Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
chtublem
Next ⟩
chtub
Metamath Proof Explorer
Ascii
Unicode
Theorem
chtublem
Description:
Lemma for
chtub
.
(Contributed by
Mario Carneiro
, 13-Mar-2014)
Ref
Expression
Assertion
chtublem
⊢
N
∈
ℕ
→
θ
2
⋅
N
−
1
≤
θ
N
+
log
4
N
−
1
Proof
Step
Hyp
Ref
Expression
1
2nn
⊢
2
∈
ℕ
2
nnmulcl
⊢
2
∈
ℕ
∧
N
∈
ℕ
→
2
⋅
N
∈
ℕ
3
1
2
mpan
⊢
N
∈
ℕ
→
2
⋅
N
∈
ℕ
4
3
nnred
⊢
N
∈
ℕ
→
2
⋅
N
∈
ℝ
5
peano2rem
⊢
2
⋅
N
∈
ℝ
→
2
⋅
N
−
1
∈
ℝ
6
4
5
syl
⊢
N
∈
ℕ
→
2
⋅
N
−
1
∈
ℝ
7
chtcl
⊢
2
⋅
N
−
1
∈
ℝ
→
θ
2
⋅
N
−
1
∈
ℝ
8
6
7
syl
⊢
N
∈
ℕ
→
θ
2
⋅
N
−
1
∈
ℝ
9
nnre
⊢
N
∈
ℕ
→
N
∈
ℝ
10
chtcl
⊢
N
∈
ℝ
→
θ
N
∈
ℝ
11
9
10
syl
⊢
N
∈
ℕ
→
θ
N
∈
ℝ
12
nnnn0
⊢
N
∈
ℕ
→
N
∈
ℕ
0
13
2m1e1
⊢
2
−
1
=
1
14
13
oveq2i
⊢
2
⋅
N
−
2
−
1
=
2
⋅
N
−
1
15
3
nncnd
⊢
N
∈
ℕ
→
2
⋅
N
∈
ℂ
16
2cn
⊢
2
∈
ℂ
17
ax-1cn
⊢
1
∈
ℂ
18
subsub
⊢
2
⋅
N
∈
ℂ
∧
2
∈
ℂ
∧
1
∈
ℂ
→
2
⋅
N
−
2
−
1
=
2
⋅
N
-
2
+
1
19
16
17
18
mp3an23
⊢
2
⋅
N
∈
ℂ
→
2
⋅
N
−
2
−
1
=
2
⋅
N
-
2
+
1
20
15
19
syl
⊢
N
∈
ℕ
→
2
⋅
N
−
2
−
1
=
2
⋅
N
-
2
+
1
21
nncn
⊢
N
∈
ℕ
→
N
∈
ℂ
22
subdi
⊢
2
∈
ℂ
∧
N
∈
ℂ
∧
1
∈
ℂ
→
2
N
−
1
=
2
⋅
N
−
2
⋅
1
23
16
17
22
mp3an13
⊢
N
∈
ℂ
→
2
N
−
1
=
2
⋅
N
−
2
⋅
1
24
21
23
syl
⊢
N
∈
ℕ
→
2
N
−
1
=
2
⋅
N
−
2
⋅
1
25
2t1e2
⊢
2
⋅
1
=
2
26
25
oveq2i
⊢
2
⋅
N
−
2
⋅
1
=
2
⋅
N
−
2
27
24
26
eqtrdi
⊢
N
∈
ℕ
→
2
N
−
1
=
2
⋅
N
−
2
28
27
oveq1d
⊢
N
∈
ℕ
→
2
N
−
1
+
1
=
2
⋅
N
-
2
+
1
29
20
28
eqtr4d
⊢
N
∈
ℕ
→
2
⋅
N
−
2
−
1
=
2
N
−
1
+
1
30
14
29
eqtr3id
⊢
N
∈
ℕ
→
2
⋅
N
−
1
=
2
N
−
1
+
1
31
2nn0
⊢
2
∈
ℕ
0
32
nnm1nn0
⊢
N
∈
ℕ
→
N
−
1
∈
ℕ
0
33
nn0mulcl
⊢
2
∈
ℕ
0
∧
N
−
1
∈
ℕ
0
→
2
N
−
1
∈
ℕ
0
34
31
32
33
sylancr
⊢
N
∈
ℕ
→
2
N
−
1
∈
ℕ
0
35
nn0p1nn
⊢
2
N
−
1
∈
ℕ
0
→
2
N
−
1
+
1
∈
ℕ
36
34
35
syl
⊢
N
∈
ℕ
→
2
N
−
1
+
1
∈
ℕ
37
30
36
eqeltrd
⊢
N
∈
ℕ
→
2
⋅
N
−
1
∈
ℕ
38
nnnn0
⊢
2
⋅
N
−
1
∈
ℕ
→
2
⋅
N
−
1
∈
ℕ
0
39
37
38
syl
⊢
N
∈
ℕ
→
2
⋅
N
−
1
∈
ℕ
0
40
1re
⊢
1
∈
ℝ
41
40
a1i
⊢
N
∈
ℕ
→
1
∈
ℝ
42
nnge1
⊢
N
∈
ℕ
→
1
≤
N
43
41
9
9
42
leadd2dd
⊢
N
∈
ℕ
→
N
+
1
≤
N
+
N
44
21
2timesd
⊢
N
∈
ℕ
→
2
⋅
N
=
N
+
N
45
43
44
breqtrrd
⊢
N
∈
ℕ
→
N
+
1
≤
2
⋅
N
46
leaddsub
⊢
N
∈
ℝ
∧
1
∈
ℝ
∧
2
⋅
N
∈
ℝ
→
N
+
1
≤
2
⋅
N
↔
N
≤
2
⋅
N
−
1
47
9
41
4
46
syl3anc
⊢
N
∈
ℕ
→
N
+
1
≤
2
⋅
N
↔
N
≤
2
⋅
N
−
1
48
45
47
mpbid
⊢
N
∈
ℕ
→
N
≤
2
⋅
N
−
1
49
elfz2nn0
⊢
N
∈
0
…
2
⋅
N
−
1
↔
N
∈
ℕ
0
∧
2
⋅
N
−
1
∈
ℕ
0
∧
N
≤
2
⋅
N
−
1
50
12
39
48
49
syl3anbrc
⊢
N
∈
ℕ
→
N
∈
0
…
2
⋅
N
−
1
51
bccl2
⊢
N
∈
0
…
2
⋅
N
−
1
→
(
2
⋅
N
−
1
N
)
∈
ℕ
52
50
51
syl
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
)
∈
ℕ
53
52
nnrpd
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
)
∈
ℝ
+
54
53
relogcld
⊢
N
∈
ℕ
→
log
(
2
⋅
N
−
1
N
)
∈
ℝ
55
11
54
readdcld
⊢
N
∈
ℕ
→
θ
N
+
log
(
2
⋅
N
−
1
N
)
∈
ℝ
56
4re
⊢
4
∈
ℝ
57
4pos
⊢
0
<
4
58
56
57
elrpii
⊢
4
∈
ℝ
+
59
relogcl
⊢
4
∈
ℝ
+
→
log
4
∈
ℝ
60
58
59
ax-mp
⊢
log
4
∈
ℝ
61
32
nn0red
⊢
N
∈
ℕ
→
N
−
1
∈
ℝ
62
remulcl
⊢
log
4
∈
ℝ
∧
N
−
1
∈
ℝ
→
log
4
N
−
1
∈
ℝ
63
60
61
62
sylancr
⊢
N
∈
ℕ
→
log
4
N
−
1
∈
ℝ
64
11
63
readdcld
⊢
N
∈
ℕ
→
θ
N
+
log
4
N
−
1
∈
ℝ
65
iftrue
⊢
p
≤
2
⋅
N
−
1
→
if
p
≤
