Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Brendan Leahy
ftc2nc
Next ⟩
asindmre
Metamath Proof Explorer
Ascii
Unicode
Theorem
ftc2nc
Description:
Choice-free proof of
ftc2
.
(Contributed by
Brendan Leahy
, 19-Jun-2018)
Ref
Expression
Hypotheses
ftc2nc.a
⊢
φ
→
A
∈
ℝ
ftc2nc.b
⊢
φ
→
B
∈
ℝ
ftc2nc.le
⊢
φ
→
A
≤
B
ftc2nc.c
⊢
φ
→
F
ℝ
′
:
A
B
⟶
cn
ℂ
ftc2nc.i
⊢
φ
→
ℝ
D
F
∈
𝐿
1
ftc2nc.f
⊢
φ
→
F
:
A
B
⟶
cn
ℂ
Assertion
ftc2nc
⊢
φ
→
∫
A
B
F
ℝ
′
t
d
t
=
F
B
−
F
A
Proof
Step
Hyp
Ref
Expression
1
ftc2nc.a
⊢
φ
→
A
∈
ℝ
2
ftc2nc.b
⊢
φ
→
B
∈
ℝ
3
ftc2nc.le
⊢
φ
→
A
≤
B
4
ftc2nc.c
⊢
φ
→
F
ℝ
′
:
A
B
⟶
cn
ℂ
5
ftc2nc.i
⊢
φ
→
ℝ
D
F
∈
𝐿
1
6
ftc2nc.f
⊢
φ
→
F
:
A
B
⟶
cn
ℂ
7
1
rexrd
⊢
φ
→
A
∈
ℝ
*
8
2
rexrd
⊢
φ
→
B
∈
ℝ
*
9
ubicc2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
≤
B
→
B
∈
A
B
10
7
8
3
9
syl3anc
⊢
φ
→
B
∈
A
B
11
fvex
⊢
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
A
∈
V
12
11
fvconst2
⊢
B
∈
A
B
→
A
B
×
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
A
B
=
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
A
13
10
12
syl
⊢
φ
→
A
B
×
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
A
B
=
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
A
14
eqid
⊢
TopOpen
ℂ
fld
=
TopOpen
ℂ
fld
15
14
subcn
⊢
−
∈
TopOpen
ℂ
fld
×
t
TopOpen
ℂ
fld
Cn
TopOpen
ℂ
fld
16
15
a1i
⊢
φ
→
−
∈
TopOpen
ℂ
fld
×
t
TopOpen
ℂ
fld
Cn
TopOpen
ℂ
fld
17
eqid
⊢
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
=
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
18
ssidd
⊢
φ
→
A
B
⊆
A
B
19
ioossre
⊢
A
B
⊆
ℝ
20
19
a1i
⊢
φ
→
A
B
⊆
ℝ
21
cncff
⊢
F
ℝ
′
:
A
B
⟶
cn
ℂ
→
F
ℝ
′
:
A
B
⟶
ℂ
22
4
21
syl
⊢
φ
→
F
ℝ
′
:
A
B
⟶
ℂ
23
ioof
⊢
.
:
ℝ
*
×
ℝ
*
⟶
𝒫
ℝ
24
ffun
⊢
.
:
ℝ
*
×
ℝ
*
⟶
𝒫
ℝ
→
Fun
.
25
23
24
ax-mp
⊢
Fun
.
26
fvelima
⊢
Fun
.
∧
s
∈
.
A
B
×
A
B
→
∃
x
∈
A
B
×
A
B
.
x
=
s
27
25
26
mpan
⊢
s
∈
.
A
B
×
A
B
→
∃
x
∈
A
B
×
A
B
.
x
=
s
28
1st2nd2
⊢
x
∈
A
B
×
A
B
→
x
=
1
st
x
2
nd
x
29
28
fveq2d
⊢
x
∈
A
B
×
A
B
→
.
x
=
.
1
st
x
2
nd
x
30
df-ov
⊢
1
st
x
2
nd
x
=
.
