Metamath Proof Explorer


Theorem chtublem

Description: Lemma for chtub . (Contributed by Mario Carneiro, 13-Mar-2014)

Ref Expression
Assertion chtublem Nθ2 N1θN+log4N1

Proof

Step Hyp Ref Expression
1 2nn 2
2 nnmulcl 2N2 N
3 1 2 mpan N2 N
4 3 nnred N2 N
5 peano2rem 2 N2 N1
6 4 5 syl N2 N1
7 chtcl 2 N1θ2 N1
8 6 7 syl Nθ2 N1
9 nnre NN
10 chtcl NθN
11 9 10 syl NθN
12 nnnn0 NN0
13 2m1e1 21=1
14 13 oveq2i 2 N21=2 N1
15 3 nncnd N2 N
16 2cn 2
17 ax-1cn 1
18 subsub 2 N212 N21=2 N-2+1
19 16 17 18 mp3an23 2 N2 N21=2 N-2+1
20 15 19 syl N2 N21=2 N-2+1
21 nncn NN
22 subdi 2N12N1=2 N21
23 16 17 22 mp3an13 N2N1=2 N21
24 21 23 syl N2N1=2 N21
25 2t1e2 21=2
26 25 oveq2i 2 N21=2 N2
27 24 26 eqtrdi N2N1=2 N2
28 27 oveq1d N2N1+1=2 N-2+1
29 20 28 eqtr4d N2 N21=2N1+1
30 14 29 eqtr3id N2 N1=2N1+1
31 2nn0 20
32 nnm1nn0 NN10
33 nn0mulcl 20N102N10
34 31 32 33 sylancr N2N10
35 nn0p1nn 2N102N1+1
36 34 35 syl N2N1+1
37 30 36 eqeltrd N2 N1
38 nnnn0 2 N12 N10
39 37 38 syl N2 N10
40 1re 1
41 40 a1i N1
42 nnge1 N1N
43 41 9 9 42 leadd2dd NN+1N+N
44 21 2timesd N2 N=N+N
45 43 44 breqtrrd NN+12 N
46 leaddsub N12 NN+12 NN2 N1
47 9 41 4 46 syl3anc NN+12 NN2 N1
48 45 47 mpbid NN2 N1
49 elfz2nn0 N02 N1N02 N10N2 N1
50 12 39 48 49 syl3anbrc NN02 N1
51 bccl2 N02 N1(2 N1N)
52 50 51 syl N(2 N1N)
53 52 nnrpd N(2 N1N)+
54 53 relogcld Nlog(2 N1N)
55 11 54 readdcld NθN+log(2 N1N)
56 4re 4
57 4pos 0<4
58 56 57 elrpii 4+
59 relogcl 4+log4
60 58 59 ax-mp log4
61 32 nn0red NN1
62 remulcl log4N1log4N1
63 60 61 62 sylancr Nlog4N1
64 11 63 readdcld NθN+log4N1
65 iftrue p2 N1ifp2 N110=1
66 65 adantl Npp2 N1ifp2 N110=1
67 simpr Npp
68 52 adantr Np(2 N1N)
69 67 68 pccld NpppCnt(2 N1N)0
70 nn0addge1 1ppCnt(2 N1N)011+ppCnt(2 N1N)
71 40 69 70 sylancr Np11+ppCnt(2 N1N)
72 iftrue pNifpN10=1
73 72 oveq1d pNifpN10+ppCnt(2 N1N)=1+ppCnt(2 N1N)
74 73 breq2d pN1ifpN10+ppCnt(2 N1N)11+ppCnt(2 N1N)
75 71 74 syl5ibrcom NppN1ifpN10+ppCnt(2 N1N)
76 75 adantr Npp2 N1pN1ifpN10+ppCnt(2 N1N)
77 prmnn pp
78 77 ad2antlr Npp2 N1¬pNp
79 simprl Npp2 N1¬pNp2 N1
80 prmz pp
81 37 nnzd N2 N1
82 eluz p2 N12 N1pp2 N1
83 80 81 82 syl2anr Np2 N1pp2 N1
84 83 adantr Npp2 N1¬pN2 N1pp2 N1
85 79 84 mpbird Npp2 N1¬pN2 N1p
86 dvdsfac p2 N1pp2 N1!