2
⋅
N
−
1
1
0
=
1
66
65
adantl
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
→
if
p
≤
2
⋅
N
−
1
1
0
=
1
67
simpr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
∈
ℙ
68
52
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
(
2
⋅
N
−
1
N
)
∈
ℕ
69
67
68
pccld
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
(
2
⋅
N
−
1
N
)
∈
ℕ
0
70
nn0addge1
⊢
1
∈
ℝ
∧
p
pCnt
(
2
⋅
N
−
1
N
)
∈
ℕ
0
→
1
≤
1
+
p
pCnt
(
2
⋅
N
−
1
N
)
71
40
69
70
sylancr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
1
≤
1
+
p
pCnt
(
2
⋅
N
−
1
N
)
72
iftrue
⊢
p
≤
N
→
if
p
≤
N
1
0
=
1
73
72
oveq1d
⊢
p
≤
N
→
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
=
1
+
p
pCnt
(
2
⋅
N
−
1
N
)
74
73
breq2d
⊢
p
≤
N
→
1
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
↔
1
≤
1
+
p
pCnt
(
2
⋅
N
−
1
N
)
75
71
74
syl5ibrcom
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
≤
N
→
1
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
76
75
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
→
p
≤
N
→
1
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
77
prmnn
⊢
p
∈
ℙ
→
p
∈
ℕ
78
77
ad2antlr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
∈
ℕ
79
simprl
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
≤
2
⋅
N
−
1
80
prmz
⊢
p
∈
ℙ
→
p
∈
ℤ
81
37
nnzd
⊢
N
∈
ℕ
→
2
⋅
N
−
1
∈
ℤ
82
eluz
⊢
p
∈
ℤ
∧
2
⋅
N
−
1
∈
ℤ
→
2
⋅
N
−
1
∈
ℤ
≥
p
↔
p
≤
2
⋅
N
−
1
83
80
81
82
syl2anr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
2
⋅
N
−
1
∈
ℤ
≥
p
↔
p
≤
2
⋅
N
−
1
84
83
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
2
⋅
N
−
1
∈
ℤ
≥
p
↔
p
≤
2
⋅
N
−
1
85
79
84
mpbird
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
2
⋅
N
−
1
∈
ℤ
≥
p
86
dvdsfac
⊢
p
∈
ℕ
∧
2
⋅
N
−
1
∈
ℤ
≥
p
→
p
∥
2
⋅
N
−
1
!
87
78
85
86
syl2anc
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
∥
2
⋅
N
−
1
!
88
id
⊢
p
∈
ℙ
→
p
∈
ℙ
89
39
faccld
⊢
N
∈
ℕ
→
2
⋅
N
−
1
!
∈
ℕ
90
pcelnn
⊢
p
∈
ℙ
∧
2
⋅
N
−
1
!
∈
ℕ
→
p
pCnt
2
⋅
N
−
1
!
∈
ℕ
↔
p
∥
2
⋅
N
−
1
!
91
88
89
90
syl2anr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
2
⋅
N
−
1
!
∈
ℕ
↔
p
∥
2
⋅
N
−
1
!
92
91
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
2
⋅
N
−
1
!
∈
ℕ
↔
p
∥
2
⋅
N
−
1
!
93
87
92
mpbird
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
2
⋅
N
−
1
!
∈
ℕ
94
93
nnge1d
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
1
≤
p
pCnt
2
⋅
N
−
1
!
95
iffalse
⊢
¬
p
≤
N
→
if
p
≤
N
1
0
=
0
96
95
oveq1d
⊢
¬
p
≤
N
→
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
=
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
97
96
ad2antll
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
=
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
98
69
nn0cnd
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
(
2
⋅
N
−
1
N
)
∈
ℂ
99
98
addlidd
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
=
p
pCnt
(
2
⋅
N
−
1
N
)
100
99
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
=
p
pCnt
(
2
⋅
N
−
1
N
)
101
bcval2
⊢
N
∈
0
…
2
⋅
N
−
1
→
(
2
⋅
N
−
1
N
)
=
2
⋅
N
−
1
!