1
st
x
2
nd
x
31
29
30
eqtr4di
⊢
x
∈
A
B
×
A
B
→
.
x
=
1
st
x
2
nd
x
32
31
eqeq1d
⊢
x
∈
A
B
×
A
B
→
.
x
=
s
↔
1
st
x
2
nd
x
=
s
33
32
adantl
⊢
φ
∧
x
∈
A
B
×
A
B
→
.
x
=
s
↔
1
st
x
2
nd
x
=
s
34
7
8
jca
⊢
φ
→
A
∈
ℝ
*
∧
B
∈
ℝ
*
35
34
adantr
⊢
φ
∧
x
∈
A
B
×
A
B
→
A
∈
ℝ
*
∧
B
∈
ℝ
*
36
xp1st
⊢
x
∈
A
B
×
A
B
→
1
st
x
∈
A
B
37
elicc1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
1
st
x
∈
A
B
↔
1
st
x
∈
ℝ
*
∧
A
≤
1
st
x
∧
1
st
x
≤
B
38
7
8
37
syl2anc
⊢
φ
→
1
st
x
∈
A
B
↔
1
st
x
∈
ℝ
*
∧
A
≤
1
st
x
∧
1
st
x
≤
B
39
38
biimpa
⊢
φ
∧
1
st
x
∈
A
B
→
1
st
x
∈
ℝ
*
∧
A
≤
1
st
x
∧
1
st
x
≤
B
40
39
simp2d
⊢
φ
∧
1
st
x
∈
A
B
→
A
≤
1
st
x
41
36
40
sylan2
⊢
φ
∧
x
∈
A
B
×
A
B
→
A
≤
1
st
x
42
xp2nd
⊢
x
∈
A
B
×
A
B
→
2
nd
x
∈
A
B
43
iccleub
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
2
nd
x
∈
A
B
→
2
nd
x
≤
B
44
43
3expa
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
2
nd
x
∈
A
B
→
2
nd
x
≤
B
45
34
42
44
syl2an
⊢
φ
∧
x
∈
A
B
×
A
B
→
2
nd
x
≤
B
46
ioossioo
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
≤
1
st
x
∧
2
nd
x
≤
B
→
1
st
x
2
nd
x
⊆
A
B
47
35
41
45
46
syl12anc
⊢
φ
∧
x
∈
A
B
×
A
B
→
1
st
x
2
nd
x
⊆
A
B
48
47
sselda
⊢
φ
∧
x
∈
A
B
×
A
B
∧
t
∈
1
st
x
2
nd
x
→
t
∈
A
B
49
22
ffvelcdmda
⊢
φ
∧
t
∈
A
B
→
F
ℝ
′
t
∈
ℂ
50
49
adantlr
⊢
φ
∧
x
∈
A
B
×
A
B
∧
t
∈
A
B
→
F
ℝ
′
t
∈
ℂ
51
48
50
syldan
⊢
φ
∧
x
∈
A
B
×
A
B
∧
t
∈
1
st
x
2
nd
x
→
F
ℝ
′
t
∈
ℂ
52
ioombl
⊢
1
st
x
2
nd
x
∈
dom
vol
53
52
a1i
⊢
φ
∧
x
∈
A
B
×
A
B
→
1
st
x
2
nd
x
∈
dom
vol
54
fvexd
⊢
φ
∧
x
∈
A
B
×
A
B
∧
t
∈
A
B
→
F
ℝ
′
t
∈
V
55
22
feqmptd
⊢
φ
→
ℝ
D
F
=
t
∈
A
B
⟼
F
ℝ
′
t
56
55
5
eqeltrrd
⊢
φ
→
t
∈
A
B
⟼
F
ℝ
′
t
∈
𝐿
1
57
56
adantr
⊢
φ
∧
x
∈
A
B
×
A
B
→
t
∈
A
B
⟼
F
ℝ
′
t
∈
𝐿
1
58
47
53
54
57
iblss
⊢
φ
∧
x
∈
A
B
×
A
B
→
t
∈
1
st
x
2
nd
x
⟼
F
ℝ
′
t
∈
𝐿
1
59
ax-resscn
⊢
ℝ
⊆
ℂ
60
ssid
⊢
ℂ
⊆
ℂ
61
cncfss
⊢
ℝ
⊆
ℂ
∧
ℂ
⊆
ℂ
→
ℂ
⟶
cn
ℝ
⊆
ℂ
⟶
cn
ℂ
62
59
60
61
mp2an
⊢
ℂ
⟶
cn
ℝ
⊆
ℂ
⟶
cn
ℂ
63
abscncf
⊢
abs
:
ℂ
⟶
cn
ℝ
64
62
63
sselii
⊢
abs
:
ℂ
⟶
cn
ℂ
65
64
a1i
⊢
φ
∧
x
∈
A
B
×
A
B
→
abs
:
ℂ
⟶
cn
ℂ
66
55
reseq1d
⊢
φ
→
F
ℝ
′
↾
1
st
x
2
nd
x
=
t
∈
A
B
⟼
F
ℝ
′
t
↾
1
st
x
2
nd
x
67
66
adantr
⊢
φ
∧
x
∈
A