87 78 85 86 syl2anc Npp2 N1¬pNp2 N1!
88 id pp
89 39 faccld N2 N1!
90 pcelnn p2 N1!ppCnt2 N1!p2 N1!
91 88 89 90 syl2anr NpppCnt2 N1!p2 N1!
92 91 adantr Npp2 N1¬pNppCnt2 N1!p2 N1!
93 87 92 mpbird Npp2 N1¬pNppCnt2 N1!
94 93 nnge1d Npp2 N1¬pN1ppCnt2 N1!
95 iffalse ¬pNifpN10=0
96 95 oveq1d ¬pNifpN10+ppCnt(2 N1N)=0+ppCnt(2 N1N)
97 96 ad2antll Npp2 N1¬pNifpN10+ppCnt(2 N1N)=0+ppCnt(2 N1N)
98 69 nn0cnd NpppCnt(2 N1N)
99 98 addlidd Np0+ppCnt(2 N1N)=ppCnt(2 N1N)
100 99 adantr Npp2 N1¬pN0+ppCnt(2 N1N)=ppCnt(2 N1N)
101 bcval2 N02 N1(2 N1N)=2 N1!2 N-1-N!N!
102 50 101 syl N(2 N1N)=2 N1!2 N-1-N!N!
103 32 nn0cnd NN1
104 17 a1i N1
105 44 oveq1d N2 N1=N+N-1
106 21 21 104 105 assraddsubd N2 N1=N+N-1
107 21 103 106 mvrladdd N2 N-1-N=N1
108 107 fveq2d N2 N-1-N!=N1!
109 108 oveq1d N2 N-1-N!N!=N1!N!
110 109 oveq2d N2 N1!2 N-1-N!N!=2 N1!N1!N!
111 102 110 eqtrd N(2 N1N)=2 N1!N1!N!
112 111 adantr Np(2 N1N)=2 N1!N1!N!
113 112 oveq2d NpppCnt(2 N1N)=ppCnt2 N1!N1!N!
114 nnz 2 N1!2 N1!
115 nnne0 2 N1!2 N1!0
116 114 115 jca 2 N1!2 N1!2 N1!0
117 89 116 syl N2 N1!2 N1!0
118 117 adantr Np2 N1!2 N1!0
119 32 faccld NN1!
120 12 faccld NN!
121 119 120 nnmulcld NN1!N!
122 121 adantr NpN1!N!
123 pcdiv p2 N1!2 N1!0N1!N!ppCnt2 N1!N1!N!=ppCnt2 N1!ppCntN1!N!
124 67 118 122 123 syl3anc NpppCnt2 N1!N1!N!=ppCnt2 N1!ppCntN1!N!
125 nnz N1!N1!
126 nnne0 N1!N1!0
127 125 126 jca N1!N1!N1!0
128 119 127 syl NN1!N1!0
129 128 adantr NpN1!N1!0
130 nnz N!N!
131 nnne0 N!N!0
132 130 131 jca N!N!N!0
133 120 132 syl NN!N!0
134 133 adantr NpN!N!0
135 pcmul pN1!N1!0N!N!0ppCntN1!N!=ppCntN1!+ppCntN!
136 67 129 134 135 syl3anc NpppCntN1!N!=ppCntN1!+ppCntN!
137 136 oveq2d NpppCnt2 N1!ppCntN1!N!=ppCnt2 N1!ppCntN1!+ppCntN!
138 113 124 137 3eqtrd NpppCnt(2 N1N)=ppCnt2 N1!ppCntN1!+ppCntN!
139 138 adantr Npp2 N1¬pNppCnt(2 N1N)=ppCnt2 N1!ppCntN1!+ppCntN!
140 simprr Npp2 N1¬pN¬pN
141 prmfac1 N0ppN!pN
142 141 3expia N0ppN!pN
143 12 142 sylan NppN!pN
144 143 adantr Npp2 N1¬pNpN!pN
145 140 144 mtod Npp2 N1¬pN¬pN!
146 80 adantl Npp
147 129 simpld NpN1!
