Metamath Proof Explorer


Theorem ioombl1lem4

Description: Lemma for ioombl1 . (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Hypotheses ioombl1.b B=A+∞
ioombl1.a φA
ioombl1.e φE
ioombl1.v φvol*E
ioombl1.c φC+
ioombl1.s S=seq1+absF
ioombl1.t T=seq1+absG
ioombl1.u U=seq1+absH
ioombl1.f1 φF:2
ioombl1.f2 φEran.F
ioombl1.f3 φsupranS*<vol*E+C
ioombl1.p P=1stFn
ioombl1.q Q=2ndFn
ioombl1.g G=nififPAAPQifPAAPQQ
ioombl1.h H=nPififPAAPQifPAAPQ
Assertion ioombl1lem4 φvol*EB+vol*EBvol*E+C

Proof

Step Hyp Ref Expression
1 ioombl1.b B=A+∞
2 ioombl1.a φA
3 ioombl1.e φE
4 ioombl1.v φvol*E
5 ioombl1.c φC+
6 ioombl1.s S=seq1+absF
7 ioombl1.t T=seq1+absG
8 ioombl1.u U=seq1+absH
9 ioombl1.f1 φF:2
10 ioombl1.f2 φEran.F
11 ioombl1.f3 φsupranS*<vol*E+C
12 ioombl1.p P=1stFn
13 ioombl1.q Q=2ndFn
14 ioombl1.g G=nififPAAPQifPAAPQQ
15 ioombl1.h H=nPififPAAPQifPAAPQ
16 inss1 EBE
17 ovolsscl EBEEvol*Evol*EB
18 16 3 4 17 mp3an2i φvol*EB
19 difss EBE
20 ovolsscl EBEEvol*Evol*EB
21 19 3 4 20 mp3an2i φvol*EB
22 18 21 readdcld φvol*EB+vol*EB
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ioombl1lem2 φsupranS*<
24 5 rpred φC
25 4 24 readdcld φvol*E+C
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ioombl1lem1 φG:2H:2
27 26 simpld φG:2
28 eqid absG=absG
29 28 7 ovolsf G:2T:0+∞
30 27 29 syl φT:0+∞
31 30 frnd φranT0+∞
32 rge0ssre 0+∞
33 31 32 sstrdi φranT
34 1nn 1
35 30 fdmd φdomT=
36 34 35 eleqtrrid φ1domT
37 36 ne0d φdomT
38 dm0rn0 domT=ranT=
39 38 necon3bii domTranT
40 37 39 sylib φranT
41 30 ffvelcdmda φjTj0+∞
42 32 41 sselid φjTj
43 eqid absF=absF
44 43 6 ovolsf F:2S:0+∞
45 9 44 syl φS:0+∞
46 45 ffvelcdmda φjSj0+∞
47 32 46 sselid φjSj
48 23 adantr φjsupranS*<
49 simpr φjj
50 nnuz =1
51 49 50 eleqtrdi φjj1
52 simpl φjφ
53 elfznn n1jn
54 28 ovolfsf G:2absG:0+∞
55 27 54 syl φabsG:0+∞
56 55 ffvelcdmda φnabsGn0+∞
57 32 56 sselid φnabsGn
58 52 53 57 syl2an φjn1jabsGn
59 43 ovolfsf F:2absF:0+∞
60 9 59 syl φabsF:0+∞
61 60 ffvelcdmda φnabsFn0+∞
62 elrege0 absFn0+∞absFn0absFn
63 61 62 sylib φnabsFn0absFn
64 63 simpld φnabsFn
65 52 53 64 syl2an φjn1jabsFn
66 26 simprd φH:2
67 eqid absH=absH
68 67 ovolfsf H:2absH:0+∞
69 66 68 syl φabsH:0+∞
70 69 ffvelcdmda φnabsHn0+∞
71 elrege0 absHn0+∞absHn0absHn
72 70 71 sylib φnabsHn0absHn
73 72 simprd φn0absHn