2
⋅
N
-
1
-
N
!
N
!
102
50
101
syl
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
)
=
2
⋅
N
−
1
!
2
⋅
N
-
1
-
N
!
N
!
103
32
nn0cnd
⊢
N
∈
ℕ
→
N
−
1
∈
ℂ
104
17
a1i
⊢
N
∈
ℕ
→
1
∈
ℂ
105
44
oveq1d
⊢
N
∈
ℕ
→
2
⋅
N
−
1
=
N
+
N
-
1
106
21
21
104
105
assraddsubd
⊢
N
∈
ℕ
→
2
⋅
N
−
1
=
N
+
N
-
1
107
21
103
106
mvrladdd
⊢
N
∈
ℕ
→
2
⋅
N
-
1
-
N
=
N
−
1
108
107
fveq2d
⊢
N
∈
ℕ
→
2
⋅
N
-
1
-
N
!
=
N
−
1
!
109
108
oveq1d
⊢
N
∈
ℕ
→
2
⋅
N
-
1
-
N
!
N
!
=
N
−
1
!
N
!
110
109
oveq2d
⊢
N
∈
ℕ
→
2
⋅
N
−
1
!
2
⋅
N
-
1
-
N
!
N
!
=
2
⋅
N
−
1
!
N
−
1
!
N
!
111
102
110
eqtrd
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
)
=
2
⋅
N
−
1
!
N
−
1
!
N
!
112
111
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
(
2
⋅
N
−
1
N
)
=
2
⋅
N
−
1
!
N
−
1
!
N
!
113
112
oveq2d
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
(
2
⋅
N
−
1
N
)
=
p
pCnt
2
⋅
N
−
1
!
N
−
1
!
N
!
114
nnz
⊢
2
⋅
N
−
1
!
∈
ℕ
→
2
⋅
N
−
1
!
∈
ℤ
115
nnne0
⊢
2
⋅
N
−
1
!
∈
ℕ
→
2
⋅
N
−
1
!
≠
0
116
114
115
jca
⊢
2
⋅
N
−
1
!
∈
ℕ
→
2
⋅
N
−
1
!
∈
ℤ
∧
2
⋅
N
−
1
!
≠
0
117
89
116
syl
⊢
N
∈
ℕ
→
2
⋅
N
−
1
!
∈
ℤ
∧
2
⋅
N
−
1
!
≠
0
118
117
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
2
⋅
N
−
1
!
∈
ℤ
∧
2
⋅
N
−
1
!
≠
0
119
32
faccld
⊢
N
∈
ℕ
→
N
−
1
!
∈
ℕ
120
12
faccld
⊢
N
∈
ℕ
→
N
!
∈
ℕ
121
119
120
nnmulcld
⊢
N
∈
ℕ
→
N
−
1
!
N
!
∈
ℕ
122
121
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
N
−
1
!
N
!
∈
ℕ
123
pcdiv
⊢
p
∈
ℙ
∧
2
⋅
N
−
1
!
∈
ℤ
∧
2
⋅
N
−
1
!
≠
0
∧
N
−
1
!
N
!
∈
ℕ
→
p
pCnt
2
⋅
N
−
1
!
N
−
1
!
N
!
=
p
pCnt
2
⋅
N
−
1
!
−
p
pCnt
N
−
1
!
N
!
124
67
118
122
123
syl3anc
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
2
⋅
N
−
1
!
N
−
1
!
N
!
=
p
pCnt
2
⋅
N
−
1
!
−
p
pCnt
N
−
1
!
N
!
125
nnz
⊢
N
−
1
!
∈
ℕ
→
N
−
1
!
∈
ℤ
126
nnne0
⊢
N
−
1
!
∈
ℕ
→
N
−
1
!
≠
0
127
125
126
jca
⊢
N
−
1
!
∈
ℕ
→
N
−
1
!
∈
ℤ
∧
N
−
1
!
≠
0
128
119
127
syl
⊢
N
∈
ℕ
→
N
−
1
!
∈
ℤ
∧
N
−
1
!
≠
0
129
128
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
N
−
1
!
∈
ℤ
∧
N
−
1
!
≠
0
130
nnz
⊢
N
!
∈
ℕ
→
N
!
∈
ℤ
131
nnne0
⊢
N
!
∈
ℕ
→
N
!
≠
0
132
130
131
jca
⊢
N
!
∈
ℕ
→
N
!
∈
ℤ
∧
N
!
≠
0
133
120
132
syl
⊢
N
∈
ℕ
→
N
!
∈
ℤ
∧
N
!
≠
0
134
133
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
N
!
∈
ℤ
∧
N
!
≠
0
135
pcmul
⊢
p
∈
ℙ
∧
N
−
1
!
∈
ℤ
∧
N
−
1
!
≠
0
∧
N
!
∈
ℤ
∧
N
!
≠
0
→
p
pCnt
N
−
1
!
N
!
=
p
pCnt
N
−
1
!
+
p
pCnt
N
!
136
67
129
134
135
syl3anc
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
N
−
1
!
N
!
=
p
pCnt
N
−
1
!
+
p
pCnt
N
!
137
136
oveq2d
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
2
⋅
N
−
1
!
−
p
pCnt
N
−
1
!
N
!
=
p
pCnt
2
⋅
N
−
1
!
−
p
pCnt
N
−
1
!
+
p
pCnt
N
!
138
113
124
137
3eqtrd
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
(
2
⋅
N
−
1
N
)
=
p
pCnt
2
⋅
N
−
1
!
