Metamath Proof Explorer


Theorem itg1addlem4

Description: Lemma for itg1add . (Contributed by Mario Carneiro, 28-Jun-2014) (Proof shortened by SN, 3-Oct-2024)

Ref Expression
Hypotheses i1fadd.1 φFdom1
i1fadd.2 φGdom1
itg1add.3 I=i,jifi=0j=00volF-1iG-1j
itg1add.4 P=+ranF×ranG
Assertion itg1addlem4 φ1F+fG=yranFzranGy+zyIz

Proof

Step Hyp Ref Expression
1 i1fadd.1 φFdom1
2 i1fadd.2 φGdom1
3 itg1add.3 I=i,jifi=0j=00volF-1iG-1j
4 itg1add.4 P=+ranF×ranG
5 1 2 i1fadd φF+fGdom1
6 ax-addf +:×
7 ffn +:×+Fn×
8 6 7 ax-mp +Fn×
9 i1frn Fdom1ranFFin
10 1 9 syl φranFFin
11 i1frn Gdom1ranGFin
12 2 11 syl φranGFin
13 xpfi ranFFinranGFinranF×ranGFin
14 10 12 13 syl2anc φranF×ranGFin
15 resfnfinfin +Fn×ranF×ranGFin+ranF×ranGFin
16 8 14 15 sylancr φ+ranF×ranGFin
17 4 16 eqeltrid φPFin
18 rnfi PFinranPFin
19 17 18 syl φranPFin
20 difss ranP0ranP
21 ssfi ranPFinranP0ranPranP0Fin
22 19 20 21 sylancl φranP0Fin
23 ffun +:×Fun+
24 6 23 ax-mp Fun+
25 i1ff Fdom1F:
26 1 25 syl φF:
27 26 frnd φranF
28 ax-resscn
29 27 28 sstrdi φranF
30 i1ff Gdom1G:
31 2 30 syl φG:
32 31 frnd φranG
33 32 28 sstrdi φranG
34 xpss12 ranFranGranF×ranG×
35 29 33 34 syl2anc φranF×ranG×
36 6 fdmi dom+=×
37 35 36 sseqtrrdi φranF×ranGdom+
38 funfvima2 Fun+ranF×ranGdom+xyranF×ranG+xy+ranF×ranG
39 24 37 38 sylancr φxyranF×ranG+xy+ranF×ranG
40 opelxpi xranFyranGxyranF×ranG
41 39 40 impel φxranFyranG+xy+ranF×ranG
42 df-ov x+y=+xy
43 4 rneqi ranP=ran+ranF×ranG
44 df-ima +ranF×ranG=ran+ranF×ranG
45 43 44 eqtr4i ranP=+ranF×ranG
46 41 42 45 3eltr4g φxranFyranGx+yranP
47 26 ffnd φFFn
48 dffn3 FFnF:ranF
49 47 48 sylib φF:ranF
50 31 ffnd φGFn
51 dffn3 GFnG:ranG
52 50 51 sylib φG:ranG
53 reex V
54 53 a1i φV
55 inidm =
56 46 49 52 54 54 55 off φF+fG:ranP
57 56 frnd φranF+fGranP
58 57 ssdifd φranF+fG0ranP0
59 27 sselda φyranFy
60 32 sselda φzranGz
61 59 60 anim12dan φyranFzranGyz
62 readdcl yzy+z
63 61 62 syl φyranFzranGy+z
64 63 ralrimivva φyranFzranGy+z
65 funimassov Fun+ranF×ranGdom++ranF×ranGyranFzranGy+z
66 24 37 65 sylancr φ+ranF×ranGyranFzranGy+z
67 64 66 mpbird φ+ranF×ranG
68 45 67 eqsstrid φranP
69 68 ssdifd φranP00
70 itg1val2 F+fGdom1ranP0FinranF+fG0ranP0ranP001F+fG=wranP0wvolF+fG-1w
71 5 22 58 69 70 syl13anc φ1F+fG=wranP0wvolF+fG-1w
72 31 adantr φwranP0G:
73 12 adantr φwranP0ranGFin
74 inss2 F-1wzG-1zG-1z
75 74 a1i φwranP0zranGF-1wzG-1zG-1z
76 i1fima Fdom1F-1wzdomvol
