Metamath Proof Explorer


Theorem chfacfpmmulgsum

Description: Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A=NMatR
cayhamlem1.b B=BaseA
cayhamlem1.p P=Poly1R
cayhamlem1.y Y=NMatP
cayhamlem1.r ×˙=Y
cayhamlem1.s -˙=-Y
cayhamlem1.0 0˙=0Y
cayhamlem1.t T=NmatToPolyMatR
cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
cayhamlem1.e ×˙=mulGrpY
chfacfpmmulgsum.p +˙=+Y
Assertion chfacfpmmulgsum NFinRCRingMBsbB0sYi0i×˙TM×˙Gi=Yi=1si×˙TM×˙Tbi1-˙TM×˙Tbi+˙s+1×˙TM×˙Tbs-˙TM×˙Tb0

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A=NMatR
2 cayhamlem1.b B=BaseA
3 cayhamlem1.p P=Poly1R
4 cayhamlem1.y Y=NMatP
5 cayhamlem1.r ×˙=Y
6 cayhamlem1.s -˙=-Y
7 cayhamlem1.0 0˙=0Y
8 cayhamlem1.t T=NmatToPolyMatR
9 cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 cayhamlem1.e ×˙=mulGrpY
11 chfacfpmmulgsum.p +˙=+Y
12 eqid BaseY=BaseY
13 crngring RCRingRRing
14 13 anim2i NFinRCRingNFinRRing
15 14 3adant3 NFinRCRingMBNFinRRing
16 3 4 pmatring NFinRRingYRing
17 15 16 syl NFinRCRingMBYRing
18 ringcmn YRingYCMnd
19 17 18 syl NFinRCRingMBYCMnd
20 19 adantr NFinRCRingMBsbB0sYCMnd
21 nn0ex 0V
22 21 a1i NFinRCRingMBsbB0s0V
23 simpll NFinRCRingMBsbB0si0NFinRCRingMB
24 simplr NFinRCRingMBsbB0si0sbB0s
25 simpr NFinRCRingMBsbB0si0i0
26 23 24 25 3jca NFinRCRingMBsbB0si0NFinRCRingMBsbB0si0
27 1 2 3 4 5 6 7 8 9 10 chfacfpmmulcl NFinRCRingMBsbB0si0i×˙TM×˙GiBaseY
28 26 27 syl NFinRCRingMBsbB0si0i×˙TM×˙GiBaseY
29 1 2 3 4 5 6 7 8 9 10 chfacfpmmulfsupp NFinRCRingMBsbB0sfinSupp0˙i0i×˙TM×˙Gi
30 nn0disj 0s+1s+1+1=
31 30 a1i NFinRCRingMBsbB0s0s+1s+1+1=
32 nnnn0 ss0
33 peano2nn0 s0s+10
34 32 33 syl ss+10
35 nn0split s+100=0s+1s+1+1
36 34 35 syl s0=0s+1s+1+1
37 36 ad2antrl NFinRCRingMBsbB0s0=0s+1s+1+1
38 12 7 11 20 22 28 29 31 37 gsumsplit2 NFinRCRingMBsbB0sYi0i×˙TM×˙Gi=Yi=0s+1i×˙TM×˙Gi+˙Yis+1+1i×˙TM×˙Gi
39 simpll NFinRCRingMBsbB0sis+1+1NFinRCRingMB
40 simplr NFinRCRingMBsbB0sis+1+1sbB0s
41 nncn ss
42 add1p1 ss+1+1=s+2
43 41 42 syl ss+1+1=s+2
44 43 ad2antrl NFinRCRingMBsbB0ss+1+1=s+2
45 44 fveq2d NFinRCRingMBsbB0ss+1+1=s+2
46 45 eleq2d NFinRCRingMBsbB0sis+1+1is+2
