Metamath Proof Explorer


Theorem gsummoncoe1

Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by AV, 13-Oct-2019)

Ref Expression
Hypotheses gsummonply1.p P = Poly 1 R
gsummonply1.b B = Base P
gsummonply1.x X = var 1 R
gsummonply1.e × ˙ = mulGrp P
gsummonply1.r φ R Ring
gsummonply1.k K = Base R
gsummonply1.m ˙ = P
gsummonply1.0 0 ˙ = 0 R
gsummonply1.a φ k 0 A K
gsummonply1.f φ finSupp 0 ˙ k 0 A
gsummonply1.l φ L 0
Assertion gsummoncoe1 φ coe 1 P k 0 A ˙ k × ˙ X L = L / k A

Proof

Step Hyp Ref Expression
1 gsummonply1.p P = Poly 1 R
2 gsummonply1.b B = Base P
3 gsummonply1.x X = var 1 R
4 gsummonply1.e × ˙ = mulGrp P
5 gsummonply1.r φ R Ring
6 gsummonply1.k K = Base R
7 gsummonply1.m ˙ = P
8 gsummonply1.0 0 ˙ = 0 R
9 gsummonply1.a φ k 0 A K
10 gsummonply1.f φ finSupp 0 ˙ k 0 A
11 gsummonply1.l φ L 0
12 9 r19.21bi φ k 0 A K
13 12 fmpttd φ k 0 A : 0 K
14 6 fvexi K V
15 14 a1i φ K V
16 nn0ex 0 V
17 elmapg K V 0 V k 0 A K 0 k 0 A : 0 K
18 15 16 17 sylancl φ k 0 A K 0 k 0 A : 0 K
19 13 18 mpbird φ k 0 A K 0
20 8 fvexi 0 ˙ V
21 fsuppmapnn0ub k 0 A K 0 0 ˙ V finSupp 0 ˙ k 0 A s 0 x 0 s < x k 0 A x = 0 ˙
22 19 20 21 sylancl φ finSupp 0 ˙ k 0 A s 0 x 0 s < x k 0 A x = 0 ˙
23 10 22 mpd φ s 0 x 0 s < x k 0 A x = 0 ˙
24 simpr φ s 0 x 0 x 0
25 9 ad2antrr φ s 0 x 0 k 0 A K
26 rspcsbela x 0 k 0 A K x / k A K
27 24 25 26 syl2anc φ s 0 x 0 x / k A K
28 eqid k 0 A = k 0 A
29 28 fvmpts x 0 x / k A K k 0 A x = x / k A
30 24 27 29 syl2anc φ s 0 x 0 k 0 A x = x / k A
31 30 eqeq1d φ s 0 x 0 k 0 A x = 0 ˙ x / k A = 0 ˙
32 31 imbi2d φ s 0 x 0 s < x k 0 A x = 0 ˙ s < x x / k A = 0 ˙
33 32 biimpd φ s 0 x 0 s < x k 0 A x = 0 ˙ s < x x / k A = 0 ˙
34 33 ralimdva φ s 0 x 0 s < x k 0 A x = 0 ˙ x 0 s < x x / k A = 0 ˙
35 eqid 0 P = 0 P
36 1 ply1ring R Ring P Ring
37 ringcmn P Ring P CMnd
38 5 36 37 3syl φ P CMnd
39 38 ad2antrr φ s 0 x 0 s < x x / k A = 0 ˙ P CMnd
40 5 3ad2ant1 φ k 0 A K R Ring
41 simp3 φ k 0 A K A K
42 simp2 φ k 0 A K k 0
43 eqid mulGrp P = mulGrp P
44 6 1 3 7 43 4 2 ply1tmcl R Ring A K k 0 A ˙ k × ˙ X B
45 40 41 42 44 syl3anc φ k 0 A K A ˙ k × ˙ X B
46 45 3expia φ k 0 A K A ˙ k × ˙ X B
47 46 ralimdva φ k 0 A K k 0 A ˙ k × ˙ X B
48 9 47 mpd φ k 0 A ˙ k × ˙ X B
49 48 ad2antrr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 A ˙ k × ˙ X B
50 simplr φ s 0 x 0 s < x x / k A = 0 ˙ s 0
51 nfv k s < x
52 nfcsb1v _ k x / k A
53 52 nfeq1 k x / k A = 0 ˙
54 51 53 nfim k s < x x / k A = 0 ˙
55 nfv x s < k k / k A = 0 ˙
56 breq2 x = k s < x s < k
57 csbeq1 x = k x / k A = k / k A
58 57 eqeq1d x = k x / k A = 0 ˙ k / k A = 0 ˙
59 56 58 imbi12d x = k s < x x / k A = 0 ˙ s < k k / k A = 0 ˙
60 54 55 59 cbvralw x 0 s < x x / k A = 0 ˙ k 0 s < k k / k A = 0 ˙
61 csbid k / k A = A
62 61 eqeq1i k / k A = 0 ˙ A = 0 ˙
63 oveq1 A = 0 ˙ A ˙ k × ˙ X = 0 ˙ ˙ k × ˙ X
64 1 ply1sca R Ring R = Scalar P
65 5 64 syl φ R = Scalar P
66 65 fveq2d φ 0 R = 0 Scalar P
67 8 66 eqtrid φ 0 ˙ = 0 Scalar P
68 67 ad2antrr φ s 0 k 0 0 ˙ = 0 Scalar P