74 72 simpld φnabsHn
75 57 74 addge01d φn0absHnabsGnabsGn+absHn
76 73 75 mpbid φnabsGnabsGn+absHn
77 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ioombl1lem3 φnabsGn+absHn=absFn
78 76 77 breqtrd φnabsGnabsFn
79 52 53 78 syl2an φjn1jabsGnabsFn
80 51 58 65 79 serle φjseq1+absGjseq1+absFj
81 7 fveq1i Tj=seq1+absGj
82 6 fveq1i Sj=seq1+absFj
83 80 81 82 3brtr4g φjTjSj
84 1zzd φ1
85 eqidd φnabsFn=absFn
86 63 simprd φn0absFn
87 45 frnd φranS0+∞
88 icossxr 0+∞*
89 87 88 sstrdi φranS*
90 89 adantr φkranS*
91 45 ffnd φSFn
92 fnfvelrn SFnkSkranS
93 91 92 sylan φkSkranS
94 supxrub ranS*SkranSSksupranS*<
95 90 93 94 syl2anc φkSksupranS*<
96 95 ralrimiva φkSksupranS*<
97 brralrspcev supranS*<kSksupranS*<xkSkx
98 23 96 97 syl2anc φxkSkx
99 50 6 84 85 64 86 98 isumsup2 φSsupranS<
100 87 32 sstrdi φranS
101 45 fdmd φdomS=
102 34 101 eleqtrrid φ1domS
103 102 ne0d φdomS
104 dm0rn0 domS=ranS=
105 104 necon3bii domSranS
106 103 105 sylib φranS
107 breq1 z=SkzxSkx
108 107 ralrn SFnzranSzxkSkx
109 91 108 syl φzranSzxkSkx
110 109 rexbidv φxzranSzxxkSkx
111 98 110 mpbird φxzranSzx
112 supxrre ranSranSxzranSzxsupranS*<=supranS<
113 100 106 111 112 syl3anc φsupranS*<=supranS<
114 99 113 breqtrrd φSsupranS*<
115 114 adantr φjSsupranS*<
116 6 115 eqbrtrrid φjseq1+absFsupranS*<
117 64 adantlr φjnabsFn
118 86 adantlr φjn0absFn
119 50 49 116 117 118 climserle φjseq1+absFjsupranS*<
120 82 119 eqbrtrid φjSjsupranS*<
121 42 47 48 83 120 letrd φjTjsupranS*<
122 121 ralrimiva φjTjsupranS*<
123 brralrspcev supranS*<jTjsupranS*<xjTjx
124 23 122 123 syl2anc φxjTjx
125 30 ffnd φTFn
126 breq1 z=TjzxTjx
127 126 ralrn TFnzranTzxjTjx
128 125 127 syl φzranTzxjTjx
129 128 rexbidv φxzranTzxxjTjx
130 124 129 mpbird φxzranTzx
131 33 40 130 suprcld φsupranT<
132 67 8 ovolsf H:2U:0+∞
133 66 132 syl φU:0+∞
134 133 frnd φranU0+∞
135 134 32 sstrdi φranU
136 133 fdmd φdomU=
137 34 136 eleqtrrid φ1domU
138 137 ne0d φdomU
139 dm0rn0 domU=ranU=
140 139 necon3bii domUranU
141 138 140 sylib φranU
142 133 ffvelcdmda φjUj0+∞
143 32 142 sselid φjUj
144 52 53 74 syl2an φjn1jabsHn
145 elrege0 absGn0+∞absGn0absGn
146 56 145 sylib φnabsGn0absGn
147 146 simprd φn0absGn
148 74 57 addge02d φn0absGnabsHnabsGn+absHn
149 147 148 mpbid φnabsHnabsGn+absHn
150 149 77 breqtrd φnabsHnabsFn
