Metamath Proof Explorer


Theorem itg1addlem4

Description: Lemma for itg1add . (Contributed by Mario Carneiro, 28-Jun-2014) (Proof shortened by SN, 3-Oct-2024)

Ref Expression
Hypotheses i1fadd.1 φ F dom 1
i1fadd.2 φ G dom 1
itg1add.3 I = i , j if i = 0 j = 0 0 vol F -1 i G -1 j
itg1add.4 P = + ran F × ran G
Assertion itg1addlem4 φ 1 F + f G = y ran F z ran G y + z y I z

Proof

Step Hyp Ref Expression
1 i1fadd.1 φ F dom 1
2 i1fadd.2 φ G dom 1
3 itg1add.3 I = i , j if i = 0 j = 0 0 vol F -1 i G -1 j
4 itg1add.4 P = + ran F × ran G
5 1 2 i1fadd φ F + f G dom 1
6 ax-addf + : ×
7 ffn + : × + Fn ×
8 6 7 ax-mp + Fn ×
9 i1frn F dom 1 ran F Fin
10 1 9 syl φ ran F Fin
11 i1frn G dom 1 ran G Fin
12 2 11 syl φ ran G Fin
13 xpfi ran F Fin ran G Fin ran F × ran G Fin
14 10 12 13 syl2anc φ ran F × ran G Fin
15 resfnfinfin + Fn × ran F × ran G Fin + ran F × ran G Fin
16 8 14 15 sylancr φ + ran F × ran G Fin
17 4 16 eqeltrid φ P Fin
18 rnfi P Fin ran P Fin
19 17 18 syl φ ran P Fin
20 difss ran P 0 ran P
21 ssfi ran P Fin ran P 0 ran P ran P 0 Fin
22 19 20 21 sylancl φ ran P 0 Fin
23 ffun + : × Fun +
24 6 23 ax-mp Fun +
25 i1ff F dom 1 F :
26 1 25 syl φ F :
27 26 frnd φ ran F
28 ax-resscn
29 27 28 sstrdi φ ran F
30 i1ff G dom 1 G :
31 2 30 syl φ G :
32 31 frnd φ ran G
33 32 28 sstrdi φ ran G
34 xpss12 ran F ran G ran F × ran G ×
35 29 33 34 syl2anc φ ran F × ran G ×
36 6 fdmi dom + = ×
37 35 36 sseqtrrdi φ ran F × ran G dom +
38 funfvima2 Fun + ran F × ran G dom + x y ran F × ran G + x y + ran F × ran G
39 24 37 38 sylancr φ x y ran F × ran G + x y + ran F × ran G
40 opelxpi x ran F y ran G x y ran F × ran G
41 39 40 impel φ x ran F y ran G + x y + ran F × ran G
42 df-ov x + y = + x y
43 4 rneqi ran P = ran + ran F × ran G
44 df-ima + ran F × ran G = ran + ran F × ran G
45 43 44 eqtr4i ran P = + ran F × ran G
46 41 42 45 3eltr4g φ x ran F y ran G x + y ran P
47 26 ffnd φ F Fn
48 dffn3 F Fn F : ran F
49 47 48 sylib φ F : ran F
50 31 ffnd φ G Fn
51 dffn3 G Fn G : ran G
52 50 51 sylib φ G : ran G
53 reex V
54 53 a1i φ V
55 inidm =
56 46 49 52 54 54 55 off φ F + f G : ran P
57 56 frnd φ ran F + f G ran P
58 57 ssdifd φ ran F + f G 0 ran P 0
59 27 sselda φ y ran F y
60 32 sselda φ z ran G z
61 59 60 anim12dan φ y ran F z ran G y z
62 readdcl y z y + z
63 61 62 syl φ y ran F z ran G y + z
64 63 ralrimivva φ y ran F z ran G y + z
65 funimassov Fun + ran F × ran G dom + + ran F × ran G y ran F z ran G y + z
66 24 37 65 sylancr φ + ran F × ran G y ran F z ran G y + z
