Metamath Proof Explorer


Theorem oddpwdc

Description: Lemma for eulerpart . The function F that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017)

Ref Expression
Hypotheses oddpwdc.j J = z | ¬ 2 z
oddpwdc.f F = x J , y 0 2 y x
Assertion oddpwdc F : J × 0 1-1 onto

Proof

Step Hyp Ref Expression
1 oddpwdc.j J = z | ¬ 2 z
2 oddpwdc.f F = x J , y 0 2 y x
3 2nn 2
4 3 a1i y 0 x J 2
5 simpl y 0 x J y 0
6 4 5 nnexpcld y 0 x J 2 y
7 ssrab2 z | ¬ 2 z
8 1 7 eqsstri J
9 simpr y 0 x J x J
10 8 9 sseldi y 0 x J x
11 6 10 nnmulcld y 0 x J 2 y x
12 11 ancoms x J y 0 2 y x
13 12 adantl x J y 0 2 y x
14 id a a
15 3 a1i a 2
16 nn0ssre 0
17 ltso < Or
18 soss 0 < Or < Or 0
19 16 17 18 mp2 < Or 0
20 19 a1i a < Or 0
21 0zd a 0
22 ssrab2 k 0 | 2 k a 0
23 22 a1i a k 0 | 2 k a 0
24 nnz a a
25 oveq2 k = n 2 k = 2 n
26 25 breq1d k = n 2 k a 2 n a
27 26 elrab n k 0 | 2 k a n 0 2 n a
28 simprl a n 0 2 n a n 0
29 28 nn0red a n 0 2 n a n
30 3 a1i a n 0 2 n a 2
31 30 28 nnexpcld a n 0 2 n a 2 n
32 31 nnred a n 0 2 n a 2 n
33 simpl a n 0 2 n a a
34 33 nnred a n 0 2 n a a
35 2re 2
36 35 leidi 2 2
37 nexple n 0 2 2 2 n 2 n
38 35 36 37 mp3an23 n 0 n 2 n
39 38 ad2antrl a n 0 2 n a n 2 n
40 31 nnzd a n 0 2 n a 2 n
41 simprr a n 0 2 n a 2 n a
42 dvdsle 2 n a 2 n a 2 n a
43 42 imp 2 n a 2 n a 2 n a
44 40 33 41 43 syl21anc a n 0 2 n a 2 n a
45 29 32 34 39 44 letrd a n 0 2 n a n a
46 27 45 sylan2b a n k 0 | 2 k a n a
47 46 ralrimiva a n k 0 | 2 k a n a
48 brralrspcev a n k 0 | 2 k a n a m n k 0 | 2 k a n m
49 24 47 48 syl2anc a m n k 0 | 2 k a n m
50 nn0uz 0 = 0
51 50 uzsupss 0 k 0 | 2 k a 0 m n k 0 | 2 k a n m m 0 n k 0 | 2 k a ¬ m < n n 0 n < m o k 0 | 2 k a n < o
52 21 23 49 51 syl3anc a m 0 n k 0 | 2 k a ¬ m < n n 0 n < m o k 0 | 2 k a n < o
53 20 52 supcl a sup k 0 | 2 k a 0 < 0
54 15 53 nnexpcld a 2 sup k 0 | 2 k a 0 <
55 fzfi 0 a Fin
56 0zd a n k 0 | 2 k a 0
57 24 adantr a n k 0 | 2 k a a
58 27 28 sylan2b a n k 0 | 2 k a n 0
59 58 nn0zd a n k 0 | 2 k a n
60 58 nn0ge0d a n k 0 | 2 k a 0 n
61 elfz4 0 a n 0 n n a n 0 a
62 56 57 59 60 46 61 syl32anc a n k 0 | 2 k a n 0 a
63 62 ex a n k 0 | 2 k a n 0 a
64 63 ssrdv a k 0 | 2 k a 0 a
65 ssfi 0 a Fin k 0 | 2 k a 0 a k 0 | 2 k a Fin
66 55 64 65 sylancr a k 0 | 2 k a Fin
67 0nn0 0 0
68 67 a1i a 0 0
69 2cn 2
70 exp0 2 2 0 = 1
71 69 70 ax-mp 2 0 = 1
72 1dvds a 1 a
73 24 72 syl a 1 a
74 71 73 eqbrtrid a 2 0 a
75 oveq2 k = 0 2 k = 2 0
76 75 breq1d k = 0 2 k a 2 0 a
77 76 elrab 0 k 0 | 2 k a 0 0 2 0 a
78 68 74 77 sylanbrc a 0 k 0 | 2 k a
79 78 ne0d a k 0 | 2 k a
80 fisupcl < Or 0 k 0 | 2 k a Fin k 0 | 2 k a k 0 | 2 k a 0 sup k 0 | 2 k a 0 < k 0 | 2 k a
81 20 66 79 23 80 syl13anc a sup k 0 | 2 k a 0 < k 0 | 2 k a
82 oveq2 k = l 2 k = 2 l
83 82 breq1d k = l 2 k a 2 l a
84 83 cbvrabv k 0 | 2 k a = l 0 | 2 l a
85 81 84 eleqtrdi a sup k 0 | 2 k a 0 < l 0 | 2 l a
86 oveq2 l = sup k 0 | 2 k a 0 < 2 l = 2 sup k 0 | 2 k a 0 <
87 86 breq1d l = sup k 0 | 2 k a 0 < 2 l a 2 sup k 0 | 2 k a 0 < a
88 87 elrab sup k 0 | 2 k a 0 < l 0 | 2 l a sup k 0 | 2 k a 0 < 0 2 sup k 0 | 2 k a 0 < a
89 85 88 sylib a sup k 0 | 2 k a 0 < 0 2 sup k 0 | 2 k a 0 < a
90 89 simprd a 2 sup k 0 | 2 k a 0 < a
91 nndivdvds a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < a a 2 sup k 0 | 2 k a 0 <
92 91 biimpa a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < a a 2 sup k 0 | 2 k a 0 <
93 14 54 90 92 syl21anc a a 2 sup k 0 | 2 k a 0 <
94 1nn0 1 0
95 94 a1i a 1 0
96 53 95 nn0addcld a sup k 0 | 2 k a 0 < + 1 0
97 53 nn0red a sup k 0 | 2 k a 0 <
98 97 ltp1d a sup k 0 | 2 k a 0 < < sup k 0 | 2 k a 0 < + 1
99 20 52 supub a sup k 0 | 2 k a 0 < + 1 k 0 | 2 k a ¬ sup k 0 | 2 k a 0 < < sup k 0 | 2 k a 0 < + 1
100 98 99 mt2d a ¬ sup k 0 | 2 k a 0 < + 1 k 0 | 2 k a
101 84 eleq2i sup k 0 | 2 k a 0 < + 1 k 0 | 2 k a sup k 0 | 2 k a 0 < + 1 l 0 | 2 l a
