
102 97 101 oveq12d k=12k2k1=21
103 52 div1i 21=2
104 102 103 eqtrdi k=12k2k1=2
105 97 oveq1d k=12k+1=2+1
106 105 40 eqtrdi k=12k+1=3
107 97 106 oveq12d k=12k2k+1=23
108 104 107 oveq12d k=12k2k12k2k+1=223
109 ovex 223V
110 108 1 109 fvmpt 1F1=223
111 95 110 ax-mp F1=223
112 94 111 eqtr2i 223=seq1×F1
113 112 oveq2i π2223=π2seq1×F1
114 52 88 mulcli 223
115 111 114 eqeltri F1
116 94 115 eqeltri seq1×F1
117 52 81 63 87 divne0i 230
118 52 88 63 117 mulne0i 2230
119 112 118 eqnetrri seq1×F10
120 64 116 119 divreci π2seq1×F1=π21seq1×F1
121 113 120 eqtri π2223=π21seq1×F1
122 43 91 121 3eqtri I21I21+1=π21seq1×F1
123 oveq2 I2yI2y+1=π21seq1×Fy2y+12y+12y+12y+3I2yI2y+1=2y+12y+12y+12y+3π21seq1×Fy
124 123 adantl yI2yI2y+1=π21seq1×Fy2y+12y+12y+12y+3I2yI2y+1=2y+12y+12y+12y+3π21seq1×Fy
125 2cnd y2
126 nncn yy
127 58 a1i y1
128 125 126 127 adddid y2y+1=2y+21
129 125 mulridd y21=2
130 129 oveq2d y2y+21=2y+2
131 128 130 eqtrd y2y+1=2y+2
132 131 oveq1d y2y+11=2y+2-1
133 125 126 mulcld y2y
134 133 125 127 addsubassd y2y+2-1=2y+2-1
135 50 a1i y21=1
136 135 oveq2d y2y+2-1=2y+1
137 132 134 136 3eqtrd y2y+11=2y+1
138 137 oveq1d y2y+112y+1=2y+12y+1
139 138 oveq1d y2y+112y+1I2y=2y+12y+1I2y
140 78 a1i y31=2
141 140 oveq2d y2y+3-1=2y+2
142 81 a1i y3
143 133 142 127 addsubassd y2y+3-1=2y+3-1
144 141 143 131 3eqtr4d y2y+3-1=2y+1
145 144 oveq1d y2y+3-12y+3=2y+12y+3
146 145 oveq1d y2y+3-12y+3I2y+3-2=2y+12y+3I2y+3-2
147 139 146 oveq12d y2y+112y+1I2y2y+3-12y+3I2y+3-2=2y+12y+1I2y2y+12y+3I2y+3-2
148 44 a1i y2
149 nnz yy
150 149 peano2zd yy+1
151 148 150 zmulcld y2y+1
152 69 a1i y2
153 nnre yy
154 1red y1
155 153 154 readdcld yy+1
156 0le2 02
157 156 a1i y02
158 nnnn0 yy0
159 158 nn0ge0d y0y
160 154 153 addge02d y0y1y+1
161 159 160 mpbid y1y+1
162 152 155 157 161 lemulge11d y22y+1
163 44 eluz1i 2y+122y+122y+1
164 151 162 163 sylanbrc y2y+12
165 2 164 itgsinexp yI2y+1=2y+112y+1I2y+12
166 131 oveq1d y2y+12=2y+2-2
167 133 125 pncand y2y+2-2=2y
168 166 167 eqtrd y2y+12=2y
169 168 fveq2d yI2y+12=I2y
170 169 oveq2d y2y+112y+1I2y+12=2y+112y+1I2y
171 165 170 eqtrd yI2y+1=2y+112y+1I2y
172 131 oveq1d y2y+1+1=2y+2+1
173 133 125 127 addassd y2y+2+1=2y+2+1
174 40 a1i y2+1=3
175 174 oveq2d y2y+2+1=2y+3
176 172 173 175 3eqtrd y2y+1+1=2y+3
177 176 fveq2d yI2y+1+1=I2y+3
178 148 149 zmulcld y2y
179 68 a1i y3
180 178 179 zaddcld y2y+3