47 46 biimpa NFinRCRingMBsbB0sis+1+1is+2
48 1 2 3 4 5 6 7 8 9 10 chfacfpmmul0 NFinRCRingMBsbB0sis+2i×˙TM×˙Gi=0˙
49 39 40 47 48 syl3anc NFinRCRingMBsbB0sis+1+1i×˙TM×˙Gi=0˙
50 49 mpteq2dva NFinRCRingMBsbB0sis+1+1i×˙TM×˙Gi=is+1+10˙
51 50 oveq2d NFinRCRingMBsbB0sYis+1+1i×˙TM×˙Gi=Yis+1+10˙
52 13 16 sylan2 NFinRCRingYRing
53 ringmnd YRingYMnd
54 52 53 syl NFinRCRingYMnd
55 54 3adant3 NFinRCRingMBYMnd
56 fvex s+1+1V
57 55 56 jctir NFinRCRingMBYMnds+1+1V
58 57 adantr NFinRCRingMBsbB0sYMnds+1+1V
59 7 gsumz YMnds+1+1VYis+1+10˙=0˙
60 58 59 syl NFinRCRingMBsbB0sYis+1+10˙=0˙
61 51 60 eqtrd NFinRCRingMBsbB0sYis+1+1i×˙TM×˙Gi=0˙
62 61 oveq2d NFinRCRingMBsbB0sYi=0s+1i×˙TM×˙Gi+˙Yis+1+1i×˙TM×˙Gi=Yi=0s+1i×˙TM×˙Gi+˙0˙
63 fzfid NFinRCRingMBsbB0s0s+1Fin
64 elfznn0 i0s+1i0
65 64 26 sylan2 NFinRCRingMBsbB0si0s+1NFinRCRingMBsbB0si0
66 65 27 syl NFinRCRingMBsbB0si0s+1i×˙TM×˙GiBaseY
67 66 ralrimiva NFinRCRingMBsbB0si0s+1i×˙TM×˙GiBaseY
68 12 20 63 67 gsummptcl NFinRCRingMBsbB0sYi=0s+1i×˙TM×˙GiBaseY
69 12 11 7 mndrid YMndYi=0s+1i×˙TM×˙GiBaseYYi=0s+1i×˙TM×˙Gi+˙0˙=Yi=0s+1i×˙TM×˙Gi
70 55 68 69 syl2an2r NFinRCRingMBsbB0sYi=0s+1i×˙TM×˙Gi+˙0˙=Yi=0s+1i×˙TM×˙Gi
71 62 70 eqtrd NFinRCRingMBsbB0sYi=0s+1i×˙TM×˙Gi+˙Yis+1+1i×˙TM×˙Gi=Yi=0s+1i×˙TM×˙Gi
72 32 ad2antrl NFinRCRingMBsbB0ss0
73 12 11 20 72 66 gsummptfzsplit NFinRCRingMBsbB0sYi=0s+1i×˙TM×˙Gi=Yi=0si×˙TM×˙Gi+˙Yis+1i×˙TM×˙Gi
74 elfznn0 i0si0
75 74 28 sylan2 NFinRCRingMBsbB0si0si×˙TM×˙GiBaseY
76 12 11 20 72 75 gsummptfzsplitl NFinRCRingMBsbB0sYi=0si×˙TM×˙Gi=Yi=1si×˙TM×˙Gi+˙Yi0i×˙TM×˙Gi
77 55 adantr NFinRCRingMBsbB0sYMnd
78 0nn0 00
79 78 a1i NFinRCRingMBsbB0s00
80 1 2 3 4 5 6 7 8 9 10 chfacfpmmulcl NFinRCRingMBsbB0s000×˙TM×˙G0BaseY
81 79 80 mpd3an3 NFinRCRingMBsbB0s0×˙TM×˙G0BaseY
82 oveq1 i=0i×˙TM=0×˙TM
83 fveq2 i=0Gi=G0
84 82 83 oveq12d i=0i×˙TM×˙Gi=0×˙TM×˙G0
85 12 84 gsumsn YMnd000×˙TM×˙G0BaseYYi0i×˙TM×˙Gi=0×˙TM×˙G0
86 77 79 81 85 syl3anc NFinRCRingMBsbB0sYi0i×˙TM×˙Gi=0×˙TM×˙G0
87 86 oveq2d NFinRCRingMBsbB0sYi=1si×˙TM×˙Gi+˙Yi0i×˙TM×˙Gi=Yi=1si×˙TM×˙Gi+˙0×˙TM×˙G0