102 100 101 sylnib a ¬ sup k 0 | 2 k a 0 < + 1 l 0 | 2 l a
103 oveq2 l = sup k 0 | 2 k a 0 < + 1 2 l = 2 sup k 0 | 2 k a 0 < + 1
104 103 breq1d l = sup k 0 | 2 k a 0 < + 1 2 l a 2 sup k 0 | 2 k a 0 < + 1 a
105 104 elrab sup k 0 | 2 k a 0 < + 1 l 0 | 2 l a sup k 0 | 2 k a 0 < + 1 0 2 sup k 0 | 2 k a 0 < + 1 a
106 102 105 sylnib a ¬ sup k 0 | 2 k a 0 < + 1 0 2 sup k 0 | 2 k a 0 < + 1 a
107 imnan sup k 0 | 2 k a 0 < + 1 0 ¬ 2 sup k 0 | 2 k a 0 < + 1 a ¬ sup k 0 | 2 k a 0 < + 1 0 2 sup k 0 | 2 k a 0 < + 1 a
108 106 107 sylibr a sup k 0 | 2 k a 0 < + 1 0 ¬ 2 sup k 0 | 2 k a 0 < + 1 a
109 96 108 mpd a ¬ 2 sup k 0 | 2 k a 0 < + 1 a
110 expp1 2 sup k 0 | 2 k a 0 < 0 2 sup k 0 | 2 k a 0 < + 1 = 2 sup k 0 | 2 k a 0 < 2
111 69 53 110 sylancr a 2 sup k 0 | 2 k a 0 < + 1 = 2 sup k 0 | 2 k a 0 < 2
112 111 breq1d a 2 sup k 0 | 2 k a 0 < + 1 a 2 sup k 0 | 2 k a 0 < 2 a
113 109 112 mtbid a ¬ 2 sup k 0 | 2 k a 0 < 2 a
114 nncn a a
115 54 nncnd a 2 sup k 0 | 2 k a 0 <
116 54 nnne0d a 2 sup k 0 | 2 k a 0 < 0
117 114 115 116 divcan2d a 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < = a
118 117 eqcomd a a = 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
119 118 breq2d a 2 sup k 0 | 2 k a 0 < 2 a 2 sup k 0 | 2 k a 0 < 2 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
120 15 nnzd a 2
121 93 nnzd a a 2 sup k 0 | 2 k a 0 <
122 54 nnzd a 2 sup k 0 | 2 k a 0 <
123 dvdscmulr 2 a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < 0 2 sup k 0 | 2 k a 0 < 2 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < 2 a 2 sup k 0 | 2 k a 0 <
124 120 121 122 116 123 syl112anc a 2 sup k 0 | 2 k a 0 < 2 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < 2 a 2 sup k 0 | 2 k a 0 <
125 119 124 bitrd a 2 sup k 0 | 2 k a 0 < 2 a 2 a 2 sup k 0 | 2 k a 0 <
126 113 125 mtbid a ¬ 2 a 2 sup k 0 | 2 k a 0 <
127 breq2 z = a 2 sup k 0 | 2 k a 0 < 2 z 2 a 2 sup k 0 | 2 k a 0 <
128 127 notbid z = a 2 sup k 0 | 2 k a 0 < ¬ 2 z ¬ 2 a 2 sup k 0 | 2 k a 0 <
129 128 1 elrab2 a 2 sup k 0 | 2 k a 0 < J a 2 sup k 0 | 2 k a 0 < ¬ 2 a 2 sup k 0 | 2 k a 0 <
130 93 126 129 sylanbrc a a 2 sup k 0 | 2 k a 0 < J
131 130 53 jca a a 2 sup k 0 | 2 k a 0 < J sup k 0 | 2 k a 0 < 0
132 131 adantl a a 2 sup k 0 | 2 k a 0 < J sup k 0 | 2 k a 0 < 0
133 simpr x J y 0 a = 2 y x a = 2 y x
134 3 a1i x J y 0 a = 2 y x 2
135 simplr x J y 0 a = 2 y x y 0
136 134 135 nnexpcld x J y 0 a = 2 y x 2 y
137 8 sseli x J x
138 137 ad2antrr x J y 0 a = 2 y x x
139 136 138 nnmulcld x J y 0 a = 2 y x 2 y x
140 133 139 eqeltrd x J y 0 a = 2 y x a
141 simplll x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < x J
142 breq2 z = x 2 z 2 x
143 142 notbid z = x ¬ 2 z ¬ 2 x
144 143 1 elrab2 x J x ¬ 2 x
145 144 simprbi x J ¬ 2 x
146 2z 2
147 135 adantr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < y 0
148 147 nn0zd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < y
149 19 a1i x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < < Or 0
150 140 52 syl x J y 0 a = 2 y x m 0 n k 0 | 2 k a ¬ m < n n 0 n < m o k 0 | 2 k a n < o
151 150 adantr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < m 0 n k 0 | 2 k a ¬ m < n n 0 n < m o k 0 | 2 k a n < o
152 149 151 supcl x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < 0
153 152 nn0zd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 <
154 simpr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < y < sup k 0 | 2 k a 0 <
155 znnsub y sup k 0 | 2 k a 0 < y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < y
156 155 biimpa y sup k 0 | 2 k a 0 < y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < y
157 148 153 154 156 syl21anc x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < y
158 iddvdsexp 2 sup k 0 | 2 k a 0 < y 2 2 sup k 0 | 2 k a 0 < y
159 146 157 158 sylancr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 2 sup k 0 | 2 k a 0 < y
