Metamath Proof Explorer


Theorem gausslemma2dlem1a

Description: Lemma for gausslemma2dlem1 . (Contributed by AV, 1-Jul-2021)

Ref Expression
Hypotheses gausslemma2d.p φP2
gausslemma2d.h H=P12
gausslemma2d.r R=x1Hifx2<P2x2Px2
Assertion gausslemma2dlem1a φranR=1H

Proof

Step Hyp Ref Expression
1 gausslemma2d.p φP2
2 gausslemma2d.h H=P12
3 gausslemma2d.r R=x1Hifx2<P2x2Px2
4 3 elrnmpt yVyranRx1Hy=ifx2<P2x2Px2
5 4 elv yranRx1Hy=ifx2<P2x2Px2
6 iftrue x2<P2ifx2<P2x2Px2=x2
7 6 eqeq2d x2<P2y=ifx2<P2x2Px2y=x2
8 7 adantr x2<P2φx1Hy=ifx2<P2x2Px2y=x2
9 elfz1b x1HxHxH
10 id xx
11 2nn 2
12 11 a1i x2
13 10 12 nnmulcld xx2
14 13 3ad2ant1 xHxHx2
15 14 3ad2ant1 xHxHφx2<P2x2
16 2 eleq1i HP12
17 16 biimpi HP12
18 17 3ad2ant2 xHxHP12
19 18 3ad2ant1 xHxHφx2<P2P12
20 nnoddn2prm P2P¬2P
21 nnz PP
22 21 anim1i P¬2PP¬2P
23 20 22 syl P2P¬2P
24 nnz xx
25 2z 2
26 25 a1i x2
27 24 26 zmulcld xx2
28 27 3ad2ant1 xHxHx2
29 23 28 anim12i P2xHxHP¬2Px2
30 df-3an P¬2Px2P¬2Px2
31 29 30 sylibr P2xHxHP¬2Px2
32 31 ex P2xHxHP¬2Px2
33 1 32 syl φxHxHP¬2Px2
34 33 impcom xHxHφP¬2Px2
35 ltoddhalfle P¬2Px2x2<P2x2P12
36 34 35 syl xHxHφx2<P2x2P12
37 36 biimp3a xHxHφx2<P2x2P12
38 15 19 37 3jca xHxHφx2<P2x2P12x2P12
39 38 3exp xHxHφx2<P2x2P12x2P12
40 9 39 sylbi x1Hφx2<P2x2P12x2P12
41 40 impcom φx1Hx2<P2x2P12x2P12
42 41 impcom x2<P2φx1Hx2P12x2P12
43 2 oveq2i 1H=1P12
44 43 eleq2i x21Hx21P12
45 elfz1b x21P12x2P12x2P12
46 44 45 bitri x21Hx2P12x2P12
47 42 46 sylibr x2<P2φx1Hx21H
48 eleq1 y=x2y1Hx21H
49 47 48 syl5ibrcom x2<P2φx1Hy=x2y1H
50 8 49 sylbid x2<P2φx1Hy=ifx2<P2x2Px2y1H
51 iffalse ¬x2<P2ifx2<P2x2Px2=Px2
52 51 eqeq2d ¬x2<P2y=ifx2<P2x2Px2y=Px2
53 52 adantr ¬x2<P2φx1Hy=ifx2<P2x2Px2y=Px2
54 eldifi P2P
55 prmz PP
56 1 54 55 3syl φP
57 56 ad2antrl ¬x2<P2φx1HP
58 elfzelz x1Hx
59 25 a1i x1H2
60 58 59 zmulcld x1Hx2
61 60 ad2antll ¬x2<P2φx1Hx2
62 57 61 zsubcld ¬x2<P2φx1HPx2
63 55 zred PP
64 2 breq2i xHxP12
65 nnre xx
66 65 adantr xPx
67 peano2rem PP1
68 67 adantl xPP1
69 2re 2
70 2pos 0<2
71 69 70 pm3.2i 20<2
72 71 a1i xP20<2
73 lemuldiv xP120<2x2P1xP12
74 66 68 72 73 syl3anc xPx2P1xP12
75 64 74 bitr4id xPxHx2P1
76 13 nnred xx2
77 76 adantr xPx2
78 simpr xPP
79 77 68 78 lesub2d xPx2P1PP1Px2
80 recn PP