B
×
A
B
→
F
ℝ
′
↾
1
st
x
2
nd
x
=
t
∈
A
B
⟼
F
ℝ
′
t
↾
1
st
x
2
nd
x
68
47
resmptd
⊢
φ
∧
x
∈
A
B
×
A
B
→
t
∈
A
B
⟼
F
ℝ
′
t
↾
1
st
x
2
nd
x
=
t
∈
1
st
x
2
nd
x
⟼
F
ℝ
′
t
69
67
68
eqtrd
⊢
φ
∧
x
∈
A
B
×
A
B
→
F
ℝ
′
↾
1
st
x
2
nd
x
=
t
∈
1
st
x
2
nd
x
⟼
F
ℝ
′
t
70
4
adantr
⊢
φ
∧
x
∈
A
B
×
A
B
→
F
ℝ
′
:
A
B
⟶
cn
ℂ
71
rescncf
⊢
1
st
x
2
nd
x
⊆
A
B
→
F
ℝ
′
:
A
B
⟶
cn
ℂ
→
F
ℝ
′
↾
1
st
x
2
nd
x
:
1
st
x
2
nd
x
⟶
cn
ℂ
72
47
70
71
sylc
⊢
φ
∧
x
∈
A
B
×
A
B
→
F
ℝ
′
↾
1
st
x
2
nd
x
:
1
st
x
2
nd
x
⟶
cn
ℂ
73
69
72
eqeltrrd
⊢
φ
∧
x
∈
A
B
×
A
B
→
t
∈
1
st
x
2
nd
x
⟼
F
ℝ
′
t
:
1
st
x
2
nd
x
⟶
cn
ℂ
74
65
73
cncfmpt1f
⊢
φ
∧
x
∈
A
B
×
A
B
→
t
∈
1
st
x
2
nd
x
⟼
F
ℝ
′
t
:
1
st
x
2
nd
x
⟶
cn
ℂ
75
cnmbf
⊢
1
st
x
2
nd
x
∈
dom
vol
∧
t
∈
1
st
x
2
nd
x
⟼
F
ℝ
′
t
:
1
st
x
2
nd
x
⟶
cn
ℂ
→
t
∈
1
st
x
2
nd
x
⟼
F
ℝ
′
t
∈
MblFn
76
52
74
75
sylancr
⊢
φ
∧
x
∈
A
B
×
A
B
→
t
∈
1
st
x
2
nd
x
⟼
F
ℝ
′
t
∈
MblFn
77
51
58
itgcl
⊢
φ
∧
x
∈
A
B
×
A
B
→
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
∈
ℂ
78
77
cjcld
⊢
φ
∧
x
∈
A
B
×
A
B
→
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
‾
∈
ℂ
79
ioossre
⊢
1
st
x
2
nd
x
⊆
ℝ
80
79
59
sstri
⊢
1
st
x
2
nd
x
⊆
ℂ
81
cncfmptc
⊢
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
‾
∈
ℂ
∧
1
st
x
2
nd
x
⊆
ℂ
∧
ℂ
⊆
ℂ
→
s
∈
1
st
x
2
nd
x
⟼
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
‾
:
1
st
x
2
nd
x
⟶
cn
ℂ
82
80
60
81
mp3an23
⊢
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
‾
∈
ℂ
→
s
∈
1
st
x
2
nd
x
⟼
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
‾
:
1
st
x
2
nd
x
⟶
cn
ℂ
83
78
82
syl
⊢
φ
∧
x
∈
A
B
×
A
B
→
s
∈
1
st
x
2
nd
x
⟼
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
‾
:
1
st
x
2
nd
x
⟶
cn
ℂ
84
nfcv
⊢
Ⅎ
_
s
F
ℝ
′
t
85
nfcsb1v
⦋
⦌
⊢
Ⅎ
_
t
⦋
s
/
t
⦌
F
ℝ
′
t
86
csbeq1a
⦋
⦌
⊢
t
=
s
→
F
ℝ
′
t
=
⦋
s
/
t
⦌
F
ℝ
′
t
87
84
85
86
cbvmpt
⦋
⦌
⊢
t
∈
1
st
x
2
nd
x
⟼
F
ℝ
′
t
=
s
∈
1
st
x
2
nd
x
⟼
⦋
s
/
t
⦌
F
ℝ
′
t
88
87
73
eqeltrrid
⦋
⦌
⊢
φ
∧
x
∈
A
B
×
A
B
→
s
∈
1
st
x
2
nd
x
⟼
⦋
s
/
t
⦌
F
ℝ
′
t
:
1
st
x
2
nd
x
⟶
cn
ℂ
89
83
88
mulcncf
⦋
⦌
⊢
φ
∧
x
∈
A
B
×
A
B
→
s
∈
1
st
x
2
nd
x
⟼
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