160 146 a1i x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2
161 140 121 syl x J y 0 a = 2 y x a 2 sup k 0 | 2 k a 0 <
162 161 adantr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
163 157 nnnn0d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < y 0
164 zexpcl 2 sup k 0 | 2 k a 0 < y 0 2 sup k 0 | 2 k a 0 < y
165 146 163 164 sylancr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
166 dvdsmultr2 2 a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y 2 2 sup k 0 | 2 k a 0 < y 2 a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
167 160 162 165 166 syl3anc x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 2 sup k 0 | 2 k a 0 < y 2 a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
168 159 167 mpd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
169 138 adantr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < x
170 169 nncnd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < x
171 2cnd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2
172 171 163 expcld x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
173 140 adantr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a
174 173 nncnd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a
175 173 115 syl x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 <
176 2ne0 2 0
177 176 a1i x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 0
178 171 177 153 expne0d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < 0
179 174 175 178 divcld x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
180 172 179 mulcld x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
181 171 147 expcld x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y
182 171 177 148 expne0d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y 0
183 173 118 syl x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a = 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
184 simplr x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a = 2 y x
185 147 nn0cnd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < y
186 152 nn0cnd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 <
187 185 186 pncan3d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < y + sup k 0 | 2 k a 0 < - y = sup k 0 | 2 k a 0 <
188 187 oveq2d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y + sup k 0 | 2 k a 0 < - y = 2 sup k 0 | 2 k a 0 <
189 171 163 147 expaddd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y + sup k 0 | 2 k a 0 < - y = 2 y 2 sup k 0 | 2 k a 0 < y
190 188 189 eqtr3d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < = 2 y 2 sup k 0 | 2 k a 0 < y
191 190 oveq1d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < = 2 y 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
192 183 184 191 3eqtr3d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y x = 2 y 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
193 181 172 179 mulassd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 < = 2 y 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
194 192 193 eqtrd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 y x = 2 y 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
195 170 180 181 182 194 mulcanad x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < x = 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
196 179 172 mulcomd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y = 2 sup k 0 | 2 k a 0 < y a 2 sup k 0 | 2 k a 0 <
197 195 196 eqtr4d x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < x = a 2 sup k 0 | 2 k a 0 < 2 sup k 0 | 2 k a 0 < y
198 168 197 breqtrrd x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < 2 x
199 145 198 nsyl3 x J y 0 a = 2 y x y < sup k 0 | 2 k a 0 < ¬ x J
200 141 199 pm2.65da x J y 0 a = 2 y x ¬ y < sup k 0 | 2 k a 0 <