181 152 153 remulcld y2y
182 70 a1i y3
183 181 182 readdcld y2y+3
184 nnge1 y1y
185 152 153 157 184 lemulge11d y22y
186 0re 0
187 3pos 0<3
188 186 70 187 ltleii 03
189 181 182 addge01d y032y2y+3
190 188 189 mpbii y2y2y+3
191 152 181 183 185 190 letrd y22y+3
192 44 eluz1i 2y+322y+322y+3
193 180 191 192 sylanbrc y2y+32
194 2 193 itgsinexp yI2y+3=2y+3-12y+3I2y+3-2
195 177 194 eqtrd yI2y+1+1=2y+3-12y+3I2y+3-2
196 171 195 oveq12d yI2y+1I2y+1+1=2y+112y+1I2y2y+3-12y+3I2y+3-2
197 133 127 addcld y2y+1
198 126 127 addcld yy+1
199 125 198 mulcld y2y+1
200 63 a1i y20
201 peano2nn yy+1
202 201 nnne0d yy+10
203 125 198 200 202 mulne0d y2y+10
204 197 199 203 divcld y2y+12y+1
205 2nn0 20
206 205 a1i y20
207 206 158 nn0mulcld y2y0
208 2 wallispilem3 2y0I2y+
209 208 rpcnd 2y0I2y
210 207 209 syl yI2y
211 133 142 addcld y2y+3
212 0red y0
213 2pos 0<2
214 213 a1i y0<2
215 nngt0 y0<y
216 152 153 214 215 mulgt0d y0<2y
217 182 187 jctir y30<3
218 elrp 3+30<3
219 217 218 sylibr y3+
220 181 219 ltaddrpd y2y<2y+3
221 212 181 183 216 220 lttrd y0<2y+3
222 221 gt0ne0d y2y+30
223 199 211 222 divcld y2y+12y+3
224 199 211 203 222 divne0d y2y+12y+30
225 180 148 zsubcld y2y+3-2
226 183 152 subge0d y02y+3-222y+3
227 191 226 mpbird y02y+3-2
228 elnn0z 2y+3-202y+3-202y+3-2
229 225 227 228 sylanbrc y2y+3-20
230 2 wallispilem3 2y+3-20I2y+3-2+
231 229 230 syl yI2y+3-2+
232 231 rpcnne0d yI2y+3-2I2y+3-20
233 223 224 232 jca31 y2y+12y+32y+12y+30I2y+3-2I2y+3-20
234 divmuldiv 2y+12y+1I2y2y+12y+32y+12y+30I2y+3-2I2y+3-202y+12y+12y+12y+3I2yI2y+3-2=2y+12y+1I2y2y+12y+3I2y+3-2
235 204 210 233 234 syl21anc y2y+12y+12y+12y+3I2yI2y+3-2=2y+12y+1I2y2y+12y+3I2y+3-2
236 147 196 235 3eqtr4d yI2y+1I2y+1+1=2y+12y+12y+12y+3I2yI2y+3-2
237 133 142 125 addsubassd y2y+3-2=2y+3-2
238 82 a1i y32=1
239 238 oveq2d y2y+3-2=2y+1
240 237 239 eqtrd y2y+3-2=2y+1
241 240 fveq2d yI2y+3-2=I2y+1
242 241 oveq2d yI2yI2y+3-2=I2yI2y+1
243 242 oveq2d y2y+12y+12y+12y+3I2yI2y+3-2=2y+12y+12y+12y+3I2yI2y+1
244 236 243 eqtrd yI2y+1I2y+1+1=2y+12y+12y+12y+3I2yI2y+1
245 244 adantr yI2yI2y+1=π21seq1×FyI2y+1I2y+1+1=2y+12y+12y+12y+3I2yI2y+1
246 elnnuz yy1
247 246 biimpi yy1
248 seqp1 y1seq1×Fy+1=seq1×FyFy+1
249 247 248 syl yseq1×Fy+1=seq1×FyFy+1
250 oveq2 k=y+12k=2y+1
251 250 oveq1d k=y+12k1=2y+11
252 250 251 oveq12d k=y+12k2k1=2y+12y+11
253 250 oveq1d k=y+12k+1=2y+1+1
