Metamath Proof Explorer


Theorem ftc2nc

Description: Choice-free proof of ftc2 . (Contributed by Brendan Leahy, 19-Jun-2018)

Ref Expression
Hypotheses ftc2nc.a φA
ftc2nc.b φB
ftc2nc.le φAB
ftc2nc.c φF:ABcn
ftc2nc.i φDF𝐿1
ftc2nc.f φF:ABcn
Assertion ftc2nc φABFtdt=FBFA

Proof

Step Hyp Ref Expression
1 ftc2nc.a φA
2 ftc2nc.b φB
3 ftc2nc.le φAB
4 ftc2nc.c φF:ABcn
5 ftc2nc.i φDF𝐿1
6 ftc2nc.f φF:ABcn
7 1 rexrd φA*
8 2 rexrd φB*
9 ubicc2 A*B*ABBAB
10 7 8 3 9 syl3anc φBAB
11 fvex xABAxFtdtFxAV
12 11 fvconst2 BABAB×xABAxFtdtFxAB=xABAxFtdtFxA
13 10 12 syl φAB×xABAxFtdtFxAB=xABAxFtdtFxA
14 eqid TopOpenfld=TopOpenfld
15 14 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
16 15 a1i φTopOpenfld×tTopOpenfldCnTopOpenfld
17 eqid xABAxFtdt=xABAxFtdt
18 ssidd φABAB
19 ioossre AB
20 19 a1i φAB
21 cncff F:ABcnF:AB
22 4 21 syl φF:AB
23 ioof .:*×*𝒫
24 ffun .:*×*𝒫Fun.
25 23 24 ax-mp Fun.
26 fvelima Fun.s.AB×ABxAB×AB.x=s
27 25 26 mpan s.AB×ABxAB×AB.x=s
28 1st2nd2 xAB×ABx=1stx2ndx
29 28 fveq2d xAB×AB.x=.1stx2ndx
30 df-ov 1stx2ndx=.1stx2ndx
31 29 30 eqtr4di xAB×AB.x=1stx2ndx
32 31 eqeq1d xAB×AB.x=s1stx2ndx=s
33 32 adantl φxAB×AB.x=s1stx2ndx=s
34 7 8 jca φA*B*
35 34 adantr φxAB×ABA*B*
36 xp1st xAB×AB1stxAB
37 elicc1 A*B*1stxAB1stx*A1stx1stxB
38 7 8 37 syl2anc φ1stxAB1stx*A1stx1stxB
39 38 biimpa φ1stxAB1stx*A1stx1stxB
40 39 simp2d φ1stxABA1stx
41 36 40 sylan2 φxAB×ABA1stx
42 xp2nd xAB×AB2ndxAB
43 iccleub A*B*2ndxAB2ndxB
44 43 3expa A*B*2ndxAB2ndxB
45 34 42 44 syl2an φxAB×AB2ndxB
46 ioossioo A*B*A1stx2ndxB1stx2ndxAB
47 35 41 45 46 syl12anc φxAB×AB1stx2ndxAB
48 47 sselda φxAB×ABt1stx2ndxtAB
49 22 ffvelcdmda φtABFt
50 49 adantlr φxAB×ABtABFt
51 48 50 syldan φxAB×ABt1stx2ndxFt
52 ioombl 1stx2ndxdomvol
53 52 a1i φxAB×AB1stx2ndxdomvol
54 fvexd φxAB×ABtABFtV
55 22 feqmptd φDF=tABFt
56 55 5 eqeltrrd φtABFt𝐿1
57 56 adantr φxAB×ABtABFt𝐿1
58 47 53 54 57 iblss φxAB×ABt1stx2ndxFt𝐿1
59 ax-resscn
60 ssid
61 cncfss cncn
62 59 60 61 mp2an cncn
63 abscncf abs:cn
64 62 63 sselii abs:cn
65 64 a1i φxAB×ABabs:cn
66 55 reseq1d φF1stx2ndx=tABFt1stx2ndx
67 66 adantr φxAB×ABF1stx2ndx=tABFt1stx2ndx
68 47 resmptd φxAB×ABtABFt1stx2ndx=t1stx2ndxFt
69 67 68 eqtrd φxAB×ABF1stx2ndx=t1stx2ndxFt
70 4 adantr φxAB×ABF:ABcn