151 52 53 150 syl2an φjn1jabsHnabsFn
152 51 144 65 151 serle φjseq1+absHjseq1+absFj
153 8 fveq1i Uj=seq1+absHj
154 152 153 82 3brtr4g φjUjSj
155 143 47 48 154 120 letrd φjUjsupranS*<
156 155 ralrimiva φjUjsupranS*<
157 brralrspcev supranS*<jUjsupranS*<xjUjx
158 23 156 157 syl2anc φxjUjx
159 133 ffnd φUFn
160 breq1 z=UjzxUjx
161 160 ralrn UFnzranUzxjUjx
162 159 161 syl φzranUzxjUjx
163 162 rexbidv φxzranUzxxjUjx
164 158 163 mpbird φxzranUzx
165 135 141 164 suprcld φsupranU<
166 ssralv EBExEn1stFn<xx<2ndFnxEBn1stFn<xx<2ndFn
167 16 166 ax-mp xEn1stFn<xx<2ndFnxEBn1stFn<xx<2ndFn
168 12 breq1i P<x1stFn<x
169 ovolfcl F:2n1stFn2ndFn1stFn2ndFn
170 9 169 sylan φn1stFn2ndFn1stFn2ndFn
171 170 simp1d φn1stFn
172 12 171 eqeltrid φnP
173 172 adantlr φxEBnP
174 16 3 sstrid φEB
175 174 sselda φxEBx
176 175 adantr φxEBnx
177 ltle PxP<xPx
178 173 176 177 syl2anc φxEBnP<xPx
179 simpr φnn
180 opex ififPAAPQifPAAPQQV
181 14 fvmpt2 nififPAAPQifPAAPQQVGn=ififPAAPQifPAAPQQ
182 179 180 181 sylancl φnGn=ififPAAPQifPAAPQQ
183 182 fveq2d φn1stGn=1stififPAAPQifPAAPQQ
184 2 adantr φnA
185 184 172 ifcld φnifPAAP
186 170 simp2d φn2ndFn
187 13 186 eqeltrid φnQ
188 185 187 ifcld φnififPAAPQifPAAPQ
189 op1stg ififPAAPQifPAAPQQ1stififPAAPQifPAAPQQ=ififPAAPQifPAAPQ
190 188 187 189 syl2anc φn1stififPAAPQifPAAPQQ=ififPAAPQifPAAPQ
191 183 190 eqtrd φn1stGn=ififPAAPQifPAAPQ
192 191 ad2ant2r φxEBnPx1stGn=ififPAAPQifPAAPQ
193 188 ad2ant2r φxEBnPxififPAAPQifPAAPQ
194 185 ad2ant2r φxEBnPxifPAAP
195 174 ad2antrr φxEBnPxEB
196 simplr φxEBnPxxEB
197 195 196 sseldd φxEBnPxx
198 187 ad2ant2r φxEBnPxQ
199 min1 ifPAAPQififPAAPQifPAAPQifPAAP
200 194 198 199 syl2anc φxEBnPxififPAAPQifPAAPQifPAAP
201 2 ad2antrr φxEBnPxA
202 elinel2 xEBxB
203 202 ad2antlr φxEBnPxxB
204 2 rexrd φA*
205 pnfxr +∞*
206 elioo2 A*+∞*xA+∞xA<xx<+∞
207 204 205 206 sylancl φxA+∞xA<xx<+∞
208 1 eleq2i xBxA+∞
209 ltpnf xx<+∞
210 209 adantr xA<xx<+∞
211 210 pm4.71i xA<xxA<xx<+∞
212 df-3an xA<xx<+∞xA<xx<+∞
213 211 212 bitr4i xA<xxA<xx<+∞
214 207 208 213 3bitr4g φxBxA<x
215 simpr xA<xA<x
216 214 215 syl6bi φxBA<x
217 216 ad2antrr φxEBnPxxBA<x
218 203 217 mpd φxEBnPxA<x
219 201 197 218 ltled φxEBnPxAx
220 simprr φxEBnPxPx
221 breq1 A=ifPAAPAxifPAAPx
222 breq1 P=ifPAAPPxifPAAPx
223 221 222 ifboth AxPxifPAAPx
224 219 220 223 syl2anc φxEBnPxifPAAPx