67 64 66 mpbird φ + ran F × ran G
68 45 67 eqsstrid φ ran P
69 68 ssdifd φ ran P 0 0
70 itg1val2 F + f G dom 1 ran P 0 Fin ran F + f G 0 ran P 0 ran P 0 0 1 F + f G = w ran P 0 w vol F + f G -1 w
71 5 22 58 69 70 syl13anc φ 1 F + f G = w ran P 0 w vol F + f G -1 w
72 31 adantr φ w ran P 0 G :
73 12 adantr φ w ran P 0 ran G Fin
74 inss2 F -1 w z G -1 z G -1 z
75 74 a1i φ w ran P 0 z ran G F -1 w z G -1 z G -1 z
76 i1fima F dom 1 F -1 w z dom vol
77 1 76 syl φ F -1 w z dom vol
78 i1fima G dom 1 G -1 z dom vol
79 2 78 syl φ G -1 z dom vol
80 inmbl F -1 w z dom vol G -1 z dom vol F -1 w z G -1 z dom vol
81 77 79 80 syl2anc φ F -1 w z G -1 z dom vol
82 81 ad2antrr φ w ran P 0 z ran G F -1 w z G -1 z dom vol
83 20 68 sstrid φ ran P 0
84 83 sselda φ w ran P 0 w
85 84 adantr φ w ran P 0 z ran G w
86 60 adantlr φ w ran P 0 z ran G z
87 85 86 resubcld φ w ran P 0 z ran G w z
88 85 recnd φ w ran P 0 z ran G w
89 86 recnd φ w ran P 0 z ran G z
90 88 89 npcand φ w ran P 0 z ran G w - z + z = w
91 eldifsni w ran P 0 w 0
92 91 ad2antlr φ w ran P 0 z ran G w 0
93 90 92 eqnetrd φ w ran P 0 z ran G w - z + z 0
94 oveq12 w z = 0 z = 0 w - z + z = 0 + 0
95 00id 0 + 0 = 0
96 94 95 eqtrdi w z = 0 z = 0 w - z + z = 0
97 96 necon3ai w - z + z 0 ¬ w z = 0 z = 0
98 93 97 syl φ w ran P 0 z ran G ¬ w z = 0 z = 0
99 1 2 3 itg1addlem3 w z z ¬ w z = 0 z = 0 w z I z = vol F -1 w z G -1 z
100 87 86 98 99 syl21anc φ w ran P 0 z ran G w z I z = vol F -1 w z G -1 z
101 1 2 3 itg1addlem2 φ I : 2
102 101 ad2antrr φ w ran P 0 z ran G I : 2
103 102 87 86 fovrnd φ w ran P 0 z ran G w z I z
104 100 103 eqeltrrd φ w ran P 0 z ran G vol F -1 w z G -1 z
105 72 73 75 82 104 itg1addlem1 φ w ran P 0 vol z ran G F -1 w z G -1 z = z ran G vol F -1 w z G -1 z
106 84 recnd φ w ran P 0 w
107 1 2 i1faddlem φ w F + f G -1 w = z ran G F -1 w z G -1 z
108 106 107 syldan φ w ran P 0 F + f G -1 w = z ran G F -1 w z G -1 z
109 108 fveq2d φ w ran P 0 vol F + f G -1 w = vol z ran G F -1 w z G -1 z
110 100 sumeq2dv φ w ran P 0 z ran G w z I z = z ran G vol F -1 w z G -1 z
111 105 109 110 3eqtr4d φ w ran P 0 vol F + f G -1 w = z ran G w z I z
112 111 oveq2d φ w ran P 0 w vol F + f G -1 w = w z ran G w z I z
113 103 recnd φ w ran P 0 z ran G w z I z
114 73 106 113 fsummulc2 φ w ran P 0 w z ran G w z I z = z ran G w w z I z
115 112 114 eqtrd φ w ran P 0 w vol F + f G -1 w = z ran G w w z I z
116 115 sumeq2dv φ w ran P 0 w vol F + f G -1 w = w ran P 0 z ran G w w z I z
117 88 113 mulcld φ w ran P 0 z ran G w w z I z