71 rescncf 1stx2ndxABF:ABcnF1stx2ndx:1stx2ndxcn
72 47 70 71 sylc φxAB×ABF1stx2ndx:1stx2ndxcn
73 69 72 eqeltrrd φxAB×ABt1stx2ndxFt:1stx2ndxcn
74 65 73 cncfmpt1f φxAB×ABt1stx2ndxFt:1stx2ndxcn
75 cnmbf 1stx2ndxdomvolt1stx2ndxFt:1stx2ndxcnt1stx2ndxFtMblFn
76 52 74 75 sylancr φxAB×ABt1stx2ndxFtMblFn
77 51 58 itgcl φxAB×AB1stx2ndxFtdt
78 77 cjcld φxAB×AB1stx2ndxFtdt
79 ioossre 1stx2ndx
80 79 59 sstri 1stx2ndx
81 cncfmptc 1stx2ndxFtdt1stx2ndxs1stx2ndx1stx2ndxFtdt:1stx2ndxcn
82 80 60 81 mp3an23 1stx2ndxFtdts1stx2ndx1stx2ndxFtdt:1stx2ndxcn
83 78 82 syl φxAB×ABs1stx2ndx1stx2ndxFtdt:1stx2ndxcn
84 nfcv _sFt
85 nfcsb1v _ts/tFt
86 csbeq1a t=sFt=s/tFt
87 84 85 86 cbvmpt t1stx2ndxFt=s1stx2ndxs/tFt
88 87 73 eqeltrrid φxAB×ABs1stx2ndxs/tFt:1stx2ndxcn
89 83 88 mulcncf φxAB×ABs1stx2ndx1stx2ndxFtdts/tFt:1stx2ndxcn
90 cnmbf 1stx2ndxdomvols1stx2ndx1stx2ndxFtdts/tFt:1stx2ndxcns1stx2ndx1stx2ndxFtdts/tFtMblFn
91 52 89 90 sylancr φxAB×ABs1stx2ndx1stx2ndxFtdts/tFtMblFn
92 51 58 76 91 itgabsnc φxAB×AB1stx2ndxFtdt1stx2ndxFtdt
93 51 abscld φxAB×ABt1stx2ndxFt
94 fvexd φxAB×ABt1stx2ndxFtV
95 94 58 76 iblabsnc φxAB×ABt1stx2ndxFt𝐿1
96 51 absge0d φxAB×ABt1stx2ndx0Ft
97 93 95 96 itgposval φxAB×AB1stx2ndxFtdt=2tift1stx2ndxFt0
98 92 97 breqtrd φxAB×AB1stx2ndxFtdt2tift1stx2ndxFt0
99 itgeq1 1stx2ndx=s1stx2ndxFtdt=sFtdt
100 99 fveq2d 1stx2ndx=s1stx2ndxFtdt=sFtdt
101 eleq2 1stx2ndx=st1stx2ndxts
102 101 ifbid 1stx2ndx=sift1stx2ndxFt0=iftsFt0
103 102 mpteq2dv 1stx2ndx=stift1stx2ndxFt0=tiftsFt0
104 103 fveq2d 1stx2ndx=s2tift1stx2ndxFt0=2tiftsFt0
105 100 104 breq12d 1stx2ndx=s1stx2ndxFtdt2tift1stx2ndxFt0sFtdt2tiftsFt0
106 98 105 syl5ibcom φxAB×AB1stx2ndx=ssFtdt2tiftsFt0
107 33 106 sylbid φxAB×AB.x=ssFtdt2tiftsFt0
108 107 rexlimdva φxAB×AB.x=ssFtdt2tiftsFt0
109 27 108 syl5 φs.AB×ABsFtdt2tiftsFt0
110 109 ralrimiv φs.AB×ABsFtdt2tiftsFt0
111 17 1 2 3 18 20 5 22 110 ftc1anc φxABAxFtdt:ABcn
112 cncff F:ABcnF:AB
113 6 112 syl φF:AB
114 113 feqmptd φF=xABFx
115 114 6 eqeltrrd φxABFx:ABcn
116 14 16 111 115 cncfmpt2f φxABAxFtdtFx:ABcn
117 59 a1i φ
118 iccssre ABAB
119 1 2 118 syl2anc φAB
120 fvexd φxABtAxFtV
121 2 adantr φxABB
122 121 rexrd φxABB*
123 elicc2 ABxABxAxxB
124 1 2 123 syl2anc φxABxAxxB
125 124 biimpa φxABxAxxB
126 125 simp3d φxABxB