−
p
pCnt
N
−
1
!
+
p
pCnt
N
!
139
138
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
(
2
⋅
N
−
1
N
)
=
p
pCnt
2
⋅
N
−
1
!
−
p
pCnt
N
−
1
!
+
p
pCnt
N
!
140
simprr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
¬
p
≤
N
141
prmfac1
⊢
N
∈
ℕ
0
∧
p
∈
ℙ
∧
p
∥
N
!
→
p
≤
N
142
141
3expia
⊢
N
∈
ℕ
0
∧
p
∈
ℙ
→
p
∥
N
!
→
p
≤
N
143
12
142
sylan
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
∥
N
!
→
p
≤
N
144
143
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
∥
N
!
→
p
≤
N
145
140
144
mtod
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
¬
p
∥
N
!
146
80
adantl
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
∈
ℤ
147
129
simpld
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
N
−
1
!
∈
ℤ
148
nnz
⊢
N
∈
ℕ
→
N
∈
ℤ
149
148
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
N
∈
ℤ
150
dvdsmultr1
⊢
p
∈
ℤ
∧
N
−
1
!
∈
ℤ
∧
N
∈
ℤ
→
p
∥
N
−
1
!
→
p
∥
N
−
1
!
⋅
N
151
146
147
149
150
syl3anc
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
∥
N
−
1
!
→
p
∥
N
−
1
!
⋅
N
152
facnn2
⊢
N
∈
ℕ
→
N
!
=
N
−
1
!
⋅
N
153
152
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
N
!
=
N
−
1
!
⋅
N
154
153
breq2d
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
∥
N
!
↔
p
∥
N
−
1
!
⋅
N
155
151
154
sylibrd
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
∥
N
−
1
!
→
p
∥
N
!
156
155
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
∥
N
−
1
!
→
p
∥
N
!
157
145
156
mtod
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
¬
p
∥
N
−
1
!
158
pceq0
⊢
p
∈
ℙ
∧
N
−
1
!
∈
ℕ
→
p
pCnt
N
−
1
!
=
0
↔
¬
p
∥
N
−
1
!
159
88
119
158
syl2anr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
N
−
1
!
=
0
↔
¬
p
∥
N
−
1
!
160
159
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
N
−
1
!
=
0
↔
¬
p
∥
N
−
1
!
161
157
160
mpbird
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
N
−
1
!
=
0
162
pceq0
⊢
p
∈
ℙ
∧
N
!
∈
ℕ
→
p
pCnt
N
!
=
0
↔
¬
p
∥
N
!
163
88
120
162
syl2anr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
N
!
=
0
↔
¬
p
∥
N
!
164
163
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
N
!
=
0
↔
¬
p
∥
N
!
165
145
164
mpbird
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
N
!
=
0
166
161
165
oveq12d
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
N
−
1
!
+
p
pCnt
N
!
=
0
+
0
167
00id
⊢
0
+
0
=
0
168
166
167
eqtrdi
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
N
−
1
!
+
p
pCnt
N
!
=
0
169
168
oveq2d
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
2
⋅
N
−
1
!
−
p
pCnt
N
−
1
!
+
p
pCnt
N
!
=
p
pCnt
2
⋅
N
−
1
!
−
0
170
pccl
⊢
p
∈
ℙ
∧
2
⋅
N
−
1
!
∈
ℕ
→
p
pCnt
2
⋅
N
−
1
!
∈
ℕ
0
171
88
89
170
syl2anr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
2
⋅
N
−
1
!
∈
ℕ
0
172
171
nn0cnd
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
2
⋅
N
−
1
!
∈
ℂ
173
172
subid1d
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
2
⋅
N
−
1
!
−
0
=
p
pCnt
2
⋅
N
−
1
!
174
173
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
2
⋅
N
−
1
!
−
0
=
p
pCnt
2
⋅
N
−
1
!
175
139
169
174
3eqtrd
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
p
pCnt
(
2
⋅
N
−
1
N
)
=
p
pCnt
2
⋅
N
−
1
!
176
97
100
175
3eqtrd
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
=
p
pCnt
2
⋅
N
−
1
!