88 76 87 eqtrd NFinRCRingMBsbB0sYi=0si×˙TM×˙Gi=Yi=1si×˙TM×˙Gi+˙0×˙TM×˙G0
89 ovexd NFinRCRingMBsbB0ss+1V
90 1nn0 10
91 90 a1i NFinRCRingMBsbB0s10
92 72 91 nn0addcld NFinRCRingMBsbB0ss+10
93 1 2 3 4 5 6 7 8 9 10 chfacfpmmulcl NFinRCRingMBsbB0ss+10s+1×˙TM×˙Gs+1BaseY
94 92 93 mpd3an3 NFinRCRingMBsbB0ss+1×˙TM×˙Gs+1BaseY
95 oveq1 i=s+1i×˙TM=s+1×˙TM
96 fveq2 i=s+1Gi=Gs+1
97 95 96 oveq12d i=s+1i×˙TM×˙Gi=s+1×˙TM×˙Gs+1
98 12 97 gsumsn YMnds+1Vs+1×˙TM×˙Gs+1BaseYYis+1i×˙TM×˙Gi=s+1×˙TM×˙Gs+1
99 77 89 94 98 syl3anc NFinRCRingMBsbB0sYis+1i×˙TM×˙Gi=s+1×˙TM×˙Gs+1
100 88 99 oveq12d NFinRCRingMBsbB0sYi=0si×˙TM×˙Gi+˙Yis+1i×˙TM×˙Gi=Yi=1si×˙TM×˙Gi+˙0×˙TM×˙G0+˙s+1×˙TM×˙Gs+1
101 fzfid NFinRCRingMBsbB0s1sFin
102 simpll NFinRCRingMBsbB0si1sNFinRCRingMB
103 simplr NFinRCRingMBsbB0si1ssbB0s
104 elfznn i1si
105 104 nnnn0d i1si0
106 105 adantl NFinRCRingMBsbB0si1si0
107 102 103 106 27 syl3anc NFinRCRingMBsbB0si1si×˙TM×˙GiBaseY
108 107 ralrimiva NFinRCRingMBsbB0si1si×˙TM×˙GiBaseY
109 12 20 101 108 gsummptcl NFinRCRingMBsbB0sYi=1si×˙TM×˙GiBaseY
110 12 11 mndass YMndYi=1si×˙TM×˙GiBaseY0×˙TM×˙G0BaseYs+1×˙TM×˙Gs+1BaseYYi=1si×˙TM×˙Gi+˙0×˙TM×˙G0+˙s+1×˙TM×˙Gs+1=Yi=1si×˙TM×˙Gi+˙0×˙TM×˙G0+˙s+1×˙TM×˙Gs+1
111 77 109 81 94 110 syl13anc NFinRCRingMBsbB0sYi=1si×˙TM×˙Gi+˙0×˙TM×˙G0+˙s+1×˙TM×˙Gs+1=Yi=1si×˙TM×˙Gi+˙0×˙TM×˙G0+˙s+1×˙TM×˙Gs+1
112 104 nnne0d i1si0
113 112 ad2antlr NFinRCRingMBsbB0si1sn=ii0
114 neeq1 n=in0i0
115 114 adantl NFinRCRingMBsbB0si1sn=in0i0
116 113 115 mpbird NFinRCRingMBsbB0si1sn=in0
117 eqneqall n=0n00˙=Tbi1
118 116 117 mpan9 NFinRCRingMBsbB0si1sn=in=00˙=Tbi1
119 simplr NFinRCRingMBsbB0si1sn=in=0n=i
120 eqeq1 0=n0=in=i
121 120 eqcoms n=00=in=i
122 121 adantl NFinRCRingMBsbB0si1sn=in=00=in=i
123 119 122 mpbird NFinRCRingMBsbB0si1sn=in=00=i
124 123 fveq2d NFinRCRingMBsbB0si1sn=in=0b0=bi
125 124 fveq2d NFinRCRingMBsbB0si1sn=in=0Tb0=Tbi
126 125 oveq2d NFinRCRingMBsbB0si1sn=in=0TM×˙Tb0=TM×˙Tbi
127 118 126 oveq12d NFinRCRingMBsbB0si1sn=in=00˙-˙TM×˙Tb0=Tbi1-˙TM×˙Tbi
128 elfz2 i1s1si1iis
129 zleltp1 isisi<s+1
130 129 ancoms siisi<s+1
131 130 3adant1 1siisi<s+1