127 iooss2 B*xBAxAB
128 122 126 127 syl2anc φxABAxAB
129 ioombl Axdomvol
130 129 a1i φxABAxdomvol
131 fvexd φxABtABFtV
132 56 adantr φxABtABFt𝐿1
133 128 130 131 132 iblss φxABtAxFt𝐿1
134 120 133 itgcl φxABAxFtdt
135 113 ffvelcdmda φxABFx
136 134 135 subcld φxABAxFtdtFx
137 14 tgioo2 topGenran.=TopOpenfld𝑡
138 iccntr ABinttopGenran.AB=AB
139 1 2 138 syl2anc φinttopGenran.AB=AB
140 117 119 136 137 14 139 dvmptntr φdxABAxFtdtFxdx=dxABAxFtdtFxdx
141 reelprrecn
142 141 a1i φ
143 ioossicc ABAB
144 143 sseli xABxAB
145 144 134 sylan2 φxABAxFtdt
146 22 ffvelcdmda φxABFx
147 17 1 2 3 4 5 ftc1cnnc φdxABAxFtdtdx=DF
148 117 119 134 137 14 139 dvmptntr φdxABAxFtdtdx=dxABAxFtdtdx
149 22 feqmptd φDF=xABFx
150 147 148 149 3eqtr3d φdxABAxFtdtdx=xABFx
151 144 135 sylan2 φxABFx
152 114 oveq2d φDF=dxABFxdx
153 117 119 135 137 14 139 dvmptntr φdxABFxdx=dxABFxdx
154 152 149 153 3eqtr3rd φdxABFxdx=xABFx
155 142 145 146 150 151 146 154 dvmptsub φdxABAxFtdtFxdx=xABFxFx
156 146 subidd φxABFxFx=0
157 156 mpteq2dva φxABFxFx=xAB0
158 140 155 157 3eqtrd φdxABAxFtdtFxdx=xAB0
159 fconstmpt AB×0=xAB0
160 158 159 eqtr4di φdxABAxFtdtFxdx=AB×0
161 1 2 116 160 dveq0 φxABAxFtdtFx=AB×xABAxFtdtFxA
162 161 fveq1d φxABAxFtdtFxB=AB×xABAxFtdtFxAB
163 oveq2 x=BAx=AB
164 itgeq1 Ax=ABAxFtdt=ABFtdt
165 163 164 syl x=BAxFtdt=ABFtdt
166 fveq2 x=BFx=FB
167 165 166 oveq12d x=BAxFtdtFx=ABFtdtFB
168 eqid xABAxFtdtFx=xABAxFtdtFx
169 ovex ABFtdtFBV
170 167 168 169 fvmpt BABxABAxFtdtFxB=ABFtdtFB
171 10 170 syl φxABAxFtdtFxB=ABFtdtFB
172 162 171 eqtr3d φAB×xABAxFtdtFxAB=ABFtdtFB
173 lbicc2 A*B*ABAAB
174 7 8 3 173 syl3anc φAAB
175 oveq2 x=AAx=AA
176 iooid AA=
177 175 176 eqtrdi x=AAx=
178 itgeq1 Ax=AxFtdt=Ftdt
179 177 178 syl x=AAxFtdt=Ftdt
180 itg0 Ftdt=0
181 179 180 eqtrdi x=AAxFtdt=0
182 fveq2 x=AFx=FA
183 181 182 oveq12d x=AAxFtdtFx=0FA
184 df-neg FA=0FA
185 183 184 eqtr4di x=AAxFtdtFx=FA
186 negex FAV
187 185 168 186 fvmpt AABxABAxFtdtFxA=FA
188 174 187 syl φxABAxFtdtFxA=FA
189 13 172 188 3eqtr3d φABFtdtFB=FA
190 189 oveq2d φFB+ABFtdt-FB=FB+FA
191 113 10 ffvelcdmd φFB
192 fvexd φtABFtV
193 192 56 itgcl φABFtdt
194 191 193 pncan3d φFB+ABFtdt-FB=ABFtdt
195 113 174 ffvelcdmd φFA
196 191 195 negsubd φFB+FA=FBFA
197 190 194 196 3eqtr3d φABFtdt=FBFA