81 1cnd P1
82 80 81 nncand PPP1=1
83 82 adantl xPPP1=1
84 83 breq1d xPPP1Px21Px2
85 84 biimpd xPPP1Px21Px2
86 79 85 sylbid xPx2P11Px2
87 75 86 sylbid xPxH1Px2
88 87 impancom xxHP1Px2
89 88 3adant2 xHxHP1Px2
90 9 89 sylbi x1HP1Px2
91 90 com12 Px1H1Px2
92 63 91 syl Px1H1Px2
93 1 54 92 3syl φx1H1Px2
94 93 imp φx1H1Px2
95 94 adantl ¬x2<P2φx1H1Px2
96 elnnz1 Px2Px21Px2
97 62 95 96 sylanbrc ¬x2<P2φx1HPx2
98 9 simp2bi x1HH
99 98 ad2antll ¬x2<P2φx1HH
100 nnre PP
101 100 rehalfcld PP2
102 101 adantr P¬2PP2
103 60 zred x1Hx2
104 lenlt P2x2P2x2¬x2<P2
105 102 103 104 syl2an P¬2Px1HP2x2¬x2<P2
106 22 60 anim12i P¬2Px1HP¬2Px2
107 106 30 sylibr P¬2Px1HP¬2Px2
108 halfleoddlt P¬2Px2P2x2P2<x2
109 107 108 syl P¬2Px1HP2x2P2<x2
110 109 biimpa P¬2Px1HP2x2P2<x2
111 nncn PP
112 subhalfhalf PPP2=P2
113 111 112 syl PPP2=P2
114 113 breq1d PPP2<x2P2<x2
115 114 ad3antrrr P¬2Px1HP2x2PP2<x2P2<x2
116 110 115 mpbird P¬2Px1HP2x2PP2<x2
117 100 ad2antrr P¬2Px1HP
118 101 ad2antrr P¬2Px1HP2
119 103 adantl P¬2Px1Hx2
120 117 118 119 3jca P¬2Px1HPP2x2
121 120 adantr P¬2Px1HP2x2PP2x2
122 ltsub23 PP2x2PP2<x2Px2<P2
123 121 122 syl P¬2Px1HP2x2PP2<x2Px2<P2
124 116 123 mpbid P¬2Px1HP2x2Px2<P2
125 21 ad2antrr P¬2Px1HP
126 simplr P¬2Px1H¬2P
127 60 adantl P¬2Px1Hx2
128 125 127 zsubcld P¬2Px1HPx2
129 125 126 128 3jca P¬2Px1HP¬2PPx2
130 129 adantr P¬2Px1HP2x2P¬2PPx2
131 ltoddhalfle P¬2PPx2Px2<P2Px2P12
132 130 131 syl P¬2Px1HP2x2Px2<P2Px2P12
133 124 132 mpbid P¬2Px1HP2x2Px2P12
134 133 ex P¬2Px1HP2x2Px2P12
135 2 breq2i Px2HPx2P12
136 134 135 syl6ibr P¬2Px1HP2x2Px2H
137 105 136 sylbird P¬2Px1H¬x2<P2Px2H
138 137 ex P¬2Px1H¬x2<P2Px2H
139 1 20 138 3syl φx1H¬x2<P2Px2H
140 139 imp φx1H¬x2<P2Px2H
141 140 impcom ¬x2<P2φx1HPx2H
142 elfz1b Px21HPx2HPx2H
143 97 99 141 142 syl3anbrc ¬x2<P2φx1HPx21H
144 eleq1 y=Px2y1HPx21H
145 143 144 syl5ibrcom ¬x2<P2φx1Hy=Px2y1H
146 53 145 sylbid ¬x2<P2φx1Hy=ifx2<P2x2Px2y1H
147 50 146 pm2.61ian φx1Hy=ifx2<P2x2Px2y1H
148 147 rexlimdva φx1Hy=ifx2<P2x2Px2y1H
149 elfz1b y1HyHyH
150 simp1 yHyHy
151 simpl 2yφ2y
152 nnehalf y2yy2
153 150 151 152 syl2anr 2yφyHyHy2
154 simpr2 2yφyHyHH
155 nnre yy
156 155 ad2antrr yH2yφy
157 nnrp HH+
158 157 adantl yHH+
159 158 adantr yH2yφH+
160 2rp 2+