132 131 biimpcd is1sii<s+1
133 132 adantl 1iis1sii<s+1
134 133 impcom 1si1iisi<s+1
135 134 orcd 1si1iisi<s+1s+1<i
136 zre ss
137 1red s1
138 136 137 readdcld ss+1
139 zre ii
140 138 139 anim12ci siis+1
141 140 3adant1 1siis+1
142 lttri2 is+1is+1i<s+1s+1<i
143 141 142 syl 1siis+1i<s+1s+1<i
144 143 adantr 1si1iisis+1i<s+1s+1<i
145 135 144 mpbird 1si1iisis+1
146 128 145 sylbi i1sis+1
147 146 ad2antlr NFinRCRingMBsbB0si1sn=iis+1
148 neeq1 n=ins+1is+1
149 148 adantl NFinRCRingMBsbB0si1sn=ins+1is+1
150 147 149 mpbird NFinRCRingMBsbB0si1sn=ins+1
151 150 adantr NFinRCRingMBsbB0si1sn=i¬n=0ns+1
152 151 neneqd NFinRCRingMBsbB0si1sn=i¬n=0¬n=s+1
153 152 pm2.21d NFinRCRingMBsbB0si1sn=i¬n=0n=s+1Tbs=Tbi1-˙TM×˙Tbi
154 153 imp NFinRCRingMBsbB0si1sn=i¬n=0n=s+1Tbs=Tbi1-˙TM×˙Tbi
155 104 nnred i1si
156 eleq1w n=ini
157 155 156 syl5ibrcom i1sn=in
158 157 adantl NFinRCRingMBsbB0si1sn=in
159 158 imp NFinRCRingMBsbB0si1sn=in
160 72 nn0red NFinRCRingMBsbB0ss
161 160 ad2antrr NFinRCRingMBsbB0si1sn=is
162 1red NFinRCRingMBsbB0si1sn=i1
163 161 162 readdcld NFinRCRingMBsbB0si1sn=is+1
164 128 134 sylbi i1si<s+1
165 164 ad2antlr NFinRCRingMBsbB0si1sn=ii<s+1
166 breq1 n=in<s+1i<s+1
167 166 adantl NFinRCRingMBsbB0si1sn=in<s+1i<s+1
168 165 167 mpbird NFinRCRingMBsbB0si1sn=in<s+1
169 159 163 168 ltnsymd NFinRCRingMBsbB0si1sn=i¬s+1<n
170 169 pm2.21d NFinRCRingMBsbB0si1sn=is+1<n0˙=Tbi1-˙TM×˙Tbi
171 170 ad2antrr NFinRCRingMBsbB0si1sn=i¬n=0¬n=s+1s+1<n0˙=Tbi1-˙TM×˙Tbi
172 171 imp NFinRCRingMBsbB0si1sn=i¬n=0¬n=s+1s+1<n0˙=Tbi1-˙TM×˙Tbi
173 simp-4r NFinRCRingMBsbB0si1sn=i¬n=0¬n=s+1¬s+1<nn=i
174 173 fvoveq1d NFinRCRingMBsbB0si1sn=i¬n=0¬n=s+1¬s+1<nbn1=bi1
175 174 fveq2d NFinRCRingMBsbB0si1sn=i¬n=0¬n=s+1¬s+1<nTbn1=Tbi1
176 173 fveq2d NFinRCRingMBsbB0si1sn=i¬n=0¬n=s+1¬s+1<nbn=bi
177 176 fveq2d NFinRCRingMBsbB0si1sn=i¬n=0¬n=s+1¬s+1<nTbn=Tbi
178 177 oveq2d NFinRCRingMBsbB0si1sn=i¬n=0¬n=s+1¬s+1<nTM×˙Tbn=TM×˙Tbi
179 175 178 oveq12d NFinRCRingMBsbB0si1sn=i¬n=0¬n=s+1¬s+1<nTbn1-˙TM×˙Tbn=Tbi1-˙TM×˙Tbi
180 172 179 ifeqda NFinRCRingMBsbB0si1sn=i¬n=0¬n=s+1ifs+1<n0˙Tbn1-˙TM×˙Tbn=Tbi1-˙TM×˙Tbi
