Metamath Proof Explorer


Theorem elqaalem3

Description: Lemma for elqaa . (Contributed by Mario Carneiro, 23-Jul-2014) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses elqaa.1 φA
elqaa.2 φFPoly0𝑝
elqaa.3 φFA=0
elqaa.4 B=coeffF
elqaa.5 N=k0supn|Bkn<
elqaa.6 R=seq0×NdegF
Assertion elqaalem3 φA𝔸

Proof

Step Hyp Ref Expression
1 elqaa.1 φA
2 elqaa.2 φFPoly0𝑝
3 elqaa.3 φFA=0
4 elqaa.4 B=coeffF
5 elqaa.5 N=k0supn|Bkn<
6 elqaa.6 R=seq0×NdegF
7 cnex V
8 7 a1i φV
9 6 fvexi RV
10 9 a1i φzRV
11 fvexd φzFzV
12 fconstmpt ×R=zR
13 12 a1i φ×R=zR
14 2 eldifad φFPoly
15 plyf FPolyF:
16 14 15 syl φF:
17 16 feqmptd φF=zFz
18 8 10 11 13 17 offval2 φ×R×fF=zRFz
19 fzfid φz0degFFin
20 nn0uz 0=0
21 0zd φ0
22 ssrab2 n|Bmn
23 fveq2 k=mBk=Bm
24 23 oveq1d k=mBkn=Bmn
25 24 eleq1d k=mBknBmn
26 25 rabbidv k=mn|Bkn=n|Bmn
27 26 infeq1d k=msupn|Bkn<=supn|Bmn<
28 ltso <Or
29 28 infex supn|Bmn<V
30 27 5 29 fvmpt m0Nm=supn|Bmn<
31 30 adantl φm0Nm=supn|Bmn<
32 nnuz =1
33 22 32 sseqtri n|Bmn1
34 0z 0
35 zq 00
36 34 35 ax-mp 0
37 4 coef2 FPoly0B:0
38 14 36 37 sylancl φB:0
39 38 ffvelcdmda φm0Bm
40 qmulz BmnBmn
41 39 40 syl φm0nBmn
42 rabn0 n|BmnnBmn
43 41 42 sylibr φm0n|Bmn
44 infssuzcl n|Bmn1n|Bmnsupn|Bmn<n|Bmn
45 33 43 44 sylancr φm0supn|Bmn<n|Bmn
46 31 45 eqeltrd φm0Nmn|Bmn
47 22 46 sselid φm0Nm
48 nnmulcl mkmk
49 48 adantl φmkmk
50 20 21 47 49 seqf φseq0×N:0
51 dgrcl FPolydegF0
52 14 51 syl φdegF0
53 50 52 ffvelcdmd φseq0×NdegF
54 6 53 eqeltrid φR
55 54 nncnd φR
56 55 adantr φzR
57 elfznn0 m0degFm0
58 4 coef3 FPolyB:0
59 14 58 syl φB:0
60 59 adantr φzB:0
61 60 ffvelcdmda φzm0Bm
62 expcl zm0zm
63 62 adantll φzm0zm
64 61 63 mulcld φzm0Bmzm
65 57 64 sylan2 φzm0degFBmzm
66 19 56 65 fsummulc2 φzRm=0degFBmzm=m=0degFRBmzm
67 eqid degF=degF
68 4 67 coeid2 FPolyzFz=m=0degFBmzm
69 14 68 sylan φzFz=m=0degFBmzm
70 69 oveq2d φzRFz=Rm=0degFBmzm
71 56 adantr φzm0R
72 71 61 63 mulassd φzm0RBmzm=RBmzm
73 57 72 sylan2 φzm0degFRBmzm=RBmzm
74 73 sumeq2dv φzm=0degFRBmzm=m=0degFRBmzm
75 66 70 74 3eqtr4d φzRFz=m=0degFRBmzm
76 75 mpteq2dva φzRFz=zm=0degFRBmzm
77 18 76 eqtrd φ×R×fF=zm=0degFRBmzm
78 zsscn
79 78 a1i φ