254 250 253 oveq12d k=y+12k2k+1=2y+12y+1+1
255 252 254 oveq12d k=y+12k2k12k2k+1=2y+12y+112y+12y+1+1
256 152 155 remulcld y2y+1
257 256 154 resubcld y2y+11
258 1lt2 1<2
259 258 a1i y1<2
260 nnrp yy+
261 154 260 ltaddrp2d y1<y+1
262 152 155 259 261 mulgt1d y1<2y+1
263 154 262 gtned y2y+11
264 199 127 263 subne0d y2y+110
265 256 257 264 redivcld y2y+12y+11
266 176 183 eqeltrd y2y+1+1
267 176 222 eqnetrd y2y+1+10
268 256 266 267 redivcld y2y+12y+1+1
269 265 268 remulcld y2y+12y+112y+12y+1+1
270 1 255 201 269 fvmptd3 yFy+1=2y+12y+112y+12y+1+1
271 270 oveq2d yseq1×FyFy+1=seq1×Fy2y+12y+112y+12y+1+1
272 249 271 eqtrd yseq1×Fy+1=seq1×Fy2y+12y+112y+12y+1+1
273 272 oveq2d y1seq1×Fy+1=1seq1×Fy2y+12y+112y+12y+1+1
274 273 oveq2d yπ21seq1×Fy+1=π21seq1×Fy2y+12y+112y+12y+1+1
275 137 oveq2d y2y+12y+11=2y+12y+1
276 176 oveq2d y2y+12y+1+1=2y+12y+3
277 275 276 oveq12d y2y+12y+112y+12y+1+1=2y+12y+12y+12y+3
278 277 oveq2d yseq1×Fy2y+12y+112y+12y+1+1=seq1×Fy2y+12y+12y+12y+3
279 278 oveq2d y1seq1×Fy2y+12y+112y+12y+1+1=1seq1×Fy2y+12y+12y+12y+3
280 279 oveq2d yπ21seq1×Fy2y+12y+112y+12y+1+1=π21seq1×Fy2y+12y+12y+12y+3
281 elfznn w1yw
282 281 adantl yw1yw
283 oveq2 k=w2k=2w
284 283 oveq1d k=w2k1=2w1
285 283 284 oveq12d k=w2k2k1=2w2w1
286 283 oveq1d k=w2k+1=2w+1
287 283 286 oveq12d k=w2k2k+1=2w2w+1
288 285 287 oveq12d k=w2k2k12k2k+1=2w2w12w2w+1
289 id ww
290 2rp 2+
291 290 a1i w2+
292 nnrp ww+
293 291 292 rpmulcld w2w+
294 69 a1i w2
295 nnre ww
296 294 295 remulcld w2w
297 1red w1
298 296 297 resubcld w2w1
299 nnge1 w1w
300 nncn ww
301 300 mullidd w1w=w
302 297 294 292 ltmul1d w1<21w<2w
303 258 302 mpbii w1w<2w
304 301 303 eqbrtrrd ww<2w
305 297 295 296 299 304 lelttrd w1<2w
306 297 296 posdifd w1<2w0<2w1
307 305 306 mpbid w0<2w1
308 298 307 elrpd w2w1+
309 293 308 rpdivcld w2w2w1+
310 156 a1i w02
311 292 rpge0d w0w
312 294 295 310 311 mulge0d w02w
313 296 312 ge0p1rpd w2w+1+
314 293 313 rpdivcld w2w2w+1+
315 309 314 rpmulcld w2w2w12w2w+1+
316 1 288 289 315 fvmptd3 wFw=2w2w12w2w+1
317 316 315 eqeltrd wFw+
318 282 317 syl yw1yFw+
319 rpmulcl w+z+wz+
320 319 adantl yw+z+wz+
321 247 318 320 seqcl yseq1×Fy+
322 321 rpcnne0d yseq1×Fyseq1×Fy0
323 290 a1i y2+
324 153 159 ge0p1rpd yy+1+
325 323 324 rpmulcld y2y+1+
326 152 153 157 159 mulge0d y02y
327 181 326 ge0p1rpd y2y+1+
328 325 327 rpdivcld y2y+12y+1+