69 68 oveq1d φ s 0 k 0 0 ˙ ˙ k × ˙ X = 0 Scalar P ˙ k × ˙ X
70 1 ply1lmod R Ring P LMod
71 5 70 syl φ P LMod
72 71 ad2antrr φ s 0 k 0 P LMod
73 43 ringmgp P Ring mulGrp P Mnd
74 5 36 73 3syl φ mulGrp P Mnd
75 74 ad2antrr φ s 0 k 0 mulGrp P Mnd
76 simpr φ s 0 k 0 k 0
77 eqid Base P = Base P
78 3 1 77 vr1cl R Ring X Base P
79 5 78 syl φ X Base P
80 79 ad2antrr φ s 0 k 0 X Base P
81 43 77 mgpbas Base P = Base mulGrp P
82 81 4 mulgnn0cl mulGrp P Mnd k 0 X Base P k × ˙ X Base P
83 75 76 80 82 syl3anc φ s 0 k 0 k × ˙ X Base P
84 eqid Scalar P = Scalar P
85 eqid 0 Scalar P = 0 Scalar P
86 77 84 7 85 35 lmod0vs P LMod k × ˙ X Base P 0 Scalar P ˙ k × ˙ X = 0 P
87 72 83 86 syl2anc φ s 0 k 0 0 Scalar P ˙ k × ˙ X = 0 P
88 69 87 eqtrd φ s 0 k 0 0 ˙ ˙ k × ˙ X = 0 P
89 63 88 sylan9eqr φ s 0 k 0 A = 0 ˙ A ˙ k × ˙ X = 0 P
90 89 ex φ s 0 k 0 A = 0 ˙ A ˙ k × ˙ X = 0 P
91 62 90 syl5bi φ s 0 k 0 k / k A = 0 ˙ A ˙ k × ˙ X = 0 P
92 91 imim2d φ s 0 k 0 s < k k / k A = 0 ˙ s < k A ˙ k × ˙ X = 0 P
93 92 ralimdva φ s 0 k 0 s < k k / k A = 0 ˙ k 0 s < k A ˙ k × ˙ X = 0 P
94 60 93 syl5bi φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s < k A ˙ k × ˙ X = 0 P
95 94 imp φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s < k A ˙ k × ˙ X = 0 P
96 2 35 39 49 50 95 gsummptnn0fz φ s 0 x 0 s < x x / k A = 0 ˙ P k 0 A ˙ k × ˙ X = P k = 0 s A ˙ k × ˙ X
97 96 fveq2d φ s 0 x 0 s < x x / k A = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X = coe 1 P k = 0 s A ˙ k × ˙ X
98 97 fveq1d φ s 0 x 0 s < x x / k A = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X L = coe 1 P k = 0 s A ˙ k × ˙ X L
99 5 ad2antrr φ s 0 x 0 s < x x / k A = 0 ˙ R Ring
100 11 ad2antrr φ s 0 x 0 s < x x / k A = 0 ˙ L 0
101 elfznn0 k 0 s k 0
102 simpll φ s 0 k 0 φ
103 12 adantlr φ s 0 k 0 A K
104 102 76 103 3jca φ s 0 k 0 φ k 0 A K
105 101 104 sylan2 φ s 0 k 0 s φ k 0 A K
106 105 45 syl φ s 0 k 0 s A ˙ k × ˙ X B
107 106 ralrimiva φ s 0 k 0 s A ˙ k × ˙ X B
108 107 adantr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s A ˙ k × ˙ X B
109 fzfid φ s 0 x 0 s < x x / k A = 0 ˙ 0 s Fin
110 1 2 99 100 108 109 coe1fzgsumd φ s 0 x 0 s < x x / k A = 0 ˙ coe 1 P k = 0 s A ˙ k × ˙ X L = R k = 0 s coe 1 A ˙ k × ˙ X L
111 nfv k φ s 0
112 nfcv _ k 0
113 112 54 nfralw k x 0 s < x x / k A = 0 ˙
114 111 113 nfan k φ s 0 x 0 s < x x / k A = 0 ˙
115 5 ad3antrrr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s R Ring
116 12 expcom k 0 φ A K
117 116 101 syl11 φ k 0 s A K
118 117 ad2antrr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s A K
119 118 imp φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s A K
120 101 adantl φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s k 0
121 8 6 1 3 7 43 4 coe1tm R Ring A K k 0 coe 1 A ˙ k × ˙ X = n 0 if n = k A 0 ˙
122 115 119 120 121 syl3anc φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s coe 1 A ˙ k × ˙ X = n 0 if n = k A 0 ˙
123 eqeq1 n = L n = k L = k