177
94
176
breqtrrd
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
∧
¬
p
≤
N
→
1
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
178
177
expr
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
→
¬
p
≤
N
→
1
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
179
76
178
pm2.61d
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
→
1
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
180
66
179
eqbrtrd
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
p
≤
2
⋅
N
−
1
→
if
p
≤
2
⋅
N
−
1
1
0
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
181
180
ex
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
≤
2
⋅
N
−
1
→
if
p
≤
2
⋅
N
−
1
1
0
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
182
1nn0
⊢
1
∈
ℕ
0
183
0nn0
⊢
0
∈
ℕ
0
184
182
183
ifcli
⊢
if
p
≤
N
1
0
∈
ℕ
0
185
nn0addcl
⊢
if
p
≤
N
1
0
∈
ℕ
0
∧
p
pCnt
(
2
⋅
N
−
1
N
)
∈
ℕ
0
→
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
∈
ℕ
0
186
184
69
185
sylancr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
∈
ℕ
0
187
186
nn0ge0d
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
0
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
188
iffalse
⊢
¬
p
≤
2
⋅
N
−
1
→
if
p
≤
2
⋅
N
−
1
1
0
=
0
189
188
breq1d
⊢
¬
p
≤
2
⋅
N
−
1
→
if
p
≤
2
⋅
N
−
1
1
0
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
↔
0
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
190
187
189
syl5ibrcom
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
¬
p
≤
2
⋅
N
−
1
→
if
p
≤
2
⋅
N
−
1
1
0
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
191
181
190
pm2.61d
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
if
p
≤
2
⋅
N
−
1
1
0
≤
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
192
eqid
⊢
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
=
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
193
192
prmorcht
⊢
2
⋅
N
−
1
∈
ℕ
→
e
θ
2
⋅
N
−
1
=
seq
1
×
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
2
⋅
N
−
1
194
37
193
syl
⊢
N
∈
ℕ
→
e
θ
2
⋅
N
−
1
=
seq
1
×
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
2
⋅
N
−
1
195
194
oveq2d
⊢
N
∈
ℕ
→
p
pCnt
e
θ
2
⋅
N
−
1
=
p
pCnt
seq
1
×
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
2
⋅
N
−
1
196
195
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
e
θ
2
⋅
N
−
1
=
p
pCnt
seq
1
×
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
2
⋅
N
−
1
197
nncn
⊢
n
∈
ℕ
→
n
∈
ℂ
198
197
exp1d
⊢
n
∈
ℕ
→
n
1
=
n
199
198
ifeq1d
⊢
n
∈
ℕ
→
if
n
∈
ℙ
n
1
1
=
if
n
∈
ℙ
n
1
200
199
mpteq2ia
⊢
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
1
=
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
201
200
eqcomi
⊢
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
=
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
1
202
182
a1i
⊢
N
∈
ℕ
∧
p
∈
ℙ
∧
n
∈
ℙ
→
1
∈
ℕ
0
203
202
ralrimiva
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
∀
n
∈
ℙ
1
∈
ℕ
0
204
37
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
2
⋅
N
−
1
∈
ℕ
205
eqidd
⊢
n
=
p
→
1
=
1
206
201
203
204
67
205
pcmpt
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
seq
1
×
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
2
⋅
N
−
1
=
if
p
≤
2
⋅
N
−