161 1le2 12
162 160 161 pm3.2i 2+12
163 162 a1i yH2yφ2+12
164 ledivge1le yH+2+12yHy2H
165 156 159 163 164 syl3anc yH2yφyHy2H
166 165 ex yH2yφyHy2H
167 166 com23 yHyH2yφy2H
168 167 3impia yHyH2yφy2H
169 168 impcom 2yφyHyHy2H
170 153 154 169 3jca 2yφyHyHy2Hy2H
171 170 ex 2yφyHyHy2Hy2H
172 149 171 biimtrid 2yφy1Hy2Hy2H
173 172 3impia 2yφy1Hy2Hy2H
174 elfz1b y21Hy2Hy2H
175 173 174 sylibr 2yφy1Hy21H
176 oveq1 x=y2x2=y22
177 176 breq1d x=y2x2<P2y22<P2
178 176 oveq2d x=y2Px2=Py22
179 177 176 178 ifbieq12d x=y2ifx2<P2x2Px2=ify22<P2y22Py22
180 179 eqeq2d x=y2y=ifx2<P2x2Px2y=ify22<P2y22Py22
181 180 adantl 2yφy1Hx=y2y=ifx2<P2x2Px2y=ify22<P2y22Py22
182 elfzelz y1Hy
183 182 zcnd y1Hy
184 183 3ad2ant3 2yφy1Hy
185 2cnd 2yφy1H2
186 2ne0 20
187 186 a1i 2yφy1H20
188 184 185 187 divcan1d 2yφy1Hy22=y
189 2 breq2i yHyP12
190 nnz yy
191 1 20 22 3syl φP¬2P
192 191 adantl 2yφP¬2P
193 190 192 anim12ci y2yφP¬2Py
194 df-3an P¬2PyP¬2Py
195 193 194 sylibr y2yφP¬2Py
196 ltoddhalfle P¬2Pyy<P2yP12
197 195 196 syl y2yφy<P2yP12
198 197 exbiri y2yφyP12y<P2
199 198 com23 yyP122yφy<P2
200 189 199 biimtrid yyH2yφy<P2
201 200 a1d yHyH2yφy<P2
202 201 3imp yHyH2yφy<P2
203 149 202 sylbi y1H2yφy<P2
204 203 com12 2yφy1Hy<P2
205 204 3impia 2yφy1Hy<P2
206 188 205 eqbrtrd 2yφy1Hy22<P2
207 206 iftrued 2yφy1Hify22<P2y22Py22=y22
208 207 188 eqtr2d 2yφy1Hy=ify22<P2y22Py22
209 175 181 208 rspcedvd 2yφy1Hx1Hy=ifx2<P2x2Px2
210 209 3exp 2yφy1Hx1Hy=ifx2<P2x2Px2
211 54 55 syl P2P
212 211 ad2antrr P2¬2yyHyHP
213 190 3ad2ant1 yHyHy
214 213 adantl P2¬2yyHyHy
215 212 214 zsubcld P2¬2yyHyHPy
216 155 ad2antrl PyHy
217 67 rehalfcld PP12
218 217 adantr PyHP12
219 simpl PyHP
220 216 218 219 3jca PyHyP12P
221 220 ex PyHyP12P
222 54 63 221 3syl P2yHyP12P
223 222 adantr P2¬2yyHyP12P
224 223 impcom yHP2¬2yyP12P
225 lesub2 yP12PyP12PP12Py
226 224 225 syl yHP2¬2yyP12PP12Py
227 55 zcnd PP
228 1cnd P1
229 2cnne0 220
230 229 a1i P220
231 divsubdir P1220P12=P212
232 228 230 231 mpd3an23 PP12=P212
233 232 oveq2d PPP12=PP212
234 id PP
235 halfcl PP2
236 halfcn 12
237 236 a1i P12
238 234 235 237 subsubd PPP212=P-P2+12
239 112 oveq1d PP-P2+12=P2+12
240 233 238 239 3eqtrd PPP12=P2+12
241 54 227 240 3syl P2PP12=P2+12