124 123 ifbid n = L if n = k A 0 ˙ = if L = k A 0 ˙
125 124 adantl φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s n = L if n = k A 0 ˙ = if L = k A 0 ˙
126 11 ad3antrrr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s L 0
127 6 8 ring0cl R Ring 0 ˙ K
128 5 127 syl φ 0 ˙ K
129 128 ad3antrrr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s 0 ˙ K
130 119 129 ifcld φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s if L = k A 0 ˙ K
131 122 125 126 130 fvmptd φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s coe 1 A ˙ k × ˙ X L = if L = k A 0 ˙
132 114 131 mpteq2da φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s coe 1 A ˙ k × ˙ X L = k 0 s if L = k A 0 ˙
133 132 oveq2d φ s 0 x 0 s < x x / k A = 0 ˙ R k = 0 s coe 1 A ˙ k × ˙ X L = R k = 0 s if L = k A 0 ˙
134 breq2 x = L s < x s < L
135 csbeq1 x = L x / k A = L / k A
136 135 eqeq1d x = L x / k A = 0 ˙ L / k A = 0 ˙
137 134 136 imbi12d x = L s < x x / k A = 0 ˙ s < L L / k A = 0 ˙
138 137 rspcva L 0 x 0 s < x x / k A = 0 ˙ s < L L / k A = 0 ˙
139 nfv k φ s 0 s < L
140 nfcsb1v _ k L / k A
141 140 nfeq1 k L / k A = 0 ˙
142 139 141 nfan k φ s 0 s < L L / k A = 0 ˙
143 elfz2nn0 k 0 s k 0 s 0 k s
144 nn0re k 0 k
145 144 ad2antrr k 0 s 0 L 0 k
146 nn0re s 0 s
147 146 adantl k 0 s 0 s
148 147 adantr k 0 s 0 L 0 s
149 nn0re L 0 L
150 149 adantl k 0 s 0 L 0 L
151 lelttr k s L k s s < L k < L
152 145 148 150 151 syl3anc k 0 s 0 L 0 k s s < L k < L
153 animorr k 0 s 0 L 0 k < L L < k k < L
154 df-ne L k ¬ L = k
155 144 adantr k 0 s 0 k
156 lttri2 L k L k L < k k < L
157 149 155 156 syl2anr k 0 s 0 L 0 L k L < k k < L
158 157 adantr k 0 s 0 L 0 k < L L k L < k k < L
159 154 158 bitr3id k 0 s 0 L 0 k < L ¬ L = k L < k k < L
160 153 159 mpbird k 0 s 0 L 0 k < L ¬ L = k
161 160 ex k 0 s 0 L 0 k < L ¬ L = k
162 152 161 syld k 0 s 0 L 0 k s s < L ¬ L = k
163 162 exp4b k 0 s 0 L 0 k s s < L ¬ L = k
164 163 expimpd k 0 s 0 L 0 k s s < L ¬ L = k
165 164 com23 k 0 k s s 0 L 0 s < L ¬ L = k
166 165 imp k 0 k s s 0 L 0 s < L ¬ L = k
167 166 3adant2 k 0 s 0 k s s 0 L 0 s < L ¬ L = k
168 143 167 sylbi k 0 s s 0 L 0 s < L ¬ L = k
169 168 expd k 0 s s 0 L 0 s < L ¬ L = k
170 11 169 syl7 k 0 s s 0 φ s < L ¬ L = k
171 170 com12 s 0 k 0 s φ s < L ¬ L = k
172 171 com24 s 0 s < L φ k 0 s ¬ L = k
173 172 imp s 0 s < L φ k 0 s ¬ L = k
174 173 impcom φ s 0 s < L k 0 s ¬ L = k
175 174 adantr φ s 0 s < L L / k A = 0 ˙ k 0 s ¬ L = k
176 175 imp φ s 0 s < L L / k A = 0 ˙ k 0 s ¬ L = k
177 176 iffalsed φ s 0 s < L L / k A = 0 ˙ k 0 s if L = k A 0 ˙ = 0 ˙
178 142 177 mpteq2da φ s 0 s < L L / k A = 0 ˙ k 0 s if L = k A 0 ˙ = k 0 s 0 ˙
179 178 oveq2d φ s 0 s < L L / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = R k = 0 s 0 ˙
180 ringmnd R Ring R Mnd
181 5 180 syl φ R Mnd
182 181 adantr φ s 0 s < L R Mnd
183 ovex 0 s V
184 8 gsumz R Mnd 0 s V R k = 0 s 0 ˙ = 0 ˙
185 182 183 184 sylancl φ s 0 s < L R k = 0 s 0 ˙ = 0 ˙
186 185 adantr φ s 0 s < L L / k A = 0 ˙ R k = 0 s 0 ˙ = 0 ˙