77 1 76 syl φF-1wzdomvol
78 i1fima Gdom1G-1zdomvol
79 2 78 syl φG-1zdomvol
80 inmbl F-1wzdomvolG-1zdomvolF-1wzG-1zdomvol
81 77 79 80 syl2anc φF-1wzG-1zdomvol
82 81 ad2antrr φwranP0zranGF-1wzG-1zdomvol
83 20 68 sstrid φranP0
84 83 sselda φwranP0w
85 84 adantr φwranP0zranGw
86 60 adantlr φwranP0zranGz
87 85 86 resubcld φwranP0zranGwz
88 85 recnd φwranP0zranGw
89 86 recnd φwranP0zranGz
90 88 89 npcand φwranP0zranGw-z+z=w
91 eldifsni wranP0w0
92 91 ad2antlr φwranP0zranGw0
93 90 92 eqnetrd φwranP0zranGw-z+z0
94 oveq12 wz=0z=0w-z+z=0+0
95 00id 0+0=0
96 94 95 eqtrdi wz=0z=0w-z+z=0
97 96 necon3ai w-z+z0¬wz=0z=0
98 93 97 syl φwranP0zranG¬wz=0z=0
99 1 2 3 itg1addlem3 wzz¬wz=0z=0wzIz=volF-1wzG-1z
100 87 86 98 99 syl21anc φwranP0zranGwzIz=volF-1wzG-1z
101 1 2 3 itg1addlem2 φI:2
102 101 ad2antrr φwranP0zranGI:2
103 102 87 86 fovcdmd φwranP0zranGwzIz
104 100 103 eqeltrrd φwranP0zranGvolF-1wzG-1z
105 72 73 75 82 104 itg1addlem1 φwranP0volzranGF-1wzG-1z=zranGvolF-1wzG-1z
106 84 recnd φwranP0w
107 1 2 i1faddlem φwF+fG-1w=zranGF-1wzG-1z
108 106 107 syldan φwranP0F+fG-1w=zranGF-1wzG-1z
109 108 fveq2d φwranP0volF+fG-1w=volzranGF-1wzG-1z
110 100 sumeq2dv φwranP0zranGwzIz=zranGvolF-1wzG-1z
111 105 109 110 3eqtr4d φwranP0volF+fG-1w=zranGwzIz
112 111 oveq2d φwranP0wvolF+fG-1w=wzranGwzIz
113 103 recnd φwranP0zranGwzIz
114 73 106 113 fsummulc2 φwranP0wzranGwzIz=zranGwwzIz
115 112 114 eqtrd φwranP0wvolF+fG-1w=zranGwwzIz
116 115 sumeq2dv φwranP0wvolF+fG-1w=wranP0zranGwwzIz
117 88 113 mulcld φwranP0zranGwwzIz
118 117 anasss φwranP0zranGwwzIz
119 22 12 118 fsumcom φwranP0zranGwwzIz=zranGwranP0wwzIz
120 71 116 119 3eqtrd φ1F+fG=zranGwranP0wwzIz
121 oveq1 y=wzy+z=w-z+z
122 oveq1 y=wzyIz=wzIz
123 121 122 oveq12d y=wzy+zyIz=w-z+zwzIz
124 19 adantr φzranGranPFin
125 68 adantr φzranGranP
126 125 sselda φzranGvranPv
127 60 adantr φzranGvranPz
128 126 127 resubcld φzranGvranPvz
129 128 ex φzranGvranPvz
130 126 recnd φzranGvranPv
131 130 adantrr φzranGvranPyranPv
132 68 sselda φyranPy
133 132 ad2ant2rl φzranGvranPyranPy
134 133 recnd φzranGvranPyranPy
135 60 recnd φzranGz
136 135 adantr φzranGvranPyranPz
137 131 134 136 subcan2ad φzranGvranPyranPvz=yzv=y
138 137 ex φzranGvranPyranPvz=yzv=y
139 129 138 dom2lem φzranGvranPvz:ranP1-1
140 f1f1orn vranPvz:ranP1-1vranPvz:ranP1-1 ontoranvranPvz
141 139 140 syl φzranGvranPvz:ranP1-1 ontoranvranPvz