181 154 180 ifeqda NFinRCRingMBsbB0si1sn=i¬n=0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=Tbi1-˙TM×˙Tbi
182 127 181 ifeqda NFinRCRingMBsbB0si1sn=iifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=Tbi1-˙TM×˙Tbi
183 ovexd NFinRCRingMBsbB0si1sTbi1-˙TM×˙TbiV
184 9 182 106 183 fvmptd2 NFinRCRingMBsbB0si1sGi=Tbi1-˙TM×˙Tbi
185 184 oveq2d NFinRCRingMBsbB0si1si×˙TM×˙Gi=i×˙TM×˙Tbi1-˙TM×˙Tbi
186 185 mpteq2dva NFinRCRingMBsbB0si1si×˙TM×˙Gi=i1si×˙TM×˙Tbi1-˙TM×˙Tbi
187 186 oveq2d NFinRCRingMBsbB0sYi=1si×˙TM×˙Gi=Yi=1si×˙TM×˙Tbi1-˙TM×˙Tbi
188 nn0p1gt0 s00<s+1
189 0red s00
190 ltne 00<s+1s+10
191 189 190 sylan s00<s+1s+10
192 neeq1 n=s+1n0s+10
193 191 192 syl5ibrcom s00<s+1n=s+1n0
194 32 188 193 syl2anc2 sn=s+1n0
195 194 ad2antrl NFinRCRingMBsbB0sn=s+1n0
196 195 imp NFinRCRingMBsbB0sn=s+1n0
197 eqneqall n=0n00˙-˙TM×˙Tb0=Tbs
198 196 197 mpan9 NFinRCRingMBsbB0sn=s+1n=00˙-˙TM×˙Tb0=Tbs
199 iftrue n=s+1ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=Tbs
200 199 ad2antlr NFinRCRingMBsbB0sn=s+1¬n=0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=Tbs
201 198 200 ifeqda NFinRCRingMBsbB0sn=s+1ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=Tbs
202 72 33 syl NFinRCRingMBsbB0ss+10
203 fvexd NFinRCRingMBsbB0sTbsV
204 9 201 202 203 fvmptd2 NFinRCRingMBsbB0sGs+1=Tbs
205 204 oveq2d NFinRCRingMBsbB0ss+1×˙TM×˙Gs+1=s+1×˙TM×˙Tbs
206 8 1 2 3 4 mat2pmatbas NFinRRingMBTMBaseY
207 13 206 syl3an2 NFinRCRingMBTMBaseY
208 eqid mulGrpY=mulGrpY
209 208 12 mgpbas BaseY=BasemulGrpY
210 eqid 0mulGrpY=0mulGrpY
211 209 210 10 mulg0 TMBaseY0×˙TM=0mulGrpY
212 207 211 syl NFinRCRingMB0×˙TM=0mulGrpY
213 eqid 1Y=1Y
214 208 213 ringidval 1Y=0mulGrpY
215 212 214 eqtr4di NFinRCRingMB0×˙TM=1Y
216 215 adantr NFinRCRingMBsbB0s0×˙TM=1Y
217 216 oveq1d NFinRCRingMBsbB0s0×˙TM×˙G0=1Y×˙G0
218 52 3adant3 NFinRCRingMBYRing
219 1 2 3 4 5 6 7 8 9 chfacfisf NFinRRingMBsbB0sG:0BaseY
220 13 219 syl3anl2 NFinRCRingMBsbB0sG:0BaseY
221 220 79 ffvelcdmd NFinRCRingMBsbB0sG0BaseY
222 12 5 213 ringlidm YRingG0BaseY1Y×˙G0=G0