225 193 194 197 200 224 letrd φxEBnPxififPAAPQifPAAPQx
226 192 225 eqbrtrd φxEBnPx1stGnx
227 226 expr φxEBnPx1stGnx
228 178 227 syld φxEBnP<x1stGnx
229 168 228 biimtrrid φxEBn1stFn<x1stGnx
230 13 breq2i x<Qx<2ndFn
231 187 adantlr φxEBnQ
232 ltle xQx<QxQ
233 176 231 232 syl2anc φxEBnx<QxQ
234 230 233 biimtrrid φxEBnx<2ndFnxQ
235 182 fveq2d φn2ndGn=2ndififPAAPQifPAAPQQ
236 op2ndg ififPAAPQifPAAPQQ2ndififPAAPQifPAAPQQ=Q
237 188 187 236 syl2anc φn2ndififPAAPQifPAAPQQ=Q
238 235 237 eqtrd φn2ndGn=Q
239 238 adantlr φxEBn2ndGn=Q
240 239 breq2d φxEBnx2ndGnxQ
241 234 240 sylibrd φxEBnx<2ndFnx2ndGn
242 229 241 anim12d φxEBn1stFn<xx<2ndFn1stGnxx2ndGn
243 242 reximdva φxEBn1stFn<xx<2ndFnn1stGnxx2ndGn
244 243 ralimdva φxEBn1stFn<xx<2ndFnxEBn1stGnxx2ndGn
245 167 244 syl5 φxEn1stFn<xx<2ndFnxEBn1stGnxx2ndGn
246 ovolfioo EF:2Eran.FxEn1stFn<xx<2ndFn
247 3 9 246 syl2anc φEran.FxEn1stFn<xx<2ndFn
248 ovolficc EBG:2EBran.GxEBn1stGnxx2ndGn
249 174 27 248 syl2anc φEBran.GxEBn1stGnxx2ndGn
250 245 247 249 3imtr4d φEran.FEBran.G
251 10 250 mpd φEBran.G
252 7 ovollb2 G:2EBran.Gvol*EBsupranT*<
253 27 251 252 syl2anc φvol*EBsupranT*<
254 supxrre ranTranTxzranTzxsupranT*<=supranT<
255 33 40 130 254 syl3anc φsupranT*<=supranT<
256 253 255 breqtrd φvol*EBsupranT<
257 ssralv EBExEn1stFn<xx<2ndFnxEBn1stFn<xx<2ndFn
258 19 257 ax-mp xEn1stFn<xx<2ndFnxEBn1stFn<xx<2ndFn
259 172 adantlr φxEBnP
260 19 3 sstrid φEB
261 260 sselda φxEBx
262 261 adantr φxEBnx
263 259 262 177 syl2anc φxEBnP<xPx
264 168 263 biimtrrid φxEBn1stFn<xPx
265 opex PififPAAPQifPAAPQV
266 15 fvmpt2 nPififPAAPQifPAAPQVHn=PififPAAPQifPAAPQ
267 179 265 266 sylancl φnHn=PififPAAPQifPAAPQ
268 267 fveq2d φn1stHn=1stPififPAAPQifPAAPQ
269 op1stg PififPAAPQifPAAPQ1stPififPAAPQifPAAPQ=P
270 172 188 269 syl2anc φn1stPififPAAPQifPAAPQ=P
271 268 270 eqtrd φn1stHn=P
272 271 adantlr φxEBn1stHn=P
273 272 breq1d φxEBn1stHnxPx
274 264 273 sylibrd φxEBn1stFn<x1stHnx
275 187 adantlr φxEBnQ
276 262 275 232 syl2anc φxEBnx<QxQ
277 260 ad2antrr φxEBnxQEB
278 simplr φxEBnxQxEB
279 277 278 sseldd φxEBnxQx
280 2 ad2antrr φxEBnxQA
281 172 ad2ant2r φxEBnxQP
282 280 281 ifcld φxEBnxQifPAAP
283 eldifn xEB¬xB
284 283 ad2antlr φxEBnxQ¬xB
285 279 biantrurd φxEBnxQA<xxA<x
286 214 ad2antrr φxEBnxQxBxA<x
287 285 286 bitr4d φxEBnxQA<xxB