‾
⦋
s
/
t
⦌
F
ℝ
′
t
:
1
st
x
2
nd
x
⟶
cn
ℂ
90
cnmbf
⦋
⦌
⦋
⦌
⊢
1
st
x
2
nd
x
∈
dom
vol
∧
s
∈
1
st
x
2
nd
x
⟼
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
‾
⦋
s
/
t
⦌
F
ℝ
′
t
:
1
st
x
2
nd
x
⟶
cn
ℂ
→
s
∈
1
st
x
2
nd
x
⟼
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
‾
⦋
s
/
t
⦌
F
ℝ
′
t
∈
MblFn
91
52
89
90
sylancr
⦋
⦌
⊢
φ
∧
x
∈
A
B
×
A
B
→
s
∈
1
st
x
2
nd
x
⟼
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
‾
⦋
s
/
t
⦌
F
ℝ
′
t
∈
MblFn
92
51
58
76
91
itgabsnc
⊢
φ
∧
x
∈
A
B
×
A
B
→
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
≤
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
93
51
abscld
⊢
φ
∧
x
∈
A
B
×
A
B
∧
t
∈
1
st
x
2
nd
x
→
F
ℝ
′
t
∈
ℝ
94
fvexd
⊢
φ
∧
x
∈
A
B
×
A
B
∧
t
∈
1
st
x
2
nd
x
→
F
ℝ
′
t
∈
V
95
94
58
76
iblabsnc
⊢
φ
∧
x
∈
A
B
×
A
B
→
t
∈
1
st
x
2
nd
x
⟼
F
ℝ
′
t
∈
𝐿
1
96
51
absge0d
⊢
φ
∧
x
∈
A
B
×
A
B
∧
t
∈
1
st
x
2
nd
x
→
0
≤
F
ℝ
′
t
97
93
95
96
itgposval
⊢
φ
∧
x
∈
A
B
×
A
B
→
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
=
∫
2
t
∈
ℝ
⟼
if
t
∈
1
st
x
2
nd
x
F
ℝ
′
t
0
98
92
97
breqtrd
⊢
φ
∧
x
∈
A
B
×
A
B
→
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
≤
∫
2
t
∈
ℝ
⟼
if
t
∈
1
st
x
2
nd
x
F
ℝ
′
t
0
99
itgeq1
⊢
1
st
x
2
nd
x
=
s
→
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
=
∫
s
F
ℝ
′
t
d
t
100
99
fveq2d
⊢
1
st
x
2
nd
x
=
s
→
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
=
∫
s
F
ℝ
′
t
d
t
101
eleq2
⊢
1
st
x
2
nd
x
=
s
→
t
∈
1
st
x
2
nd
x
↔
t
∈
s
102
101
ifbid
⊢
1
st
x
2
nd
x
=
s
→
if
t
∈
1
st
x
2
nd
x
F
ℝ
′
t
0
=
if
t
∈
s
F
ℝ
′
t
0
103
102
mpteq2dv
⊢
1
st
x
2
nd
x
=
s
→
t
∈
ℝ
⟼
if
t
∈
1
st
x
2
nd
x
F
ℝ
′
t
0
=
t
∈
ℝ
⟼
if
t
∈
s
F
ℝ
′
t
0
104
103
fveq2d
⊢
1
st
x
2
nd
x
=
s
→
∫
2
t
∈
ℝ
⟼
if
t
∈
1
st
x
2
nd
x
F
ℝ
′
t
0
=
∫
2
t
∈
ℝ
⟼
if
t
∈
s
F
ℝ
′
t
0
105
100
104
breq12d
⊢
1
st
x
2
nd
x
=
s
→
∫
1
st
x
2
nd
x
F
ℝ
′
t
d
t
≤
∫
2
t
∈
ℝ
⟼
if
t
∈
1
st
x
2
nd
x
F
ℝ
′
t
0
↔
∫
s
F
ℝ
′
t
d
t
≤
∫
2
t
∈
ℝ
⟼
if
t
∈
s
F
ℝ
′
t
0
106
98
105
syl5ibcom
⊢
φ
∧
x
∈
A
B
×
A
B
→
1
st
x
2
nd
x
=
s
→
∫
s
F
ℝ
′
t
d
t
≤
∫
2
t
∈
ℝ
⟼
if
t
∈
s
F
ℝ
′
t
0
107
33
106
sylbid
⊢
φ
∧
x
∈
A
B
×
A
B
→
.