329 323 260 rpmulcld y2y+
330 329 219 rpaddcld y2y+3+
331 325 330 rpdivcld y2y+12y+3+
332 328 331 rpmulcld y2y+12y+12y+12y+3+
333 332 rpcnne0d y2y+12y+12y+12y+32y+12y+12y+12y+30
334 divdiv1 1seq1×Fyseq1×Fy02y+12y+12y+12y+32y+12y+12y+12y+301seq1×Fy2y+12y+12y+12y+3=1seq1×Fy2y+12y+12y+12y+3
335 127 322 333 334 syl3anc y1seq1×Fy2y+12y+12y+12y+3=1seq1×Fy2y+12y+12y+12y+3
336 335 eqcomd y1seq1×Fy2y+12y+12y+12y+3=1seq1×Fy2y+12y+12y+12y+3
337 336 oveq2d yπ21seq1×Fy2y+12y+12y+12y+3=π21seq1×Fy2y+12y+12y+12y+3
338 64 a1i yπ2
339 321 rpcnd yseq1×Fy
340 321 rpne0d yseq1×Fy0
341 339 340 reccld y1seq1×Fy
342 332 rpcnd y2y+12y+12y+12y+3
343 332 rpne0d y2y+12y+12y+12y+30
344 338 341 342 343 divassd yπ21seq1×Fy2y+12y+12y+12y+3=π21seq1×Fy2y+12y+12y+12y+3
345 137 264 eqnetrrd y2y+10
346 199 197 199 211 345 222 divmuldivd y2y+12y+12y+12y+3=2y+12y+12y+12y+3
347 346 oveq2d yπ21seq1×Fy2y+12y+12y+12y+3=π21seq1×Fy2y+12y+12y+12y+3
348 338 341 mulcld yπ21seq1×Fy
349 199 199 mulcld y2y+12y+1
350 197 211 mulcld y2y+12y+3
351 199 199 203 203 mulne0d y2y+12y+10
352 197 211 345 222 mulne0d y2y+12y+30
353 348 349 350 351 352 divdiv2d yπ21seq1×Fy2y+12y+12y+12y+3=π21seq1×Fy2y+12y+32y+12y+1
354 348 350 349 351 divassd yπ21seq1×Fy2y+12y+32y+12y+1=π21seq1×Fy2y+12y+32y+12y+1
355 353 354 eqtrd yπ21seq1×Fy2y+12y+12y+12y+3=π21seq1×Fy2y+12y+32y+12y+1
356 197 199 199 211 203 222 203 divdivdivd y2y+12y+12y+12y+3=2y+12y+32y+12y+1
357 356 eqcomd y2y+12y+32y+12y+1=2y+12y+12y+12y+3
358 357 oveq2d yπ21seq1×Fy2y+12y+32y+12y+1=π21seq1×Fy2y+12y+12y+12y+3
359 347 355 358 3eqtrd yπ21seq1×Fy2y+12y+12y+12y+3=π21seq1×Fy2y+12y+12y+12y+3
360 337 344 359 3eqtr2d yπ21seq1×Fy2y+12y+12y+12y+3=π21seq1×Fy2y+12y+12y+12y+3
361 60 a1i yπ
362 361 halfcld yπ2
363 362 341 mulcld yπ21seq1×Fy
364 204 223 224 divcld y2y+12y+12y+12y+3
365 363 364 mulcomd yπ21seq1×Fy2y+12y+12y+12y+3=2y+12y+12y+12y+3π21seq1×Fy
366 280 360 365 3eqtrd yπ21seq1×Fy2y+12y+112y+12y+1+1=2y+12y+12y+12y+3π21seq1×Fy
367 274 366 eqtrd yπ21seq1×Fy+1=2y+12y+12y+12y+3π21seq1×Fy
368 367 adantr yI2yI2y+1=π21seq1×Fyπ21seq1×Fy+1=2y+12y+12y+12y+3π21seq1×Fy
369 124 245 368 3eqtr4d yI2yI2y+1=π21seq1×FyI2y+1I2y+1+1=π21seq1×Fy+1
370 369 ex yI2yI2y+1=π21seq1×FyI2y+1I2y+1+1=π21seq1×Fy+1
371 12 20 28 36 122 370 nnind nI2nI2n+1=π21seq1×Fn
372 371 mpteq2ia nI2nI2n+1=nπ21seq1×Fn
373 372 3 4 3eqtr4i G=H