187 id L / k A = 0 ˙ L / k A = 0 ˙
188 187 eqcomd L / k A = 0 ˙ 0 ˙ = L / k A
189 188 adantl φ s 0 s < L L / k A = 0 ˙ 0 ˙ = L / k A
190 179 186 189 3eqtrd φ s 0 s < L L / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
191 190 ex φ s 0 s < L L / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
192 191 expr φ s 0 s < L L / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
193 192 a2d φ s 0 s < L L / k A = 0 ˙ s < L R k = 0 s if L = k A 0 ˙ = L / k A
194 193 ex φ s 0 s < L L / k A = 0 ˙ s < L R k = 0 s if L = k A 0 ˙ = L / k A
195 194 com13 s < L L / k A = 0 ˙ s 0 φ s < L R k = 0 s if L = k A 0 ˙ = L / k A
196 138 195 syl L 0 x 0 s < x x / k A = 0 ˙ s 0 φ s < L R k = 0 s if L = k A 0 ˙ = L / k A
197 196 ex L 0 x 0 s < x x / k A = 0 ˙ s 0 φ s < L R k = 0 s if L = k A 0 ˙ = L / k A
198 197 com24 L 0 φ s 0 x 0 s < x x / k A = 0 ˙ s < L R k = 0 s if L = k A 0 ˙ = L / k A
199 11 198 mpcom φ s 0 x 0 s < x x / k A = 0 ˙ s < L R k = 0 s if L = k A 0 ˙ = L / k A
200 199 imp31 φ s 0 x 0 s < x x / k A = 0 ˙ s < L R k = 0 s if L = k A 0 ˙ = L / k A
201 200 com12 s < L φ s 0 x 0 s < x x / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
202 pm3.2 φ s 0 ¬ s < L φ s 0 ¬ s < L
203 202 adantr φ s 0 x 0 s < x x / k A = 0 ˙ ¬ s < L φ s 0 ¬ s < L
204 181 ad2antrr φ s 0 ¬ s < L R Mnd
205 183 a1i φ s 0 ¬ s < L 0 s V
206 11 nn0red φ L
207 lenlt L s L s ¬ s < L
208 206 146 207 syl2an φ s 0 L s ¬ s < L
209 11 ad2antrr φ s 0 L s L 0
210 simplr φ s 0 L s s 0
211 simpr φ s 0 L s L s
212 elfz2nn0 L 0 s L 0 s 0 L s
213 209 210 211 212 syl3anbrc φ s 0 L s L 0 s
214 213 ex φ s 0 L s L 0 s
215 208 214 sylbird φ s 0 ¬ s < L L 0 s
216 215 imp φ s 0 ¬ s < L L 0 s
217 eqcom L = k k = L
218 ifbi L = k k = L if L = k A 0 ˙ = if k = L A 0 ˙
219 217 218 ax-mp if L = k A 0 ˙ = if k = L A 0 ˙
220 219 mpteq2i k 0 s if L = k A 0 ˙ = k 0 s if k = L A 0 ˙
221 12 6 eleqtrdi φ k 0 A Base R
222 221 ex φ k 0 A Base R
223 222 adantr φ s 0 k 0 A Base R
224 223 101 impel φ s 0 k 0 s A Base R
225 224 ralrimiva φ s 0 k 0 s A Base R
226 225 adantr φ s 0 ¬ s < L k 0 s A Base R
227 8 204 205 216 220 226 gsummpt1n0 φ s 0 ¬ s < L R k = 0 s if L = k A 0 ˙ = L / k A
228 203 227 syl6com ¬ s < L φ s 0 x 0 s < x x / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
229 201 228 pm2.61i φ s 0 x 0 s < x x / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
230 133 229 eqtrd φ s 0 x 0 s < x x / k A = 0 ˙ R k = 0 s coe 1 A ˙ k × ˙ X L = L / k A
231 98 110 230 3eqtrd φ s 0 x 0 s < x x / k A = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X L = L / k A
232 231 ex φ s 0 x 0 s < x x / k A = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X L = L / k A
233 34 232 syld φ s 0 x 0 s < x k 0 A x = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X L = L / k A
234 233 rexlimdva φ s 0 x 0 s < x k 0 A x = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X L = L / k A
235 23 234 mpd φ coe 1 P k 0 A ˙ k × ˙ X L = L / k A