148 nnz NN
149 148 adantr NpN
150 dvdsmultr1 pN1!NpN1!pN1! N
151 146 147 149 150 syl3anc NppN1!pN1! N
152 facnn2 NN!=N1! N
153 152 adantr NpN!=N1! N
154 153 breq2d NppN!pN1! N
155 151 154 sylibrd NppN1!pN!
156 155 adantr Npp2 N1¬pNpN1!pN!
157 145 156 mtod Npp2 N1¬pN¬pN1!
158 pceq0 pN1!ppCntN1!=0¬pN1!
159 88 119 158 syl2anr NpppCntN1!=0¬pN1!
160 159 adantr Npp2 N1¬pNppCntN1!=0¬pN1!
161 157 160 mpbird Npp2 N1¬pNppCntN1!=0
162 pceq0 pN!ppCntN!=0¬pN!
163 88 120 162 syl2anr NpppCntN!=0¬pN!
164 163 adantr Npp2 N1¬pNppCntN!=0¬pN!
165 145 164 mpbird Npp2 N1¬pNppCntN!=0
166 161 165 oveq12d Npp2 N1¬pNppCntN1!+ppCntN!=0+0
167 00id 0+0=0
168 166 167 eqtrdi Npp2 N1¬pNppCntN1!+ppCntN!=0
169 168 oveq2d Npp2 N1¬pNppCnt2 N1!ppCntN1!+ppCntN!=ppCnt2 N1!0
170 pccl p2 N1!ppCnt2 N1!0
171 88 89 170 syl2anr NpppCnt2 N1!0
172 171 nn0cnd NpppCnt2 N1!
173 172 subid1d NpppCnt2 N1!0=ppCnt2 N1!
174 173 adantr Npp2 N1¬pNppCnt2 N1!0=ppCnt2 N1!
175 139 169 174 3eqtrd Npp2 N1¬pNppCnt(2 N1N)=ppCnt2 N1!
176 97 100 175 3eqtrd Npp2 N1¬pNifpN10+ppCnt(2 N1N)=ppCnt2 N1!
177 94 176 breqtrrd Npp2 N1¬pN1ifpN10+ppCnt(2 N1N)
178 177 expr Npp2 N1¬pN1ifpN10+ppCnt(2 N1N)
179 76 178 pm2.61d Npp2 N11ifpN10+ppCnt(2 N1N)
180 66 179 eqbrtrd Npp2 N1ifp2 N110ifpN10+ppCnt(2 N1N)
181 180 ex Npp2 N1ifp2 N110ifpN10+ppCnt(2 N1N)
182 1nn0 10
183 0nn0 00
184 182 183 ifcli ifpN100
185 nn0addcl ifpN100ppCnt(2 N1N)0ifpN10+ppCnt(2 N1N)0
186 184 69 185 sylancr NpifpN10+ppCnt(2 N1N)0
187 186 nn0ge0d Np0ifpN10+ppCnt(2 N1N)
188 iffalse ¬p2 N1ifp2 N110=0
189 188 breq1d ¬p2 N1ifp2 N110ifpN10+ppCnt(2 N1N)0ifpN10+ppCnt(2 N1N)
190 187 189 syl5ibrcom Np¬p2 N1ifp2 N110ifpN10+ppCnt(2 N1N)
191 181 190 pm2.61d Npifp2 N110ifpN10+ppCnt(2 N1N)
192 eqid nifnn1=nifnn1
193 192 prmorcht 2 N1eθ2 N1=seq1×nifnn12 N1
194 37 193 syl Neθ2 N1=seq1×nifnn12 N1
195 194 oveq2d NppCnteθ2 N1=ppCntseq1×nifnn12 N1
196 195 adantr NpppCnteθ2 N1=ppCntseq1×nifnn12 N1
197 nncn nn
198 197 exp1d nn1=n
199 198 ifeq1d nifnn11=ifnn1
200 199 mpteq2ia nifnn11=nifnn1
201 200 eqcomi nifnn1=nifnn11
202 182 a1i Npn10
203 202 ralrimiva Npn10
204 37 adantr Np2 N1
205 eqidd n=p1=1
206 201 203 204 67 205 pcmpt NpppCntseq1×nifnn12 N1=ifp2 N110
207 196 206 eqtrd NpppCnteθ2 N1=ifp2 N110