142 oveq1 v=wvz=wz
143 eqid vranPvz=vranPvz
144 ovex wzV
145 142 143 144 fvmpt wranPvranPvzw=wz
146 145 adantl φzranGwranPvranPvzw=wz
147 f1f vranPvz:ranP1-1vranPvz:ranP
148 frn vranPvz:ranPranvranPvz
149 139 147 148 3syl φzranGranvranPvz
150 149 sselda φzranGyranvranPvzy
151 60 adantr φzranGyranvranPvzz
152 150 151 readdcld φzranGyranvranPvzy+z
153 101 ad2antrr φzranGyranvranPvzI:2
154 153 150 151 fovcdmd φzranGyranvranPvzyIz
155 152 154 remulcld φzranGyranvranPvzy+zyIz
156 155 recnd φzranGyranvranPvzy+zyIz
157 123 124 141 146 156 fsumf1o φzranGyranvranPvzy+zyIz=wranPw-z+zwzIz
158 125 sselda φzranGwranPw
159 158 recnd φzranGwranPw
160 135 adantr φzranGwranPz
161 159 160 npcand φzranGwranPw-z+z=w
162 161 oveq1d φzranGwranPw-z+zwzIz=wwzIz
163 162 sumeq2dv φzranGwranPw-z+zwzIz=wranPwwzIz
164 157 163 eqtrd φzranGyranvranPvzy+zyIz=wranPwwzIz
165 37 ad2antrr φzranGyranFranF×ranGdom+
166 simpr φzranGyranFyranF
167 simplr φzranGyranFzranG
168 166 167 opelxpd φzranGyranFyzranF×ranG
169 funfvima2 Fun+ranF×ranGdom+yzranF×ranG+yz+ranF×ranG
170 24 169 mpan ranF×ranGdom+yzranF×ranG+yz+ranF×ranG
171 165 168 170 sylc φzranGyranF+yz+ranF×ranG
172 df-ov y+z=+yz
173 171 172 45 3eltr4g φzranGyranFy+zranP
174 59 adantlr φzranGyranFy
175 174 recnd φzranGyranFy
176 135 adantr φzranGyranFz
177 175 176 pncand φzranGyranFy+z-z=y
178 177 eqcomd φzranGyranFy=y+z-z
179 oveq1 v=y+zvz=y+z-z
180 179 rspceeqv y+zranPy=y+z-zvranPy=vz
181 173 178 180 syl2anc φzranGyranFvranPy=vz
182 181 ralrimiva φzranGyranFvranPy=vz
183 ssabral ranFy|vranPy=vzyranFvranPy=vz
184 182 183 sylibr φzranGranFy|vranPy=vz
185 143 rnmpt ranvranPvz=y|vranPy=vz
186 184 185 sseqtrrdi φzranGranFranvranPvz
187 60 adantr φzranGyranFz
188 174 187 readdcld φzranGyranFy+z
189 101 ad2antrr φzranGyranFI:2
190 189 174 187 fovcdmd φzranGyranFyIz
191 188 190 remulcld φzranGyranFy+zyIz
192 191 recnd φzranGyranFy+zyIz
193 149 ssdifd φzranGranvranPvzranFranF
194 193 sselda φzranGyranvranPvzranFyranF
195 eldifi yranFy
196 195 ad2antrl φzranGyranF¬y=0z=0y
197 60 adantr φzranGyranF¬y=0z=0z
198 simprr φzranGyranF¬y=0z=0¬y=0z=0
199 1 2 3 itg1addlem3 yz¬y=0z=0yIz=volF-1yG-1z
200 196 197 198 199 syl21anc φzranGyranF¬y=0z=0yIz=volF-1yG-1z
201 inss1 F-1yG-1zF-1y
202 eldifn yranF¬yranF
203 202 ad2antrl φzranGyranF¬y=0z=0¬yranF
204 vex vV
205 204 eliniseg yVvF-1yvFy
