Metamath Proof Explorer


Theorem gsummoncoe1

Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by AV, 13-Oct-2019)

Ref Expression
Hypotheses gsummonply1.p P=Poly1R
gsummonply1.b B=BaseP
gsummonply1.x X=var1R
gsummonply1.e ×˙=mulGrpP
gsummonply1.r φRRing
gsummonply1.k K=BaseR
gsummonply1.m ˙=P
gsummonply1.0 0˙=0R
gsummonply1.a φk0AK
gsummonply1.f φfinSupp0˙k0A
gsummonply1.l φL0
Assertion gsummoncoe1 φcoe1Pk0A˙k×˙XL=L/kA

Proof

Step Hyp Ref Expression
1 gsummonply1.p P=Poly1R
2 gsummonply1.b B=BaseP
3 gsummonply1.x X=var1R
4 gsummonply1.e ×˙=mulGrpP
5 gsummonply1.r φRRing
6 gsummonply1.k K=BaseR
7 gsummonply1.m ˙=P
8 gsummonply1.0 0˙=0R
9 gsummonply1.a φk0AK
10 gsummonply1.f φfinSupp0˙k0A
11 gsummonply1.l φL0
12 9 r19.21bi φk0AK
13 12 fmpttd φk0A:0K
14 6 fvexi KV
15 14 a1i φKV
16 nn0ex 0V
17 elmapg KV0Vk0AK0k0A:0K
18 15 16 17 sylancl φk0AK0k0A:0K
19 13 18 mpbird φk0AK0
20 8 fvexi 0˙V
21 fsuppmapnn0ub k0AK00˙VfinSupp0˙k0As0x0s<xk0Ax=0˙
22 19 20 21 sylancl φfinSupp0˙k0As0x0s<xk0Ax=0˙
23 10 22 mpd φs0x0s<xk0Ax=0˙
24 simpr φs0x0x0
25 9 ad2antrr φs0x0k0AK
26 rspcsbela x0k0AKx/kAK
27 24 25 26 syl2anc φs0x0x/kAK
28 eqid k0A=k0A
29 28 fvmpts x0x/kAKk0Ax=x/kA
30 24 27 29 syl2anc φs0x0k0Ax=x/kA
31 30 eqeq1d φs0x0k0Ax=0˙x/kA=0˙
32 31 imbi2d φs0x0s<xk0Ax=0˙s<xx/kA=0˙
33 32 biimpd φs0x0s<xk0Ax=0˙s<xx/kA=0˙
34 33 ralimdva φs0x0s<xk0Ax=0˙x0s<xx/kA=0˙
35 eqid 0P=0P
36 1 ply1ring RRingPRing
37 ringcmn PRingPCMnd
38 5 36 37 3syl φPCMnd
39 38 ad2antrr φs0x0s<xx/kA=0˙PCMnd
40 5 3ad2ant1 φk0AKRRing
41 simp3 φk0AKAK
42 simp2 φk0AKk0
43 eqid mulGrpP=mulGrpP
44 6 1 3 7 43 4 2 ply1tmcl RRingAKk0A˙k×˙XB
45 40 41 42 44 syl3anc φk0AKA˙k×˙XB
46 45 3expia φk0AKA˙k×˙XB
47 46 ralimdva φk0AKk0A˙k×˙XB
48 9 47 mpd φk0A˙k×˙XB
49 48 ad2antrr φs0x0s<xx/kA=0˙k0A˙k×˙XB
50 simplr φs0x0s<xx/kA=0˙s0
51 nfv ks<x
52 nfcsb1v _kx/kA
53 52 nfeq1 kx/kA=0˙
54 51 53 nfim ks<xx/kA=0˙
55 nfv xs<kk/kA=0˙
56 breq2 x=ks<xs<k
57 csbeq1 x=kx/kA=k/kA
58 57 eqeq1d x=kx/kA=0˙k/kA=0˙
59 56 58 imbi12d x=ks<xx/kA=0˙s<kk/kA=0˙