x
=
s
→
∫
s
F
ℝ
′
t
d
t
≤
∫
2
t
∈
ℝ
⟼
if
t
∈
s
F
ℝ
′
t
0
108
107
rexlimdva
⊢
φ
→
∃
x
∈
A
B
×
A
B
.
x
=
s
→
∫
s
F
ℝ
′
t
d
t
≤
∫
2
t
∈
ℝ
⟼
if
t
∈
s
F
ℝ
′
t
0
109
27
108
syl5
⊢
φ
→
s
∈
.
A
B
×
A
B
→
∫
s
F
ℝ
′
t
d
t
≤
∫
2
t
∈
ℝ
⟼
if
t
∈
s
F
ℝ
′
t
0
110
109
ralrimiv
⊢
φ
→
∀
s
∈
.
A
B
×
A
B
∫
s
F
ℝ
′
t
d
t
≤
∫
2
t
∈
ℝ
⟼
if
t
∈
s
F
ℝ
′
t
0
111
17
1
2
3
18
20
5
22
110
ftc1anc
⊢
φ
→
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
:
A
B
⟶
cn
ℂ
112
cncff
⊢
F
:
A
B
⟶
cn
ℂ
→
F
:
A
B
⟶
ℂ
113
6
112
syl
⊢
φ
→
F
:
A
B
⟶
ℂ
114
113
feqmptd
⊢
φ
→
F
=
x
∈
A
B
⟼
F
x
115
114
6
eqeltrrd
⊢
φ
→
x
∈
A
B
⟼
F
x
:
A
B
⟶
cn
ℂ
116
14
16
111
115
cncfmpt2f
⊢
φ
→
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
:
A
B
⟶
cn
ℂ
117
59
a1i
⊢
φ
→
ℝ
⊆
ℂ
118
iccssre
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
B
⊆
ℝ
119
1
2
118
syl2anc
⊢
φ
→
A
B
⊆
ℝ
120
fvexd
⊢
φ
∧
x
∈
A
B
∧
t
∈
A
x
→
F
ℝ
′
t
∈
V
121
2
adantr
⊢
φ
∧
x
∈
A
B
→
B
∈
ℝ
122
121
rexrd
⊢
φ
∧
x
∈
A
B
→
B
∈
ℝ
*
123
elicc2
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
A
B
↔
x
∈
ℝ
∧
A
≤
x
∧
x
≤
B
124
1
2
123
syl2anc
⊢
φ
→
x
∈
A
B
↔
x
∈
ℝ
∧
A
≤
x
∧
x
≤
B
125
124
biimpa
⊢
φ
∧
x
∈
A
B
→
x
∈
ℝ
∧
A
≤
x
∧
x
≤
B
126
125
simp3d
⊢
φ
∧
x
∈
A
B
→
x
≤
B
127
iooss2
⊢
B
∈
ℝ
*
∧
x
≤
B
→
A
x
⊆
A
B
128
122
126
127
syl2anc
⊢
φ
∧
x
∈
A
B
→
A
x
⊆
A
B
129
ioombl
⊢
A
x
∈
dom
vol
130
129
a1i
⊢
φ
∧
x
∈
A
B
→
A
x
∈
dom
vol
131
fvexd
⊢
φ
∧
x
∈
A
B
∧
t
∈
A
B
→
F
ℝ
′
t
∈
V
132
56
adantr
⊢
φ
∧
x
∈
A
B
→
t
∈
A
B
⟼
F
ℝ
′
t
∈
𝐿
1
133
128
130
131
132
iblss
⊢
φ
∧
x
∈
A
B
→
t
∈
A
x
⟼
F
ℝ
′
t
∈
𝐿
1
134
120
133
itgcl
⊢
φ
∧
x
∈
A
B
→
∫
A
x
F
ℝ
′
t
d
t
∈
ℂ
135
113
ffvelcdmda
⊢
φ
∧
x
∈
A
B
→
F
x
∈
ℂ
136
134
135
subcld
⊢
φ
∧
x
∈
A
B
→
∫
A
x
F
ℝ
′
t
d
t
−
F
x
∈
ℂ
137
14
tgioo2
⊢
topGen
ran
.