1
1
0
207
196
206
eqtrd
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
e
θ
2
⋅
N
−
1
=
if
p
≤
2
⋅
N
−
1
1
0
208
efchtcl
⊢
N
∈
ℝ
→
e
θ
N
∈
ℕ
209
9
208
syl
⊢
N
∈
ℕ
→
e
θ
N
∈
ℕ
210
209
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
e
θ
N
∈
ℕ
211
nnz
⊢
e
θ
N
∈
ℕ
→
e
θ
N
∈
ℤ
212
nnne0
⊢
e
θ
N
∈
ℕ
→
e
θ
N
≠
0
213
211
212
jca
⊢
e
θ
N
∈
ℕ
→
e
θ
N
∈
ℤ
∧
e
θ
N
≠
0
214
210
213
syl
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
e
θ
N
∈
ℤ
∧
e
θ
N
≠
0
215
nnz
⊢
(
2
⋅
N
−
1
N
)
∈
ℕ
→
(
2
⋅
N
−
1
N
)
∈
ℤ
216
nnne0
⊢
(
2
⋅
N
−
1
N
)
∈
ℕ
→
(
2
⋅
N
−
1
N
)
≠
0
217
215
216
jca
⊢
(
2
⋅
N
−
1
N
)
∈
ℕ
→
(
2
⋅
N
−
1
N
)
∈
ℤ
∧
(
2
⋅
N
−
1
N
)
≠
0
218
68
217
syl
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
(
2
⋅
N
−
1
N
)
∈
ℤ
∧
(
2
⋅
N
−
1
N
)
≠
0
219
pcmul
⊢
p
∈
ℙ
∧
e
θ
N
∈
ℤ
∧
e
θ
N
≠
0
∧
(
2
⋅
N
−
1
N
)
∈
ℤ
∧
(
2
⋅
N
−
1
N
)
≠
0
→
p
pCnt
e
θ
N
(
2
⋅
N
−
1
N
)
=
p
pCnt
e
θ
N
+
p
pCnt
(
2
⋅
N
−
1
N
)
220
67
214
218
219
syl3anc
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
e
θ
N
(
2
⋅
N
−
1
N
)
=
p
pCnt
e
θ
N
+
p
pCnt
(
2
⋅
N
−
1
N
)
221
192
prmorcht
⊢
N
∈
ℕ
→
e
θ
N
=
seq
1
×
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
N
222
221
oveq2d
⊢
N
∈
ℕ
→
p
pCnt
e
θ
N
=
p
pCnt
seq
1
×
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
N
223
222
adantr
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
e
θ
N
=
p
pCnt
seq
1
×
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
N
224
simpl
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
N
∈
ℕ
225
201
203
224
67
205
pcmpt
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
seq
1
×
n
∈
ℕ
⟼
if
n
∈
ℙ
n
1
N
=
if
p
≤
N
1
0
226
223
225
eqtrd
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
e
θ
N
=
if
p
≤
N
1
0
227
226
oveq1d
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
e
θ
N
+
p
pCnt
(
2
⋅
N
−
1
N
)
=
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
228
220
227
eqtrd
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
e
θ
N
(
2
⋅
N
−
1
N
)
=
if
p
≤
N
1
0
+
p
pCnt
(
2
⋅
N
−
1
N
)
229
191
207
228
3brtr4d
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
e
θ
2
⋅
N
−
1
≤
p
pCnt
e
θ
N
(
2
⋅
N
−
1
N
)
230
229
ralrimiva
⊢
N
∈
ℕ
→
∀
p
∈
ℙ
p
pCnt
e
θ
2
⋅
N
−
1
≤
p
pCnt
e
θ
N
(
2
⋅
N
−
1
N
)
231
efchtcl
⊢
2
⋅
N
−
1
∈
ℝ
→
e
θ
2
⋅
N
−
1
∈
ℕ
232
6
231
syl
⊢
N
∈
ℕ
→
e
θ
2
⋅
N
−
1
∈
ℕ
233
232
nnzd
⊢
N
∈
ℕ
→
e
θ
2
⋅
N
−
1
∈
ℤ
234
209
52
nnmulcld
⊢
N
∈
ℕ
→
e
θ
N
(
2
⋅
N
−
1
N
)
∈
ℕ
235
234
nnzd
⊢
N
∈
ℕ
→
e
θ
N
(
2
⋅
N
−
1
N
)
∈
ℤ
236
pc2dvds
⊢
e
θ
2
⋅
N
−
1
∈
ℤ
∧
e
θ
N
(
2
⋅
N
−
1
N
)
∈
ℤ
→
e
θ
2
⋅
N
−
1
∥
e
θ
N
(
2
⋅
N
−
1
N
)
↔
∀
p
∈
ℙ
p
pCnt
e
θ
2
⋅
N
−
1
≤
p
pCnt
e
θ
N
(
2
⋅
N
−
1
N
)
237
233
235
236
syl2anc
⊢
N
∈
ℕ
→
e
θ
2
⋅
N
−
1
∥
e
θ
N
(
2
⋅
N
−
1
N
)
↔
∀
p
∈
ℙ
p
pCnt
e
θ
2
⋅
N
−
1
≤
p
pCnt
e
θ
N
(
2
⋅
N
−
1
N
)
238
230
237
mpbird
⊢
N
∈
ℕ
→
e
θ
2
⋅
N
−
1
∥
e
θ
N
(
2
⋅
N
−
1
N
)
239
dvdsle
⊢
e
θ
2
⋅
N
−
1
∈
ℤ
∧
e
θ
N
(
2
⋅
N
−
1
N
)
∈
ℕ
→
e
θ
2
⋅
N
−
1
∥
e
θ
N
(
2
⋅
N
−
1
N
)
→
e
θ
2
⋅
N
−
1
≤
e
θ
N
(
2
⋅
N
−
1
N
)
240
233
234
239
syl2anc
⊢
N
∈
ℕ
→
e
θ
2
⋅
N
−
1
∥
e
θ
N
(
2
⋅
N
−
1
N
)
→
e
θ
2
⋅
N
−
1
≤
e
θ
N
(
2
⋅
N
−
1
N
)
241
238
240
mpd
⊢
N
∈
ℕ
→
e
θ
2
⋅
N
−
1