60 54 55 59 cbvralw x0s<xx/kA=0˙k0s<kk/kA=0˙
61 csbid k/kA=A
62 61 eqeq1i k/kA=0˙A=0˙
63 oveq1 A=0˙A˙k×˙X=0˙˙k×˙X
64 1 ply1sca RRingR=ScalarP
65 5 64 syl φR=ScalarP
66 65 fveq2d φ0R=0ScalarP
67 8 66 eqtrid φ0˙=0ScalarP
68 67 ad2antrr φs0k00˙=0ScalarP
69 68 oveq1d φs0k00˙˙k×˙X=0ScalarP˙k×˙X
70 1 ply1lmod RRingPLMod
71 5 70 syl φPLMod
72 71 ad2antrr φs0k0PLMod
73 eqid BaseP=BaseP
74 43 73 mgpbas BaseP=BasemulGrpP
75 43 ringmgp PRingmulGrpPMnd
76 5 36 75 3syl φmulGrpPMnd
77 76 ad2antrr φs0k0mulGrpPMnd
78 simpr φs0k0k0
79 3 1 73 vr1cl RRingXBaseP
80 5 79 syl φXBaseP
81 80 ad2antrr φs0k0XBaseP
82 74 4 77 78 81 mulgnn0cld φs0k0k×˙XBaseP
83 eqid ScalarP=ScalarP
84 eqid 0ScalarP=0ScalarP
85 73 83 7 84 35 lmod0vs PLModk×˙XBaseP0ScalarP˙k×˙X=0P
86 72 82 85 syl2anc φs0k00ScalarP˙k×˙X=0P
87 69 86 eqtrd φs0k00˙˙k×˙X=0P
88 63 87 sylan9eqr φs0k0A=0˙A˙k×˙X=0P
89 88 ex φs0k0A=0˙A˙k×˙X=0P
90 62 89 biimtrid φs0k0k/kA=0˙A˙k×˙X=0P
91 90 imim2d φs0k0s<kk/kA=0˙s<kA˙k×˙X=0P
92 91 ralimdva φs0k0s<kk/kA=0˙k0s<kA˙k×˙X=0P
93 60 92 biimtrid φs0x0s<xx/kA=0˙k0s<kA˙k×˙X=0P
94 93 imp φs0x0s<xx/kA=0˙k0s<kA˙k×˙X=0P
95 2 35 39 49 50 94 gsummptnn0fz φs0x0s<xx/kA=0˙Pk0A˙k×˙X=Pk=0sA˙k×˙X
96 95 fveq2d φs0x0s<xx/kA=0˙coe1Pk0A˙k×˙X=coe1Pk=0sA˙k×˙X
97 96 fveq1d φs0x0s<xx/kA=0˙coe1Pk0A˙k×˙XL=coe1Pk=0sA˙k×˙XL
98 5 ad2antrr φs0x0s<xx/kA=0˙RRing
99 11 ad2antrr φs0x0s<xx/kA=0˙L0
100 elfznn0 k0sk0
101 simpll φs0k0φ
102 12 adantlr φs0k0AK
103 101 78 102 3jca φs0k0φk0AK
104 100 103 sylan2 φs0k0sφk0AK
105 104 45 syl φs0k0sA˙k×˙XB
106 105 ralrimiva φs0k0sA˙k×˙XB
107 106 adantr φs0x0s<xx/kA=0˙k0sA˙k×˙XB
108 fzfid φs0x0s<xx/kA=0˙0sFin
109 1 2 98 99 107 108 coe1fzgsumd φs0x0s<xx/kA=0˙coe1Pk=0sA˙k×˙XL=Rk=0scoe1A˙k×˙XL
110 nfv kφs0
111 nfcv _k0
112 111 54 nfralw kx0s<xx/kA=0˙
113 110 112 nfan kφs0x0s<xx/kA=0˙
114 5 ad3antrrr φs0x0s<xx/kA=0˙k0sRRing
115 12 expcom k0φAK
116 115 100 syl11 φk0sAK
117 116 ad2antrr φs0x0s<xx/kA=0˙k0sAK
118 117 imp φs0x0s<xx/kA=0˙k0sAK
119 100 adantl φs0x0s<xx/kA=0˙k0sk0