=
TopOpen
ℂ
fld
↾
𝑡
ℝ
138
iccntr
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
int
topGen
ran
.
A
B
=
A
B
139
1
2
138
syl2anc
⊢
φ
→
int
topGen
ran
.
A
B
=
A
B
140
117
119
136
137
14
139
dvmptntr
⊢
φ
→
d
x
∈
A
B
∫
A
x
F
ℝ
′
t
d
t
−
F
x
d
ℝ
x
=
d
x
∈
A
B
∫
A
x
F
ℝ
′
t
d
t
−
F
x
d
ℝ
x
141
reelprrecn
⊢
ℝ
∈
ℝ
ℂ
142
141
a1i
⊢
φ
→
ℝ
∈
ℝ
ℂ
143
ioossicc
⊢
A
B
⊆
A
B
144
143
sseli
⊢
x
∈
A
B
→
x
∈
A
B
145
144
134
sylan2
⊢
φ
∧
x
∈
A
B
→
∫
A
x
F
ℝ
′
t
d
t
∈
ℂ
146
22
ffvelcdmda
⊢
φ
∧
x
∈
A
B
→
F
ℝ
′
x
∈
ℂ
147
17
1
2
3
4
5
ftc1cnnc
⊢
φ
→
d
x
∈
A
B
∫
A
x
F
ℝ
′
t
d
t
d
ℝ
x
=
ℝ
D
F
148
117
119
134
137
14
139
dvmptntr
⊢
φ
→
d
x
∈
A
B
∫
A
x
F
ℝ
′
t
d
t
d
ℝ
x
=
d
x
∈
A
B
∫
A
x
F
ℝ
′
t
d
t
d
ℝ
x
149
22
feqmptd
⊢
φ
→
ℝ
D
F
=
x
∈
A
B
⟼
F
ℝ
′
x
150
147
148
149
3eqtr3d
⊢
φ
→
d
x
∈
A
B
∫
A
x
F
ℝ
′
t
d
t
d
ℝ
x
=
x
∈
A
B
⟼
F
ℝ
′
x
151
144
135
sylan2
⊢
φ
∧
x
∈
A
B
→
F
x
∈
ℂ
152
114
oveq2d
⊢
φ
→
ℝ
D
F
=
d
x
∈
A
B
F
x
d
ℝ
x
153
117
119
135
137
14
139
dvmptntr
⊢
φ
→
d
x
∈
A
B
F
x
d
ℝ
x
=
d
x
∈
A
B
F
x
d
ℝ
x
154
152
149
153
3eqtr3rd
⊢
φ
→
d
x
∈
A
B
F
x
d
ℝ
x
=
x
∈
A
B
⟼
F
ℝ
′
x
155
142
145
146
150
151
146
154
dvmptsub
⊢
φ
→
d
x
∈
A
B
∫
A
x
F
ℝ
′
t
d
t
−
F
x
d
ℝ
x
=
x
∈
A
B
⟼
F
ℝ
′
x
−
F
ℝ
′
x
156
146
subidd
⊢
φ
∧
x
∈
A
B
→
F
ℝ
′
x
−
F
ℝ
′
x
=
0
157
156
mpteq2dva
⊢
φ
→
x
∈
A
B
⟼
F
ℝ
′
x
−
F
ℝ
′
x
=
x
∈
A
B
⟼
0
158
140
155
157
3eqtrd
⊢
φ
→
d
x
∈
A
B
∫
A
x
F
ℝ
′
t
d
t
−
F
x
d
ℝ
x
=
x
∈
A
B
⟼
0
159
fconstmpt
⊢
A
B
×
0
=
x
∈
A
B
⟼
0
160
158
159
eqtr4di
⊢
φ
→
d
x
∈
A
B
∫
A
x
F
ℝ
′
t
d
t
−
F
x
d
ℝ
x
=
A
B
×
0
161
1
2
116
160
dveq0
⊢
φ
→
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
=
A
B
×
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
A
162
161
fveq1d
⊢
φ
→
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
B
=
A
B
×
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
A
B
163
oveq2
⊢
x
=
B
→
A
x
=
A
B
164
itgeq1
⊢
A
x
=
A
B
→
∫
A
x
F
ℝ
′
t
d
t
=
∫
A
B
F
ℝ
′
t
d
t
165
163
164