242 241 ad2antrl yHP2¬2yPP12=P2+12
243 242 breq1d yHP2¬2yPP12PyP2+12Py
244 prmnn PP
245 halfre 12
246 245 a1i P12
247 nngt0 P0<P
248 71 a1i P20<2
249 divgt0 P0<P20<20<P2
250 100 247 248 249 syl21anc P0<P2
251 halfgt0 0<12
252 251 a1i P0<12
253 101 246 250 252 addgt0d P0<P2+12
254 54 244 253 3syl P20<P2+12
255 254 ad2antrl yHP2¬2y0<P2+12
256 0red yP0
257 simpr yPP
258 257 rehalfcld yPP2
259 245 a1i yP12
260 258 259 readdcld yPP2+12
261 resubcl PyPy
262 261 ancoms yPPy
263 256 260 262 3jca yP0P2+12Py
264 263 ex yP0P2+12Py
265 155 264 syl yP0P2+12Py
266 265 adantr yHP0P2+12Py
267 266 com12 PyH0P2+12Py
268 54 63 267 3syl P2yH0P2+12Py
269 268 adantr P2¬2yyH0P2+12Py
270 269 impcom yHP2¬2y0P2+12Py
271 ltletr 0P2+12Py0<P2+12P2+12Py0<Py
272 270 271 syl yHP2¬2y0<P2+12P2+12Py0<Py
273 255 272 mpand yHP2¬2yP2+12Py0<Py
274 243 273 sylbid yHP2¬2yPP12Py0<Py
275 226 274 sylbid yHP2¬2yyP120<Py
276 275 ex yHP2¬2yyP120<Py
277 276 com23 yHyP12P2¬2y0<Py
278 189 277 biimtrid yHyHP2¬2y0<Py
279 278 3impia yHyHP2¬2y0<Py
280 279 impcom P2¬2yyHyH0<Py
281 elnnz PyPy0<Py
282 215 280 281 sylanbrc P2¬2yyHyHPy
283 23 adantr P2¬2yP¬2P
284 simpr P2¬2y¬2y
285 284 213 anim12ci P2¬2yyHyHy¬2y
286 omoe P¬2Py¬2y2Py
287 283 285 286 syl2an2r P2¬2yyHyH2Py
288 nnehalf Py2PyPy2
289 282 287 288 syl2anc P2¬2yyHyHPy2
290 simpr2 P2¬2yyHyHH
291 1red P2¬2yyHyH1
292 155 3ad2ant1 yHyHy
293 292 adantl P2¬2yyHyHy
294 54 63 syl P2P
295 294 ad2antrr P2¬2yyHyHP
296 nnge1 y1y
297 296 3ad2ant1 yHyH1y
298 297 adantl P2¬2yyHyH1y
299 291 293 295 298 lesub2dd P2¬2yyHyHPyP1
300 295 293 resubcld P2¬2yyHyHPy
301 54 63 67 3syl P2P1
302 301 ad2antrr P2¬2yyHyHP1
303 71 a1i P2¬2yyHyH20<2
304 lediv1 PyP120<2PyP1Py2P12
305 300 302 303 304 syl3anc P2¬2yyHyHPyP1Py2P12
306 299 305 mpbid P2¬2yyHyHPy2P12
307 2 breq2i Py2HPy2P12
308 306 307 sylibr P2¬2yyHyHPy2H
309 289 290 308 3jca P2¬2yyHyHPy2HPy2H
310 309 ex P2¬2yyHyHPy2HPy2H
311 elfz1b Py21HPy2HPy2H
312 310 149 311 3imtr4g P2¬2yy1HPy21H
313 312 ex P2¬2yy1HPy21H
314 1 313 syl φ¬2yy1HPy21H
315 314 3imp21 ¬2yφy1HPy21H
316 oveq1 x=Py2x2=Py22
317 316 breq1d x=Py2x2<P2Py22<P2
318 316 oveq2d x=Py2Px2=PPy22
319 317 316 318 ifbieq12d x=Py2ifx2<P2x2Px2=ifPy22<P2Py22PPy22