223 218 221 222 syl2an2r NFinRCRingMBsbB0s1Y×˙G0=G0
224 iftrue n=0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=0˙-˙TM×˙Tb0
225 ovexd NFinRCRingMBsbB0s0˙-˙TM×˙Tb0V
226 9 224 79 225 fvmptd3 NFinRCRingMBsbB0sG0=0˙-˙TM×˙Tb0
227 217 223 226 3eqtrd NFinRCRingMBsbB0s0×˙TM×˙G0=0˙-˙TM×˙Tb0
228 205 227 oveq12d NFinRCRingMBsbB0ss+1×˙TM×˙Gs+1+˙0×˙TM×˙G0=s+1×˙TM×˙Tbs+˙0˙-˙TM×˙Tb0
229 12 11 cmncom YCMnd0×˙TM×˙G0BaseYs+1×˙TM×˙Gs+1BaseY0×˙TM×˙G0+˙s+1×˙TM×˙Gs+1=s+1×˙TM×˙Gs+1+˙0×˙TM×˙G0
230 20 81 94 229 syl3anc NFinRCRingMBsbB0s0×˙TM×˙G0+˙s+1×˙TM×˙Gs+1=s+1×˙TM×˙Gs+1+˙0×˙TM×˙G0
231 ringgrp YRingYGrp
232 17 231 syl NFinRCRingMBYGrp
233 232 adantr NFinRCRingMBsbB0sYGrp
234 205 94 eqeltrrd NFinRCRingMBsbB0ss+1×˙TM×˙TbsBaseY
235 17 adantr NFinRCRingMBsbB0sYRing
236 207 adantr NFinRCRingMBsbB0sTMBaseY
237 simpl1 NFinRCRingMBsbB0sNFin
238 13 3ad2ant2 NFinRCRingMBRRing
239 238 adantr NFinRCRingMBsbB0sRRing
240 elmapi bB0sb:0sB
241 240 adantl sbB0sb:0sB
242 241 adantl NFinRCRingMBsbB0sb:0sB
243 0elfz s000s
244 32 243 syl s00s
245 244 ad2antrl NFinRCRingMBsbB0s00s
246 242 245 ffvelcdmd NFinRCRingMBsbB0sb0B
247 8 1 2 3 4 mat2pmatbas NFinRRingb0BTb0BaseY
248 237 239 246 247 syl3anc NFinRCRingMBsbB0sTb0BaseY
249 12 5 ringcl YRingTMBaseYTb0BaseYTM×˙Tb0BaseY
250 235 236 248 249 syl3anc NFinRCRingMBsbB0sTM×˙Tb0BaseY
251 12 7 6 11 grpsubadd0sub YGrps+1×˙TM×˙TbsBaseYTM×˙Tb0BaseYs+1×˙TM×˙Tbs-˙TM×˙Tb0=s+1×˙TM×˙Tbs+˙0˙-˙TM×˙Tb0
252 233 234 250 251 syl3anc NFinRCRingMBsbB0ss+1×˙TM×˙Tbs-˙TM×˙Tb0=s+1×˙TM×˙Tbs+˙0˙-˙TM×˙Tb0
253 228 230 252 3eqtr4d NFinRCRingMBsbB0s0×˙TM×˙G0+˙s+1×˙TM×˙Gs+1=s+1×˙TM×˙Tbs-˙TM×˙Tb0
254 187 253 oveq12d NFinRCRingMBsbB0sYi=1si×˙TM×˙Gi+˙0×˙TM×˙G0+˙s+1×˙TM×˙Gs+1=Yi=1si×˙TM×˙Tbi1-˙TM×˙Tbi+˙s+1×˙TM×˙Tbs-˙TM×˙Tb0
255 111 254 eqtrd NFinRCRingMBsbB0sYi=1si×˙TM×˙Gi+˙0×˙TM×˙G0+˙s+1×˙TM×˙Gs+1=Yi=1si×˙TM×˙Tbi1-˙TM×˙Tbi+˙s+1×˙TM×˙Tbs-˙TM×˙Tb0
256 73 100 255 3eqtrd NFinRCRingMBsbB0sYi=0s+1i×˙TM×˙Gi=Yi=1si×˙TM×˙Tbi1-˙TM×˙Tbi+˙s+1×˙TM×˙Tbs-˙TM×˙Tb0
257 38 71 256 3eqtrd NFinRCRingMBsbB0sYi0i×˙TM×˙Gi=Yi=1si×˙TM×˙Tbi1-˙TM×˙Tbi+˙s+1×˙TM×˙Tbs-˙TM×˙Tb0