118 117 anasss φ w ran P 0 z ran G w w z I z
119 22 12 118 fsumcom φ w ran P 0 z ran G w w z I z = z ran G w ran P 0 w w z I z
120 71 116 119 3eqtrd φ 1 F + f G = z ran G w ran P 0 w w z I z
121 oveq1 y = w z y + z = w - z + z
122 oveq1 y = w z y I z = w z I z
123 121 122 oveq12d y = w z y + z y I z = w - z + z w z I z
124 19 adantr φ z ran G ran P Fin
125 68 adantr φ z ran G ran P
126 125 sselda φ z ran G v ran P v
127 60 adantr φ z ran G v ran P z
128 126 127 resubcld φ z ran G v ran P v z
129 128 ex φ z ran G v ran P v z
130 126 recnd φ z ran G v ran P v
131 130 adantrr φ z ran G v ran P y ran P v
132 68 sselda φ y ran P y
133 132 ad2ant2rl φ z ran G v ran P y ran P y
134 133 recnd φ z ran G v ran P y ran P y
135 60 recnd φ z ran G z
136 135 adantr φ z ran G v ran P y ran P z
137 131 134 136 subcan2ad φ z ran G v ran P y ran P v z = y z v = y
138 137 ex φ z ran G v ran P y ran P v z = y z v = y
139 129 138 dom2lem φ z ran G v ran P v z : ran P 1-1
140 f1f1orn v ran P v z : ran P 1-1 v ran P v z : ran P 1-1 onto ran v ran P v z
141 139 140 syl φ z ran G v ran P v z : ran P 1-1 onto ran v ran P v z
142 oveq1 v = w v z = w z
143 eqid v ran P v z = v ran P v z
144 ovex w z V
145 142 143 144 fvmpt w ran P v ran P v z w = w z
146 145 adantl φ z ran G w ran P v ran P v z w = w z
147 f1f v ran P v z : ran P 1-1 v ran P v z : ran P
148 frn v ran P v z : ran P ran v ran P v z
149 139 147 148 3syl φ z ran G ran v ran P v z
150 149 sselda φ z ran G y ran v ran P v z y
151 60 adantr φ z ran G y ran v ran P v z z
152 150 151 readdcld φ z ran G y ran v ran P v z y + z
153 101 ad2antrr φ z ran G y ran v ran P v z I : 2
154 153 150 151 fovrnd φ z ran G y ran v ran P v z y I z
155 152 154 remulcld φ z ran G y ran v ran P v z y + z y I z
156 155 recnd φ z ran G y ran v ran P v z y + z y I z
157 123 124 141 146 156 fsumf1o φ z ran G y ran v ran P v z y + z y I z = w ran P w - z + z w z I z
158 125 sselda φ z ran G w ran P w
159 158 recnd φ z ran G w ran P w
160 135 adantr φ z ran G w ran P z
161 159 160 npcand φ z ran G w ran P w - z + z = w
162 161 oveq1d φ z ran G w ran P w - z + z w z I z = w w z I z
163 162 sumeq2dv φ z ran G w ran P w - z + z w z I z = w ran P w w z I z
164 157 163 eqtrd φ z ran G y ran v ran P v z y + z y I z = w ran P w w z I z
165 37 ad2antrr φ z ran G y ran F ran F × ran G dom +
166 simpr φ z ran G y ran F y ran F
167 simplr φ z ran G y ran F z ran G
168 166 167 opelxpd φ z ran G y ran F y z ran F × ran G