320 319 eqeq2d x=Py2y=ifx2<P2x2Px2y=ifPy22<P2Py22PPy22
321 320 adantl ¬2yφy1Hx=Py2y=ifx2<P2x2Px2y=ifPy22<P2Py22PPy22
322 1 54 227 3syl φP
323 322 3ad2ant2 ¬2yφy1HP
324 183 3ad2ant3 ¬2yφy1Hy
325 323 324 subcld ¬2yφy1HPy
326 2cnd ¬2yφy1H2
327 186 a1i ¬2yφy1H20
328 325 326 327 divcan1d ¬2yφy1HPy22=Py
329 zre PP
330 halfge0 012
331 rehalfcl PP2
332 331 adantl yPP2
333 332 259 subge02d yP012P212P2
334 330 333 mpbii yPP212P2
335 simpl yPy
336 245 a1i P12
337 331 336 resubcld PP212
338 337 adantl yPP212
339 letr yP212P2yP212P212P2yP2
340 335 338 332 339 syl3anc yPyP212P212P2yP2
341 334 340 mpan2d yPyP212yP2
342 80 adantl yPP
343 1cnd yP1
344 229 a1i yP220
345 342 343 344 231 syl3anc yPP12=P212
346 345 breq2d yPyP12yP212
347 lesub P2PyP2PyyPP2
348 332 257 335 347 syl3anc yPP2PyyPP2
349 258 262 lenltd yPP2Py¬Py<P2
350 2cnd P2
351 186 a1i P20
352 80 350 351 divcan1d PP22=P
353 352 eqcomd PP=P22
354 353 oveq1d PPP2=P22P2
355 331 recnd PP2
356 355 350 mulcomd PP22=2P2
357 356 oveq1d PP22P2=2P2P2
358 350 355 mulsubfacd P2P2P2=21P2
359 2m1e1 21=1
360 359 a1i P21=1
361 360 oveq1d P21P2=1P2
362 355 mullidd P1P2=P2
363 358 361 362 3eqtrd P2P2P2=P2
364 354 357 363 3eqtrd PPP2=P2
365 364 adantl yPPP2=P2
366 365 breq2d yPyPP2yP2
367 348 349 366 3bitr3d yP¬Py<P2yP2
368 341 346 367 3imtr4d yPyP12¬Py<P2
369 368 ex yPyP12¬Py<P2
370 155 369 syl yPyP12¬Py<P2
371 370 com3l PyP12y¬Py<P2
372 329 371 syl PyP12y¬Py<P2
373 54 55 372 3syl P2yP12y¬Py<P2
374 1 373 syl φyP12y¬Py<P2
375 374 adantl ¬2yφyP12y¬Py<P2
376 375 com13 yyP12¬2yφ¬Py<P2
377 189 376 biimtrid yyH¬2yφ¬Py<P2
378 377 a1d yHyH¬2yφ¬Py<P2
379 378 3imp yHyH¬2yφ¬Py<P2
380 379 com12 ¬2yφyHyH¬Py<P2
381 149 380 biimtrid ¬2yφy1H¬Py<P2
382 381 3impia ¬2yφy1H¬Py<P2
383 328 382 eqnbrtrd ¬2yφy1H¬Py22<P2
384 383 iffalsed ¬2yφy1HifPy22<P2Py22PPy22=PPy22
385 328 oveq2d ¬2yφy1HPPy22=PPy
386 322 183 anim12i φy1HPy
387 386 3adant1 ¬2yφy1HPy
388 nncan PyPPy=y
389 387 388 syl ¬2yφy1HPPy=y
390 384 385 389 3eqtrrd ¬2yφy1Hy=ifPy22<P2Py22PPy22
391 315 321 390 rspcedvd ¬2yφy1Hx1Hy=ifx2<P2x2Px2
392 391 3exp ¬2yφy1Hx1Hy=ifx2<P2x2Px2
393 210 392 pm2.61i φy1Hx1Hy=ifx2<P2x2Px2
394 148 393 impbid φx1Hy=ifx2<P2x2Px2y1H
395 5 394 bitrid φyranRy1H
396 395 eqrdv φranR=1H