208 efchtcl NeθN
209 9 208 syl NeθN
210 209 adantr NpeθN
211 nnz eθNeθN
212 nnne0 eθNeθN0
213 211 212 jca eθNeθNeθN0
214 210 213 syl NpeθNeθN0
215 nnz (2 N1N)(2 N1N)
216 nnne0 (2 N1N)(2 N1N)0
217 215 216 jca (2 N1N)(2 N1N)(2 N1N)0
218 68 217 syl Np(2 N1N)(2 N1N)0
219 pcmul peθNeθN0(2 N1N)(2 N1N)0ppCnteθN(2 N1N)=ppCnteθN+ppCnt(2 N1N)
220 67 214 218 219 syl3anc NpppCnteθN(2 N1N)=ppCnteθN+ppCnt(2 N1N)
221 192 prmorcht NeθN=seq1×nifnn1N
222 221 oveq2d NppCnteθN=ppCntseq1×nifnn1N
223 222 adantr NpppCnteθN=ppCntseq1×nifnn1N
224 simpl NpN
225 201 203 224 67 205 pcmpt NpppCntseq1×nifnn1N=ifpN10
226 223 225 eqtrd NpppCnteθN=ifpN10
227 226 oveq1d NpppCnteθN+ppCnt(2 N1N)=ifpN10+ppCnt(2 N1N)
228 220 227 eqtrd NpppCnteθN(2 N1N)=ifpN10+ppCnt(2 N1N)
229 191 207 228 3brtr4d NpppCnteθ2 N1ppCnteθN(2 N1N)
230 229 ralrimiva NpppCnteθ2 N1ppCnteθN(2 N1N)
231 efchtcl 2 N1eθ2 N1
232 6 231 syl Neθ2 N1
233 232 nnzd Neθ2 N1
234 209 52 nnmulcld NeθN(2 N1N)
235 234 nnzd NeθN(2 N1N)
236 pc2dvds eθ2 N1eθN(2 N1N)eθ2 N1eθN(2 N1N)pppCnteθ2 N1ppCnteθN(2 N1N)
237 233 235 236 syl2anc Neθ2 N1eθN(2 N1N)pppCnteθ2 N1ppCnteθN(2 N1N)
238 230 237 mpbird Neθ2 N1eθN(2 N1N)
239 dvdsle eθ2 N1eθN(2 N1N)eθ2 N1eθN(2 N1N)eθ2 N1eθN(2 N1N)
240 233 234 239 syl2anc Neθ2 N1eθN(2 N1N)eθ2 N1eθN(2 N1N)
241 238 240 mpd Neθ2 N1eθN(2 N1N)
242 11 recnd NθN
243 54 recnd Nlog(2 N1N)
244 efadd θNlog(2 N1N)eθN+log(2 N1N)=eθNelog(2 N1N)
245 242 243 244 syl2anc NeθN+log(2 N1N)=eθNelog(2 N1N)
246 53 reeflogd Nelog(2 N1N)=(2 N1N)
247 246 oveq2d NeθNelog(2 N1N)=eθN(2 N1N)
248 245 247 eqtrd NeθN+log(2 N1N)=eθN(2 N1N)
249 241 248 breqtrrd Neθ2 N1eθN+log(2 N1N)
250 efle θ2 N1θN+log(2 N1N)θ2 N1θN+log(2 N1N)eθ2 N1eθN+log(2 N1N)
251 8 55 250 syl2anc Nθ2 N1θN+log(2 N1N)eθ2 N1eθN+log(2 N1N)
252 249 251 mpbird Nθ2 N1θN+log(2 N1N)
253 fzfid N02 N1Fin
254 elfzelz k02 N1k
255 bccl 2 N10k(2 N1k)0
256 39 254 255 syl2an Nk02 N1(2 N1k)0
257 256 nn0red Nk02 N1(2 N1k)
258 256 nn0ge0d Nk02 N10(2 N1k)
259 nn0uz 0=0
260 32 259 eleqtrdi NN10
261 fzss1 N10N1N0N
262 260 261 syl NN1N0N
263 eluz N2 N12 N1NN2 N1
264 148 81 263 syl2anc N2 N1NN2 N1
265 48 264 mpbird N2 N1N
266 fzss2 2 N1N0N02 N1
267 265 266 syl N0N02 N1
268 262 267 sstrd NN1N02 N1