169 funfvima2 Fun + ran F × ran G dom + y z ran F × ran G + y z + ran F × ran G
170 24 169 mpan ran F × ran G dom + y z ran F × ran G + y z + ran F × ran G
171 165 168 170 sylc φ z ran G y ran F + y z + ran F × ran G
172 df-ov y + z = + y z
173 171 172 45 3eltr4g φ z ran G y ran F y + z ran P
174 59 adantlr φ z ran G y ran F y
175 174 recnd φ z ran G y ran F y
176 135 adantr φ z ran G y ran F z
177 175 176 pncand φ z ran G y ran F y + z - z = y
178 177 eqcomd φ z ran G y ran F y = y + z - z
179 oveq1 v = y + z v z = y + z - z
180 179 rspceeqv y + z ran P y = y + z - z v ran P y = v z
181 173 178 180 syl2anc φ z ran G y ran F v ran P y = v z
182 181 ralrimiva φ z ran G y ran F v ran P y = v z
183 ssabral ran F y | v ran P y = v z y ran F v ran P y = v z
184 182 183 sylibr φ z ran G ran F y | v ran P y = v z
185 143 rnmpt ran v ran P v z = y | v ran P y = v z
186 184 185 sseqtrrdi φ z ran G ran F ran v ran P v z
187 60 adantr φ z ran G y ran F z
188 174 187 readdcld φ z ran G y ran F y + z
189 101 ad2antrr φ z ran G y ran F I : 2
190 189 174 187 fovrnd φ z ran G y ran F y I z
191 188 190 remulcld φ z ran G y ran F y + z y I z
192 191 recnd φ z ran G y ran F y + z y I z
193 149 ssdifd φ z ran G ran v ran P v z ran F ran F
194 193 sselda φ z ran G y ran v ran P v z ran F y ran F
195 eldifi y ran F y
196 195 ad2antrl φ z ran G y ran F ¬ y = 0 z = 0 y
197 60 adantr φ z ran G y ran F ¬ y = 0 z = 0 z
198 simprr φ z ran G y ran F ¬ y = 0 z = 0 ¬ y = 0 z = 0
199 1 2 3 itg1addlem3 y z ¬ y = 0 z = 0 y I z = vol F -1 y G -1 z
200 196 197 198 199 syl21anc φ z ran G y ran F ¬ y = 0 z = 0 y I z = vol F -1 y G -1 z
201 inss1 F -1 y G -1 z F -1 y
202 eldifn y ran F ¬ y ran F
203 202 ad2antrl φ z ran G y ran F ¬ y = 0 z = 0 ¬ y ran F
204 vex v V
205 204 eliniseg y V v F -1 y v F y
206 205 elv v F -1 y v F y
207 vex y V
208 204 207 brelrn v F y y ran F
209 206 208 sylbi v F -1 y y ran F
210 203 209 nsyl φ z ran G y ran F ¬ y = 0 z = 0 ¬ v F -1 y
211 210 pm2.21d φ z ran G y ran F ¬ y = 0 z = 0 v F -1 y v
212 211 ssrdv φ z ran G y ran F ¬ y = 0 z = 0 F -1 y
213 201 212 sstrid φ z ran G y ran F ¬ y = 0 z = 0 F -1 y G -1 z
214 ss0 F -1 y G -1 z F -1 y G -1 z =
215 213 214 syl φ z ran G y ran F ¬ y = 0 z = 0 F -1 y G -1 z =
216 215 fveq2d φ z ran G y ran F ¬ y = 0 z = 0 vol F -1 y G -1 z = vol
217 0mbl dom vol
218 mblvol dom vol vol = vol *
219 217 218 ax-mp vol = vol *
220 ovol0 vol * = 0
221 219 220 eqtri vol = 0
222 216 221 eqtrdi φ z ran G y ran F ¬ y = 0 z = 0 vol F -1 y G -1 z = 0