≤
e
θ
N
(
2
⋅
N
−
1
N
)
242
11
recnd
⊢
N
∈
ℕ
→
θ
N
∈
ℂ
243
54
recnd
⊢
N
∈
ℕ
→
log
(
2
⋅
N
−
1
N
)
∈
ℂ
244
efadd
⊢
θ
N
∈
ℂ
∧
log
(
2
⋅
N
−
1
N
)
∈
ℂ
→
e
θ
N
+
log
(
2
⋅
N
−
1
N
)
=
e
θ
N
e
log
(
2
⋅
N
−
1
N
)
245
242
243
244
syl2anc
⊢
N
∈
ℕ
→
e
θ
N
+
log
(
2
⋅
N
−
1
N
)
=
e
θ
N
e
log
(
2
⋅
N
−
1
N
)
246
53
reeflogd
⊢
N
∈
ℕ
→
e
log
(
2
⋅
N
−
1
N
)
=
(
2
⋅
N
−
1
N
)
247
246
oveq2d
⊢
N
∈
ℕ
→
e
θ
N
e
log
(
2
⋅
N
−
1
N
)
=
e
θ
N
(
2
⋅
N
−
1
N
)
248
245
247
eqtrd
⊢
N
∈
ℕ
→
e
θ
N
+
log
(
2
⋅
N
−
1
N
)
=
e
θ
N
(
2
⋅
N
−
1
N
)
249
241
248
breqtrrd
⊢
N
∈
ℕ
→
e
θ
2
⋅
N
−
1
≤
e
θ
N
+
log
(
2
⋅
N
−
1
N
)
250
efle
⊢
θ
2
⋅
N
−
1
∈
ℝ
∧
θ
N
+
log
(
2
⋅
N
−
1
N
)
∈
ℝ
→
θ
2
⋅
N
−
1
≤
θ
N
+
log
(
2
⋅
N
−
1
N
)
↔
e
θ
2
⋅
N
−
1
≤
e
θ
N
+
log
(
2
⋅
N
−
1
N
)
251
8
55
250
syl2anc
⊢
N
∈
ℕ
→
θ
2
⋅
N
−
1
≤
θ
N
+
log
(
2
⋅
N
−
1
N
)
↔
e
θ
2
⋅
N
−
1
≤
e
θ
N
+
log
(
2
⋅
N
−
1
N
)
252
249
251
mpbird
⊢
N
∈
ℕ
→
θ
2
⋅
N
−
1
≤
θ
N
+
log
(
2
⋅
N
−
1
N
)
253
fzfid
⊢
N
∈
ℕ
→
0
…
2
⋅
N
−
1
∈
Fin
254
elfzelz
⊢
k
∈
0
…
2
⋅
N
−
1
→
k
∈
ℤ
255
bccl
⊢
2
⋅
N
−
1
∈
ℕ
0
∧
k
∈
ℤ
→
(
2
⋅
N
−
1
k
)
∈
ℕ
0
256
39
254
255
syl2an
⊢
N
∈
ℕ
∧
k
∈
0
…
2
⋅
N
−
1
→
(
2
⋅
N
−
1
k
)
∈
ℕ
0
257
256
nn0red
⊢
N
∈
ℕ
∧
k
∈
0
…
2
⋅
N
−
1
→
(
2
⋅
N
−
1
k
)
∈
ℝ
258
256
nn0ge0d
⊢
N
∈
ℕ
∧
k
∈
0
…
2
⋅
N
−
1
→
0
≤
(
2
⋅
N
−
1
k
)
259
nn0uz
⊢
ℕ
0
=
ℤ
≥
0
260
32
259
eleqtrdi
⊢
N
∈
ℕ
→
N
−
1
∈
ℤ
≥
0
261
fzss1
⊢
N
−
1
∈
ℤ
≥
0
→
N
−
1
…
N
⊆
0
…
N
262
260
261
syl
⊢
N
∈
ℕ
→
N
−
1
…
N
⊆
0
…
N
263
eluz
⊢
N
∈
ℤ
∧
2
⋅
N
−
1
∈
ℤ
→
2
⋅
N
−
1
∈
ℤ
≥
N
↔
N
≤
2
⋅
N
−
1
264
148
81
263
syl2anc
⊢
N
∈
ℕ
→
2
⋅
N
−
1
∈
ℤ
≥
N
↔
N
≤
2
⋅
N
−
1
265
48
264
mpbird
⊢
N
∈
ℕ
→
2
⋅
N
−
1
∈
ℤ
≥
N
266
fzss2
⊢
2
⋅
N
−
1
∈
ℤ
≥
N
→
0
…
N
⊆
0
…
2
⋅
N
−
1
267
265
266
syl
⊢
N
∈
ℕ
→
0
…
N
⊆
0
…
2
⋅
N
−
1
268
262
267
sstrd
⊢
N
∈
ℕ
→
N
−
1
…
N
⊆
0
…
2
⋅
N
−
1
269
253
257
258
268
fsumless
⊢
N
∈
ℕ
→
∑
k
=
N
−
1
N
(
2
⋅
N
−
1
k
)
≤
∑
k
=
0
2
⋅
N
−
1
(
2
⋅
N
−
1
k
)
270
32
nn0zd
⊢
N
∈
ℕ
→
N
−
1
∈
ℤ
271
bccmpl
⊢
2
⋅
N
−
1
∈
ℕ
0
∧
N
∈
ℤ
→
(
2
⋅
N
−
1
N
)
=
(
2
⋅
N
−
1
2
⋅
N
-
1
-
N
)
272
39
148
271
syl2anc
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
)
=
(
2
⋅
N
−
1
2
⋅
N
-
1
-
N
)
273
107
oveq2d
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
2
⋅
N
-
1
-
N
)
=
(
2
⋅
N
−
1
N
−
1
)
274
272
273
eqtrd
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
)
=
(
2
⋅
N
−
1
N
−
1
)
275
52
nncnd
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
)
∈
ℂ
276
274
275
eqeltrrd
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
−
1
)
∈
ℂ
277
oveq2
⊢
k
=
N
−
1
→
(
2
⋅
N
−
1
k
)
=
(
2
⋅
N
−
1
N
−
1
)
278
277
fsum1
⊢
N
−
1
∈
ℤ
∧
(
2
⋅
N
−
1
N
−
1
)
∈
ℂ
→
∑
k
=
N
−
1
N
−
1
(
2
⋅
N
−
1
k
)
=
(
2
⋅
N
−
1
N
−
1
)
279
270
276
278
syl2anc
⊢
N
∈
ℕ
→
∑
k
=
N
−
1
N
−
1
(
2
⋅
N
−
1
k
)
=
(
2
⋅
N
−
1
N
−
1
)
280
279
274
eqtr4d
⊢
N
∈
ℕ
→
∑
k
=
N
−
1
N
−
1
(
2
⋅
N
−
1
k
)
=
(
2
⋅
N
−
1
N
)
281
280
oveq1d
⊢
N
∈
ℕ
→
∑
k
=
N
−
1
N
−
1
(
2
⋅
N
−
1
k
)
+
(
2
⋅
N
−
1
N
)
=
(
2
⋅
N
−
1
N
)
+
(
2
⋅
N
−
1
N
)
282
21
104
npcand
⊢
N
∈
ℕ
→
N
-
1
+
1
=
N
283
uzid
⊢
N
−
1
∈
ℤ
→
N
−
1
∈
ℤ
≥
N
−
1
284
270
283
syl
⊢
N
∈
ℕ
→
N
−
1
∈
ℤ
≥
N
−
1
285
peano2uz
⊢
N
−
1
∈
ℤ
≥
N
−
1
→
N
-
1
+
1
∈
ℤ
≥
N
−
1