syl
⊢
x
=
B
→
∫
A
x
F
ℝ
′
t
d
t
=
∫
A
B
F
ℝ
′
t
d
t
166
fveq2
⊢
x
=
B
→
F
x
=
F
B
167
165
166
oveq12d
⊢
x
=
B
→
∫
A
x
F
ℝ
′
t
d
t
−
F
x
=
∫
A
B
F
ℝ
′
t
d
t
−
F
B
168
eqid
⊢
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
=
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
169
ovex
⊢
∫
A
B
F
ℝ
′
t
d
t
−
F
B
∈
V
170
167
168
169
fvmpt
⊢
B
∈
A
B
→
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
B
=
∫
A
B
F
ℝ
′
t
d
t
−
F
B
171
10
170
syl
⊢
φ
→
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
B
=
∫
A
B
F
ℝ
′
t
d
t
−
F
B
172
162
171
eqtr3d
⊢
φ
→
A
B
×
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
A
B
=
∫
A
B
F
ℝ
′
t
d
t
−
F
B
173
lbicc2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
≤
B
→
A
∈
A
B
174
7
8
3
173
syl3anc
⊢
φ
→
A
∈
A
B
175
oveq2
⊢
x
=
A
→
A
x
=
A
A
176
iooid
⊢
A
A
=
∅
177
175
176
eqtrdi
⊢
x
=
A
→
A
x
=
∅
178
itgeq1
⊢
A
x
=
∅
→
∫
A
x
F
ℝ
′
t
d
t
=
∫
∅
F
ℝ
′
t
d
t
179
177
178
syl
⊢
x
=
A
→
∫
A
x
F
ℝ
′
t
d
t
=
∫
∅
F
ℝ
′
t
d
t
180
itg0
⊢
∫
∅
F
ℝ
′
t
d
t
=
0
181
179
180
eqtrdi
⊢
x
=
A
→
∫
A
x
F
ℝ
′
t
d
t
=
0
182
fveq2
⊢
x
=
A
→
F
x
=
F
A
183
181
182
oveq12d
⊢
x
=
A
→
∫
A
x
F
ℝ
′
t
d
t
−
F
x
=
0
−
F
A
184
df-neg
⊢
−
F
A
=
0
−
F
A
185
183
184
eqtr4di
⊢
x
=
A
→
∫
A
x
F
ℝ
′
t
d
t
−
F
x
=
−
F
A
186
negex
⊢
−
F
A
∈
V
187
185
168
186
fvmpt
⊢
A
∈
A
B
→
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
A
=
−
F
A
188
174
187
syl
⊢
φ
→
x
∈
A
B
⟼
∫
A
x
F
ℝ
′
t
d
t
−
F
x
A
=
−
F
A
189
13
172
188
3eqtr3d
⊢
φ
→
∫
A
B
F
ℝ
′
t
d
t
−
F
B
=
−
F
A
190
189
oveq2d
⊢
φ
→
F
B
+
∫
A
B
F
ℝ
′
t
d
t
-
F
B
=
F
B
+
−
F
A
191
113
10
ffvelcdmd
⊢
φ
→
F
B
∈
ℂ
192
fvexd
⊢
φ
∧
t
∈
A
B
→
F
ℝ
′
t
∈
V
193
192
56
itgcl
⊢
φ
→
∫
A
B
F
ℝ
′
t
d
t
∈
ℂ
194
191
193
pncan3d
⊢
φ
→
F
B
+
∫
A
B
F
ℝ
′
t
d
t
-
F
B
=
∫
A
B
F
ℝ
′
t
d
t
195
113
174
ffvelcdmd
⊢
φ
→
F
A
∈
ℂ
196
191
195
negsubd
⊢
φ
→
F
B
+
−
F
A
=
F
B
−
F
A
197
190
194
196
3eqtr3d
⊢
φ
→
∫
A
B
F
ℝ
′
t
d
t
=
F
B
−
F
A