223 200 222 eqtrd φ z ran G y ran F ¬ y = 0 z = 0 y I z = 0
224 223 oveq2d φ z ran G y ran F ¬ y = 0 z = 0 y + z y I z = y + z 0
225 196 197 readdcld φ z ran G y ran F ¬ y = 0 z = 0 y + z
226 225 recnd φ z ran G y ran F ¬ y = 0 z = 0 y + z
227 226 mul01d φ z ran G y ran F ¬ y = 0 z = 0 y + z 0 = 0
228 224 227 eqtrd φ z ran G y ran F ¬ y = 0 z = 0 y + z y I z = 0
229 228 expr φ z ran G y ran F ¬ y = 0 z = 0 y + z y I z = 0
230 oveq12 y = 0 z = 0 y + z = 0 + 0
231 230 95 eqtrdi y = 0 z = 0 y + z = 0
232 oveq12 y = 0 z = 0 y I z = 0 I 0
233 0re 0
234 iftrue i = 0 j = 0 if i = 0 j = 0 0 vol F -1 i G -1 j = 0
235 c0ex 0 V
236 234 3 235 ovmpoa 0 0 0 I 0 = 0
237 233 233 236 mp2an 0 I 0 = 0
238 232 237 eqtrdi y = 0 z = 0 y I z = 0
239 231 238 oveq12d y = 0 z = 0 y + z y I z = 0 0
240 0cn 0
241 240 mul01i 0 0 = 0
242 239 241 eqtrdi y = 0 z = 0 y + z y I z = 0
243 229 242 pm2.61d2 φ z ran G y ran F y + z y I z = 0
244 194 243 syldan φ z ran G y ran v ran P v z ran F y + z y I z = 0
245 f1ofo v ran P v z : ran P 1-1 onto ran v ran P v z v ran P v z : ran P onto ran v ran P v z
246 141 245 syl φ z ran G v ran P v z : ran P onto ran v ran P v z
247 fofi ran P Fin v ran P v z : ran P onto ran v ran P v z ran v ran P v z Fin
248 124 246 247 syl2anc φ z ran G ran v ran P v z Fin
249 186 192 244 248 fsumss φ z ran G y ran F y + z y I z = y ran v ran P v z y + z y I z
250 20 a1i φ z ran G ran P 0 ran P
251 117 an32s φ z ran G w ran P 0 w w z I z
252 dfin4 ran P 0 = ran P ran P 0
253 inss2 ran P 0 0
254 252 253 eqsstrri ran P ran P 0 0
255 254 sseli w ran P ran P 0 w 0
256 elsni w 0 w = 0
257 256 adantl φ z ran G w 0 w = 0
258 257 oveq1d φ z ran G w 0 w w z I z = 0 w z I z
259 101 ad2antrr φ z ran G w 0 I : 2
260 257 233 eqeltrdi φ z ran G w 0 w
261 60 adantr φ z ran G w 0 z
262 260 261 resubcld φ z ran G w 0 w z
263 259 262 261 fovrnd φ z ran G w 0 w z I z
264 263 recnd φ z ran G w 0 w z I z
265 264 mul02d φ z ran G w 0 0 w z I z = 0
266 258 265 eqtrd φ z ran G w 0 w w z I z = 0
267 255 266 sylan2 φ z ran G w ran P ran P 0 w w z I z = 0
268 250 251 267 124 fsumss φ z ran G w ran P 0 w w z I z = w ran P w w z I z
269 164 249 268 3eqtr4d φ z ran G y ran F y + z y I z = w ran P 0 w w z I z
270 269 sumeq2dv φ z ran G y ran F y + z y I z = z ran G w ran P 0 w w z I z
271 192 anasss φ z ran G y ran F y + z y I z
272 12 10 271 fsumcom φ z ran G y ran F y + z y I z = y ran F z ran G y + z y I z
273 120 270 272 3eqtr2d φ 1 F + f G = y ran F z ran G y + z y I z