201 138 nnzd x J y 0 a = 2 y x x
202 136 nnzd x J y 0 a = 2 y x 2 y
203 140 nnzd x J y 0 a = 2 y x a
204 136 nncnd x J y 0 a = 2 y x 2 y
205 138 nncnd x J y 0 a = 2 y x x
206 204 205 mulcomd x J y 0 a = 2 y x 2 y x = x 2 y
207 133 206 eqtr2d x J y 0 a = 2 y x x 2 y = a
208 dvds0lem x 2 y a x 2 y = a 2 y a
209 201 202 203 207 208 syl31anc x J y 0 a = 2 y x 2 y a
210 oveq2 k = y 2 k = 2 y
211 210 breq1d k = y 2 k a 2 y a
212 211 elrab y k 0 | 2 k a y 0 2 y a
213 135 209 212 sylanbrc x J y 0 a = 2 y x y k 0 | 2 k a
214 19 a1i x J y 0 a = 2 y x < Or 0
215 214 150 supub x J y 0 a = 2 y x y k 0 | 2 k a ¬ sup k 0 | 2 k a 0 < < y
216 213 215 mpd x J y 0 a = 2 y x ¬ sup k 0 | 2 k a 0 < < y
217 135 nn0red x J y 0 a = 2 y x y
218 140 97 syl x J y 0 a = 2 y x sup k 0 | 2 k a 0 <
219 217 218 lttri3d x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < ¬ y < sup k 0 | 2 k a 0 < ¬ sup k 0 | 2 k a 0 < < y
220 200 216 219 mpbir2and x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 <
221 simplr x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a = 2 y x
222 140 adantr x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a
223 222 nncnd x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a
224 138 adantr x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < x
225 224 nncnd x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < x
226 nnexpcl 2 y 0 2 y
227 3 226 mpan y 0 2 y
228 227 nncnd y 0 2 y
229 227 nnne0d y 0 2 y 0
230 228 229 jca y 0 2 y 2 y 0
231 230 ad3antlr x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < 2 y 2 y 0
232 divmul2 a x 2 y 2 y 0 a 2 y = x a = 2 y x
233 223 225 231 232 syl3anc x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a 2 y = x a = 2 y x
234 221 233 mpbird x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a 2 y = x
235 simpr x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
236 235 oveq2d x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < 2 y = 2 sup k 0 | 2 k a 0 <
237 236 oveq2d x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < a 2 y = a 2 sup k 0 | 2 k a 0 <
238 234 237 eqtr3d x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < x = a 2 sup k 0 | 2 k a 0 <
239 238 ex x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < x = a 2 sup k 0 | 2 k a 0 <
240 220 239 jcai x J y 0 a = 2 y x y = sup k 0 | 2 k a 0 < x = a 2 sup k 0 | 2 k a 0 <
241 240 ancomd x J y 0 a = 2 y x x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
242 140 241 jca x J y 0 a = 2 y x a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
243 simprl a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < x = a 2 sup k 0 | 2 k a 0 <
244 130 adantr a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 < J
245 243 244 eqeltrd a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < x J
246 simprr a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
247 53 adantr a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < sup k 0 | 2 k a 0 < 0
248 246 247 eqeltrd a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < y 0
249 118 adantr a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < a = 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
250 246 oveq2d a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < 2 y = 2 sup k 0 | 2 k a 0 <
251 250 243 oveq12d a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < 2 y x = 2 sup k 0 | 2 k a 0 < a 2 sup k 0 | 2 k a 0 <
252 249 251 eqtr4d a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < a = 2 y x
253 245 248 252 jca31 a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 < x J y 0 a = 2 y x
254 242 253 impbii x J y 0 a = 2 y x a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
255 254 a1i x J y 0 a = 2 y x a x = a 2 sup k 0 | 2 k a 0 < y = sup k 0 | 2 k a 0 <
256 2 13 132 255 f1od2 F : J × 0 1-1 onto
257 256 mptru F : J × 0 1-1 onto