286
284
285
syl
⊢
N
∈
ℕ
→
N
-
1
+
1
∈
ℤ
≥
N
−
1
287
282
286
eqeltrrd
⊢
N
∈
ℕ
→
N
∈
ℤ
≥
N
−
1
288
268
sselda
⊢
N
∈
ℕ
∧
k
∈
N
−
1
…
N
→
k
∈
0
…
2
⋅
N
−
1
289
256
nn0cnd
⊢
N
∈
ℕ
∧
k
∈
0
…
2
⋅
N
−
1
→
(
2
⋅
N
−
1
k
)
∈
ℂ
290
288
289
syldan
⊢
N
∈
ℕ
∧
k
∈
N
−
1
…
N
→
(
2
⋅
N
−
1
k
)
∈
ℂ
291
oveq2
⊢
k
=
N
→
(
2
⋅
N
−
1
k
)
=
(
2
⋅
N
−
1
N
)
292
287
290
291
fsumm1
⊢
N
∈
ℕ
→
∑
k
=
N
−
1
N
(
2
⋅
N
−
1
k
)
=
∑
k
=
N
−
1
N
−
1
(
2
⋅
N
−
1
k
)
+
(
2
⋅
N
−
1
N
)
293
275
2timesd
⊢
N
∈
ℕ
→
2
(
2
⋅
N
−
1
N
)
=
(
2
⋅
N
−
1
N
)
+
(
2
⋅
N
−
1
N
)
294
281
292
293
3eqtr4rd
⊢
N
∈
ℕ
→
2
(
2
⋅
N
−
1
N
)
=
∑
k
=
N
−
1
N
(
2
⋅
N
−
1
k
)
295
binom11
⊢
2
⋅
N
−
1
∈
ℕ
0
→
2
2
⋅
N
−
1
=
∑
k
=
0
2
⋅
N
−
1
(
2
⋅
N
−
1
k
)
296
39
295
syl
⊢
N
∈
ℕ
→
2
2
⋅
N
−
1
=
∑
k
=
0
2
⋅
N
−
1
(
2
⋅
N
−
1
k
)
297
269
294
296
3brtr4d
⊢
N
∈
ℕ
→
2
(
2
⋅
N
−
1
N
)
≤
2
2
⋅
N
−
1
298
mulcom
⊢
2
∈
ℂ
∧
(
2
⋅
N
−
1
N
)
∈
ℂ
→
2
(
2
⋅
N
−
1
N
)
=
(
2
⋅
N
−
1
N
)
⋅
2
299
16
275
298
sylancr
⊢
N
∈
ℕ
→
2
(
2
⋅
N
−
1
N
)
=
(
2
⋅
N
−
1
N
)
⋅
2
300
30
oveq2d
⊢
N
∈
ℕ
→
2
2
⋅
N
−
1
=
2
2
N
−
1
+
1
301
expp1
⊢
2
∈
ℂ
∧
2
N
−
1
∈
ℕ
0
→
2
2
N
−
1
+
1
=
2
2
N
−
1
⋅
2
302
16
34
301
sylancr
⊢
N
∈
ℕ
→
2
2
N
−
1
+
1
=
2
2
N
−
1
⋅
2
303
16
a1i
⊢
N
∈
ℕ
→
2
∈
ℂ
304
31
a1i
⊢
N
∈
ℕ
→
2
∈
ℕ
0
305
303
32
304
expmuld
⊢
N
∈
ℕ
→
2
2
N
−
1
=
2
2
N
−
1
306
sq2
⊢
2
2
=
4
307
306
oveq1i
⊢
2
2
N
−
1
=
4
N
−
1
308
305
307
eqtrdi
⊢
N
∈
ℕ
→
2
2
N
−
1
=
4
N
−
1
309
308
oveq1d
⊢
N
∈
ℕ
→
2
2
N
−
1
⋅
2
=
4
N
−
1
⋅
2
310
300
302
309
3eqtrd
⊢
N
∈
ℕ
→
2
2
⋅
N
−
1
=
4
N
−
1
⋅
2
311
297
299
310
3brtr3d
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
)
⋅
2
≤
4
N
−
1
⋅
2
312
52
nnred
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
)
∈
ℝ
313
reexpcl
⊢
4
∈
ℝ
∧
N
−
1
∈
ℕ
0
→
4
N
−
1
∈
ℝ
314
56
32
313
sylancr
⊢
N
∈
ℕ
→
4
N
−
1
∈
ℝ
315
2re
⊢
2
∈
ℝ
316
2pos
⊢
0
<
2
317
315
316
pm3.2i
⊢
2
∈
ℝ
∧
0
<
2
318
317
a1i
⊢
N
∈
ℕ
→
2
∈
ℝ
∧
0
<
2
319
lemul1
⊢
(
2
⋅
N
−
1
N
)
∈
ℝ
∧
4
N
−
1
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
(
2
⋅
N
−
1
N
)
≤
4
N
−
1
↔
(
2
⋅
N
−
1
N
)
⋅
2
≤
4
N
−
1
⋅
2
320
312
314
318
319
syl3anc
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
)
≤
4
N
−
1
↔
(
2
⋅
N
−
1
N
)
⋅
2
≤
4
N
−
1
⋅
2
321
311
320
mpbird
⊢
N
∈
ℕ
→
(
2
⋅
N
−
1
N
)
≤
4
N
−
1
322
60
recni
⊢
log
4
∈
ℂ
323
mulcom
⊢
log
4
∈
ℂ
∧
N
−
1
∈
ℂ
→
log
4
N
−
1
=
N
−
1
log
4
324
322
103
323
sylancr
⊢
N
∈
ℕ
→
log
4
N
−
1
=
N
−
1
log
4
325
324
fveq2d
⊢
N
∈
ℕ
→
e
log
4
N
−
1
=
e
N
−
1
log
4
326
reexplog
⊢
4
∈
ℝ
+
∧
N
−
1
∈
ℤ
→
4
N
−
1
=
e
N
−
1
log
4
327
58
270
326
sylancr
⊢
N
∈
ℕ
→
4
N
−
1
=
e
N
−
1
log
4
328
325
327
eqtr4d
⊢
N
∈
ℕ
→
e
log
4
N
−
1
=
4
N
−
1
329
321
246
328
3brtr4d
⊢
N
∈
ℕ
→
e
log
(
2
⋅
N
−
1
N
)
≤
e
log
4
N
−
1
330
efle
⊢
log
(
2
⋅
N
−
1
N
)
∈
ℝ
∧
log
4
N
−
1
∈
ℝ
→
log
(
2
⋅
N
−
1
N
)
≤
log
4
N
−
1
↔
e
log
(
2
⋅
N
−
1
N
)
≤
e
log
4
N
−
1
331
54
63
330
syl2anc
⊢
N
∈
ℕ
→
log
(
2
⋅
N
−
1
N
)
≤
log
4
N
−
1
↔
e
log
(
2
⋅
N
−
1
N
)
≤
e
log
4
N
−
1
332
329
331
mpbird
⊢
N
∈
ℕ
→
log
(
2
⋅
N
−
1
N
)
≤
log
4
N
−
1
333
54
63
11
332
leadd2dd
⊢
N
∈
ℕ
→
θ
N
+
log
(
2
⋅
N
−
1
N
)
≤
θ
N
+
log
4
N
−
1
334
8
55
64
252
333
letrd
⊢
N
∈
ℕ
→
θ
2
⋅
N
−
1
≤
θ
N
+
log
4
N
−
1