206 205 elv vF-1yvFy
207 vex yV
208 204 207 brelrn vFyyranF
209 206 208 sylbi vF-1yyranF
210 203 209 nsyl φzranGyranF¬y=0z=0¬vF-1y
211 210 pm2.21d φzranGyranF¬y=0z=0vF-1yv
212 211 ssrdv φzranGyranF¬y=0z=0F-1y
213 201 212 sstrid φzranGyranF¬y=0z=0F-1yG-1z
214 ss0 F-1yG-1zF-1yG-1z=
215 213 214 syl φzranGyranF¬y=0z=0F-1yG-1z=
216 215 fveq2d φzranGyranF¬y=0z=0volF-1yG-1z=vol
217 0mbl domvol
218 mblvol domvolvol=vol*
219 217 218 ax-mp vol=vol*
220 ovol0 vol*=0
221 219 220 eqtri vol=0
222 216 221 eqtrdi φzranGyranF¬y=0z=0volF-1yG-1z=0
223 200 222 eqtrd φzranGyranF¬y=0z=0yIz=0
224 223 oveq2d φzranGyranF¬y=0z=0y+zyIz=y+z0
225 196 197 readdcld φzranGyranF¬y=0z=0y+z
226 225 recnd φzranGyranF¬y=0z=0y+z
227 226 mul01d φzranGyranF¬y=0z=0y+z0=0
228 224 227 eqtrd φzranGyranF¬y=0z=0y+zyIz=0
229 228 expr φzranGyranF¬y=0z=0y+zyIz=0
230 oveq12 y=0z=0y+z=0+0
231 230 95 eqtrdi y=0z=0y+z=0
232 oveq12 y=0z=0yIz=0I0
233 0re 0
234 iftrue i=0j=0ifi=0j=00volF-1iG-1j=0
235 c0ex 0V
236 234 3 235 ovmpoa 000I0=0
237 233 233 236 mp2an 0I0=0
238 232 237 eqtrdi y=0z=0yIz=0
239 231 238 oveq12d y=0z=0y+zyIz=00
240 0cn 0
241 240 mul01i 00=0
242 239 241 eqtrdi y=0z=0y+zyIz=0
243 229 242 pm2.61d2 φzranGyranFy+zyIz=0
244 194 243 syldan φzranGyranvranPvzranFy+zyIz=0
245 f1ofo vranPvz:ranP1-1 ontoranvranPvzvranPvz:ranPontoranvranPvz
246 141 245 syl φzranGvranPvz:ranPontoranvranPvz
247 fofi ranPFinvranPvz:ranPontoranvranPvzranvranPvzFin
248 124 246 247 syl2anc φzranGranvranPvzFin
249 186 192 244 248 fsumss φzranGyranFy+zyIz=yranvranPvzy+zyIz
250 20 a1i φzranGranP0ranP
251 117 an32s φzranGwranP0wwzIz
252 dfin4 ranP0=ranPranP0
253 inss2 ranP00
254 252 253 eqsstrri ranPranP00
255 254 sseli wranPranP0w0
256 elsni w0w=0
257 256 adantl φzranGw0w=0
258 257 oveq1d φzranGw0wwzIz=0wzIz
259 101 ad2antrr φzranGw0I:2
260 257 233 eqeltrdi φzranGw0w
261 60 adantr φzranGw0z
262 260 261 resubcld φzranGw0wz
263 259 262 261 fovcdmd φzranGw0wzIz
264 263 recnd φzranGw0wzIz
265 264 mul02d φzranGw00wzIz=0
266 258 265 eqtrd φzranGw0wwzIz=0
267 255 266 sylan2 φzranGwranPranP0wwzIz=0
268 250 251 267 124 fsumss φzranGwranP0wwzIz=wranPwwzIz
269 164 249 268 3eqtr4d φzranGyranFy+zyIz=wranP0wwzIz
270 269 sumeq2dv φzranGyranFy+zyIz=zranGwranP0wwzIz
271 192 anasss φzranGyranFy+zyIz
272 12 10 271 fsumcom φzranGyranFy+zyIz=yranFzranGy+zyIz
273 120 270 272 3eqtr2d φ1F+fG=yranFzranGy+zyIz