288 284 287 mtbird φxEBnxQ¬A<x
289 279 280 288 nltled φxEBnxQxA
290 max2 PAAifPAAP
291 281 280 290 syl2anc φxEBnxQAifPAAP
292 279 280 282 289 291 letrd φxEBnxQxifPAAP
293 simprr φxEBnxQxQ
294 breq2 ifPAAP=ififPAAPQifPAAPQxifPAAPxififPAAPQifPAAPQ
295 breq2 Q=ififPAAPQifPAAPQxQxififPAAPQifPAAPQ
296 294 295 ifboth xifPAAPxQxififPAAPQifPAAPQ
297 292 293 296 syl2anc φxEBnxQxififPAAPQifPAAPQ
298 267 fveq2d φn2ndHn=2ndPififPAAPQifPAAPQ
299 op2ndg PififPAAPQifPAAPQ2ndPififPAAPQifPAAPQ=ififPAAPQifPAAPQ
300 172 188 299 syl2anc φn2ndPififPAAPQifPAAPQ=ififPAAPQifPAAPQ
301 298 300 eqtrd φn2ndHn=ififPAAPQifPAAPQ
302 301 ad2ant2r φxEBnxQ2ndHn=ififPAAPQifPAAPQ
303 297 302 breqtrrd φxEBnxQx2ndHn
304 303 expr φxEBnxQx2ndHn
305 276 304 syld φxEBnx<Qx2ndHn
306 230 305 biimtrrid φxEBnx<2ndFnx2ndHn
307 274 306 anim12d φxEBn1stFn<xx<2ndFn1stHnxx2ndHn
308 307 reximdva φxEBn1stFn<xx<2ndFnn1stHnxx2ndHn
309 308 ralimdva φxEBn1stFn<xx<2ndFnxEBn1stHnxx2ndHn
310 258 309 syl5 φxEn1stFn<xx<2ndFnxEBn1stHnxx2ndHn
311 ovolficc EBH:2EBran.HxEBn1stHnxx2ndHn
312 260 66 311 syl2anc φEBran.HxEBn1stHnxx2ndHn
313 310 247 312 3imtr4d φEran.FEBran.H
314 10 313 mpd φEBran.H
315 8 ovollb2 H:2EBran.Hvol*EBsupranU*<
316 66 314 315 syl2anc φvol*EBsupranU*<
317 supxrre ranUranUxzranUzxsupranU*<=supranU<
318 135 141 164 317 syl3anc φsupranU*<=supranU<
319 316 318 breqtrd φvol*EBsupranU<
320 18 21 131 165 256 319 le2addd φvol*EB+vol*EBsupranT<+supranU<
321 eqidd φnabsGn=absGn
322 50 7 84 321 57 147 124 isumsup2 φTsupranT<
323 seqex seq1+absFV
324 6 323 eqeltri SV
325 324 a1i φSV
326 eqidd φnabsHn=absHn
327 50 8 84 326 74 73 158 isumsup2 φUsupranU<
328 42 recnd φjTj
329 143 recnd φjUj
330 57 recnd φnabsGn
331 52 53 330 syl2an φjn1jabsGn
332 74 recnd φnabsHn
333 52 53 332 syl2an φjn1jabsHn
334 77 eqcomd φnabsFn=absGn+absHn
335 52 53 334 syl2an φjn1jabsFn=absGn+absHn
336 51 331 333 335 seradd φjseq1+absFj=seq1+absGj+seq1+absHj
337 81 153 oveq12i Tj+Uj=seq1+absGj+seq1+absHj
338 336 82 337 3eqtr4g φjSj=Tj+Uj
339 50 84 322 325 327 328 329 338 climadd φSsupranT<+supranU<
340 climuni SsupranT<+supranU<SsupranS*<supranT<+supranU<=supranS*<
341 339 114 340 syl2anc φsupranT<+supranU<=supranS*<
342 320 341 breqtrd φvol*EB+vol*EBsupranS*<
343 22 23 25 342 11 letrd φvol*EB+vol*EBvol*E+C