120 8 6 1 3 7 43 4 coe1tm RRingAKk0coe1A˙k×˙X=n0ifn=kA0˙
121 114 118 119 120 syl3anc φs0x0s<xx/kA=0˙k0scoe1A˙k×˙X=n0ifn=kA0˙
122 eqeq1 n=Ln=kL=k
123 122 ifbid n=Lifn=kA0˙=ifL=kA0˙
124 123 adantl φs0x0s<xx/kA=0˙k0sn=Lifn=kA0˙=ifL=kA0˙
125 11 ad3antrrr φs0x0s<xx/kA=0˙k0sL0
126 6 8 ring0cl RRing0˙K
127 5 126 syl φ0˙K
128 127 ad3antrrr φs0x0s<xx/kA=0˙k0s0˙K
129 118 128 ifcld φs0x0s<xx/kA=0˙k0sifL=kA0˙K
130 121 124 125 129 fvmptd φs0x0s<xx/kA=0˙k0scoe1A˙k×˙XL=ifL=kA0˙
131 113 130 mpteq2da φs0x0s<xx/kA=0˙k0scoe1A˙k×˙XL=k0sifL=kA0˙
132 131 oveq2d φs0x0s<xx/kA=0˙Rk=0scoe1A˙k×˙XL=Rk=0sifL=kA0˙
133 breq2 x=Ls<xs<L
134 csbeq1 x=Lx/kA=L/kA
135 134 eqeq1d x=Lx/kA=0˙L/kA=0˙
136 133 135 imbi12d x=Ls<xx/kA=0˙s<LL/kA=0˙
137 136 rspcva L0x0s<xx/kA=0˙s<LL/kA=0˙
138 nfv kφs0s<L
139 nfcsb1v _kL/kA
140 139 nfeq1 kL/kA=0˙
141 138 140 nfan kφs0s<LL/kA=0˙
142 elfz2nn0 k0sk0s0ks
143 nn0re k0k
144 143 ad2antrr k0s0L0k
145 nn0re s0s
146 145 adantl k0s0s
147 146 adantr k0s0L0s
148 nn0re L0L
149 148 adantl k0s0L0L
150 lelttr ksLkss<Lk<L
151 144 147 149 150 syl3anc k0s0L0kss<Lk<L
152 animorr k0s0L0k<LL<kk<L
153 df-ne Lk¬L=k
154 143 adantr k0s0k
155 lttri2 LkLkL<kk<L
156 148 154 155 syl2anr k0s0L0LkL<kk<L
157 156 adantr k0s0L0k<LLkL<kk<L
158 153 157 bitr3id k0s0L0k<L¬L=kL<kk<L
159 152 158 mpbird k0s0L0k<L¬L=k
160 159 ex k0s0L0k<L¬L=k
161 151 160 syld k0s0L0kss<L¬L=k
162 161 exp4b k0s0L0kss<L¬L=k
163 162 expimpd k0s0L0kss<L¬L=k
164 163 com23 k0kss0L0s<L¬L=k
165 164 imp k0kss0L0s<L¬L=k
166 165 3adant2 k0s0kss0L0s<L¬L=k
167 142 166 sylbi k0ss0L0s<L¬L=k
168 167 expd k0ss0L0s<L¬L=k
169 11 168 syl7 k0ss0φs<L¬L=k
170 169 com12 s0k0sφs<L¬L=k
171 170 com24 s0s<Lφk0s¬L=k
172 171 imp s0s<Lφk0s¬L=k
173 172 impcom φs0s<Lk0s¬L=k
174 173 adantr φs0s<LL/kA=0˙k0s¬L=k
175 174 imp φs0s<LL/kA=0˙k0s¬L=k
176 175 iffalsed φs0s<LL/kA=0˙k0sifL=kA0˙=0˙
177 141 176 mpteq2da φs0s<LL/kA=0˙k0sifL=kA0˙=k0s0˙
178 177 oveq2d φs0s<LL/kA=0˙Rk=0sifL=kA0˙=Rk=0s0˙
179 ringmnd RRingRMnd
180 5 179 syl φRMnd