269 253 257 258 268 fsumless Nk=N1N(2 N1k)k=02 N1(2 N1k)
270 32 nn0zd NN1
271 bccmpl 2 N10N(2 N1N)=(2 N12 N-1-N)
272 39 148 271 syl2anc N(2 N1N)=(2 N12 N-1-N)
273 107 oveq2d N(2 N12 N-1-N)=(2 N1N1)
274 272 273 eqtrd N(2 N1N)=(2 N1N1)
275 52 nncnd N(2 N1N)
276 274 275 eqeltrrd N(2 N1N1)
277 oveq2 k=N1(2 N1k)=(2 N1N1)
278 277 fsum1 N1(2 N1N1)k=N1N1(2 N1k)=(2 N1N1)
279 270 276 278 syl2anc Nk=N1N1(2 N1k)=(2 N1N1)
280 279 274 eqtr4d Nk=N1N1(2 N1k)=(2 N1N)
281 280 oveq1d Nk=N1N1(2 N1k)+(2 N1N)=(2 N1N)+(2 N1N)
282 21 104 npcand NN-1+1=N
283 uzid N1N1N1
284 270 283 syl NN1N1
285 peano2uz N1N1N-1+1N1
286 284 285 syl NN-1+1N1
287 282 286 eqeltrrd NNN1
288 268 sselda NkN1Nk02 N1
289 256 nn0cnd Nk02 N1(2 N1k)
290 288 289 syldan NkN1N(2 N1k)
291 oveq2 k=N(2 N1k)=(2 N1N)
292 287 290 291 fsumm1 Nk=N1N(2 N1k)=k=N1N1(2 N1k)+(2 N1N)
293 275 2timesd N2(2 N1N)=(2 N1N)+(2 N1N)
294 281 292 293 3eqtr4rd N2(2 N1N)=k=N1N(2 N1k)
295 binom11 2 N1022 N1=k=02 N1(2 N1k)
296 39 295 syl N22 N1=k=02 N1(2 N1k)
297 269 294 296 3brtr4d N2(2 N1N)22 N1
298 mulcom 2(2 N1N)2(2 N1N)=(2 N1N)2
299 16 275 298 sylancr N2(2 N1N)=(2 N1N)2
300 30 oveq2d N22 N1=22N1+1
301 expp1 22N1022N1+1=22N12
302 16 34 301 sylancr N22N1+1=22N12
303 16 a1i N2
304 31 a1i N20
305 303 32 304 expmuld N22N1=22N1
306 sq2 22=4
307 306 oveq1i 22N1=4N1
308 305 307 eqtrdi N22N1=4N1
309 308 oveq1d N22N12=4N12
310 300 302 309 3eqtrd N22 N1=4N12
311 297 299 310 3brtr3d N(2 N1N)24N12
312 52 nnred N(2 N1N)
313 reexpcl 4N104N1
314 56 32 313 sylancr N4N1
315 2re 2
316 2pos 0<2
317 315 316 pm3.2i 20<2
318 317 a1i N20<2
319 lemul1 (2 N1N)4N120<2(2 N1N)4N1(2 N1N)24N12
320 312 314 318 319 syl3anc N(2 N1N)4N1(2 N1N)24N12
321 311 320 mpbird N(2 N1N)4N1
322 60 recni log4
323 mulcom log4N1log4N1=N1log4
324 322 103 323 sylancr Nlog4N1=N1log4
325 324 fveq2d Nelog4N1=eN1log4
326 reexplog 4+N14N1=eN1log4
327 58 270 326 sylancr N4N1=eN1log4
328 325 327 eqtr4d Nelog4N1=4N1
329 321 246 328 3brtr4d Nelog(2 N1N)elog4N1
330 efle log(2 N1N)log4N1log(2 N1N)log4N1elog(2 N1N)elog4N1
331 54 63 330 syl2anc Nlog(2 N1N)log4N1elog(2 N1N)elog4N1
332 329 331 mpbird Nlog(2 N1N)log4N1
333 54 63 11 332 leadd2dd NθN+log(2 N1N)θN+log4N1
334 8 55 64 252 333 letrd Nθ2 N1θN+log4N1