80 55 adantr φm0R
81 47 nncnd φm0Nm
82 47 nnne0d φm0Nm0
83 80 81 82 divcan2d φm0NmRNm=R
84 83 oveq2d φm0BmNmRNm=BmR
85 59 ffvelcdmda φm0Bm
86 80 81 82 divcld φm0RNm
87 85 81 86 mulassd φm0BmNmRNm=BmNmRNm
88 80 85 mulcomd φm0RBm=BmR
89 84 87 88 3eqtr4rd φm0RBm=BmNmRNm
90 57 89 sylan2 φm0degFRBm=BmNmRNm
91 oveq2 n=NmBmn=BmNm
92 91 eleq1d n=NmBmnBmNm
93 92 elrab Nmn|BmnNmBmNm
94 93 simprbi Nmn|BmnBmNm
95 46 94 syl φm0BmNm
96 57 95 sylan2 φm0degFBmNm
97 eqid xV,yVxymodNm=xV,yVxymodNm
98 1 2 3 4 5 6 97 elqaalem2 φm0degFRmodNm=0
99 54 adantr φm0degFR
100 57 47 sylan2 φm0degFNm
101 nnre RR
102 nnrp NmNm+
103 mod0 RNm+RmodNm=0RNm
104 101 102 103 syl2an RNmRmodNm=0RNm
105 99 100 104 syl2anc φm0degFRmodNm=0RNm
106 98 105 mpbid φm0degFRNm
107 96 106 zmulcld φm0degFBmNmRNm
108 90 107 eqeltrd φm0degFRBm
109 79 52 108 elplyd φzm=0degFRBmzmPoly
110 77 109 eqeltrd φ×R×fFPoly
111 eldifsn FPoly0𝑝FPolyF0𝑝
112 2 111 sylib φFPolyF0𝑝
113 112 simprd φF0𝑝
114 oveq1 ×R×fF=0𝑝×R×fF÷f×R=0𝑝÷f×R
115 16 ffvelcdmda φzFz
116 54 nnne0d φR0
117 116 adantr φzR0
118 115 56 117 divcan3d φzRFzR=Fz
119 118 mpteq2dva φzRFzR=zFz
120 ovexd φzRFzV
121 8 120 10 18 13 offval2 φ×R×fF÷f×R=zRFzR
122 119 121 17 3eqtr4d φ×R×fF÷f×R=F
123 55 116 div0d φ0R=0
124 123 mpteq2dv φz0R=z0
125 0cnd φz0
126 df-0p 0𝑝=×0
127 fconstmpt ×0=z0
128 126 127 eqtri 0𝑝=z0
129 128 a1i φ0𝑝=z0
130 8 125 10 129 13 offval2 φ0𝑝÷f×R=z0R
131 124 130 129 3eqtr4d φ0𝑝÷f×R=0𝑝
132 122 131 eqeq12d φ×R×fF÷f×R=0𝑝÷f×RF=0𝑝
133 114 132 imbitrid φ×R×fF=0𝑝F=0𝑝
134 133 necon3d φF0𝑝×R×fF0𝑝
135 113 134 mpd φ×R×fF0𝑝
136 eldifsn ×R×fFPoly0𝑝×R×fFPoly×R×fF0𝑝
137 110 135 136 sylanbrc φ×R×fFPoly0𝑝
138 9 fconst ×R:R
139 ffn ×R:R×RFn
140 138 139 mp1i φ×RFn
141 16 ffnd φFFn
142 inidm =
143 9 fvconst2 A×RA=R
144 143 adantl φA×RA=R
145 3 adantr φAFA=0
146 140 141 8 8 142 144 145 ofval φA×R×fFA=R0
147 1 146 mpdan φ×R×fFA=R0
148 55 mul01d φR0=0
149 147 148 eqtrd φ×R×fFA=0
150 fveq1 f=×R×fFfA=×R×fFA
151 150 eqeq1d f=×R×fFfA=0×R×fFA=0
152 151 rspcev ×R×fFPoly0𝑝×R×fFA=0fPoly0𝑝fA=0
153 137 149 152 syl2anc φfPoly0𝑝fA=0
154 elaa A𝔸AfPoly0𝑝fA=0
155 1 153 154 sylanbrc φA𝔸