181 180 adantr φs0s<LRMnd
182 ovex 0sV
183 8 gsumz RMnd0sVRk=0s0˙=0˙
184 181 182 183 sylancl φs0s<LRk=0s0˙=0˙
185 184 adantr φs0s<LL/kA=0˙Rk=0s0˙=0˙
186 id L/kA=0˙L/kA=0˙
187 186 eqcomd L/kA=0˙0˙=L/kA
188 187 adantl φs0s<LL/kA=0˙0˙=L/kA
189 178 185 188 3eqtrd φs0s<LL/kA=0˙Rk=0sifL=kA0˙=L/kA
190 189 ex φs0s<LL/kA=0˙Rk=0sifL=kA0˙=L/kA
191 190 expr φs0s<LL/kA=0˙Rk=0sifL=kA0˙=L/kA
192 191 a2d φs0s<LL/kA=0˙s<LRk=0sifL=kA0˙=L/kA
193 192 ex φs0s<LL/kA=0˙s<LRk=0sifL=kA0˙=L/kA
194 193 com13 s<LL/kA=0˙s0φs<LRk=0sifL=kA0˙=L/kA
195 137 194 syl L0x0s<xx/kA=0˙s0φs<LRk=0sifL=kA0˙=L/kA
196 195 ex L0x0s<xx/kA=0˙s0φs<LRk=0sifL=kA0˙=L/kA
197 196 com24 L0φs0x0s<xx/kA=0˙s<LRk=0sifL=kA0˙=L/kA
198 11 197 mpcom φs0x0s<xx/kA=0˙s<LRk=0sifL=kA0˙=L/kA
199 198 imp31 φs0x0s<xx/kA=0˙s<LRk=0sifL=kA0˙=L/kA
200 199 com12 s<Lφs0x0s<xx/kA=0˙Rk=0sifL=kA0˙=L/kA
201 pm3.2 φs0¬s<Lφs0¬s<L
202 201 adantr φs0x0s<xx/kA=0˙¬s<Lφs0¬s<L
203 180 ad2antrr φs0¬s<LRMnd
204 182 a1i φs0¬s<L0sV
205 11 nn0red φL
206 lenlt LsLs¬s<L
207 205 145 206 syl2an φs0Ls¬s<L
208 11 ad2antrr φs0LsL0
209 simplr φs0Lss0
210 simpr φs0LsLs
211 elfz2nn0 L0sL0s0Ls
212 208 209 210 211 syl3anbrc φs0LsL0s
213 212 ex φs0LsL0s
214 207 213 sylbird φs0¬s<LL0s
215 214 imp φs0¬s<LL0s
216 eqcom L=kk=L
217 ifbi L=kk=LifL=kA0˙=ifk=LA0˙
218 216 217 ax-mp ifL=kA0˙=ifk=LA0˙
219 218 mpteq2i k0sifL=kA0˙=k0sifk=LA0˙
220 12 6 eleqtrdi φk0ABaseR
221 220 ex φk0ABaseR
222 221 adantr φs0k0ABaseR
223 222 100 impel φs0k0sABaseR
224 223 ralrimiva φs0k0sABaseR
225 224 adantr φs0¬s<Lk0sABaseR
226 8 203 204 215 219 225 gsummpt1n0 φs0¬s<LRk=0sifL=kA0˙=L/kA
227 202 226 syl6com ¬s<Lφs0x0s<xx/kA=0˙Rk=0sifL=kA0˙=L/kA
228 200 227 pm2.61i φs0x0s<xx/kA=0˙Rk=0sifL=kA0˙=L/kA
229 132 228 eqtrd φs0x0s<xx/kA=0˙Rk=0scoe1A˙k×˙XL=L/kA
230 97 109 229 3eqtrd φs0x0s<xx/kA=0˙coe1Pk0A˙k×˙XL=L/kA
231 230 ex φs0x0s<xx/kA=0˙coe1Pk0A˙k×˙XL=L/kA
232 34 231 syld φs0x0s<xk0Ax=0˙coe1Pk0A˙k×˙XL=L/kA
233 232 rexlimdva φs0x0s<xk0Ax=0˙coe1Pk0A˙k×˙XL=L/kA
234 23 233 mpd φcoe1Pk0A˙k×˙XL=L/kA