Metamath Proof Explorer


Theorem omabs2

Description: Ordinal multiplication by a larger ordinal is absorbed when the larger ordinal is either 2 or _om raised to some power of _om . (Contributed by RP, 12-Jan-2025)

Ref Expression
Assertion omabs2 ABAB=B=2𝑜B=ω𝑜ω𝑜CCOnA𝑜B=B

Proof

Step Hyp Ref Expression
1 eleq2 B=ABA
2 noel ¬A
3 2 pm2.21i AAA𝑜B=B
4 1 3 syl6bi B=ABAA𝑜B=B
5 4 impd B=ABAA𝑜B=B
6 5 com12 ABAB=A𝑜B=B
7 elpri A1𝑜A=A=1𝑜
8 eleq2 A=A
9 noel ¬
10 9 pm2.21i A𝑜2𝑜=2𝑜
11 8 10 syl6bi A=AA𝑜2𝑜=2𝑜
12 oveq1 A=1𝑜A𝑜2𝑜=1𝑜𝑜2𝑜
13 2on 2𝑜On
14 om1r 2𝑜On1𝑜𝑜2𝑜=2𝑜
15 13 14 ax-mp 1𝑜𝑜2𝑜=2𝑜
16 12 15 eqtrdi A=1𝑜A𝑜2𝑜=2𝑜
17 16 a1d A=1𝑜AA𝑜2𝑜=2𝑜
18 11 17 jaoi A=A=1𝑜AA𝑜2𝑜=2𝑜
19 7 18 syl A1𝑜AA𝑜2𝑜=2𝑜
20 df2o3 2𝑜=1𝑜
21 19 20 eleq2s A2𝑜AA𝑜2𝑜=2𝑜
22 21 imp A2𝑜AA𝑜2𝑜=2𝑜
23 22 a1i B=2𝑜A2𝑜AA𝑜2𝑜=2𝑜
24 eleq2 B=2𝑜ABA2𝑜
25 24 anbi1d B=2𝑜ABAA2𝑜A
26 oveq2 B=2𝑜A𝑜B=A𝑜2𝑜
27 id B=2𝑜B=2𝑜
28 26 27 eqeq12d B=2𝑜A𝑜B=BA𝑜2𝑜=2𝑜
29 23 25 28 3imtr4d B=2𝑜ABAA𝑜B=B
30 29 com12 ABAB=2𝑜A𝑜B=B
31 simpr ABAB=ω𝑜ω𝑜CCOnAωAω
32 simpllr ABAB=ω𝑜ω𝑜CCOnAωA
33 omelon ωOn
34 oecl ωOnCOnω𝑜COn
35 33 34 mpan COnω𝑜COn
36 35 adantl B=ω𝑜ω𝑜CCOnω𝑜COn
37 36 ad2antlr ABAB=ω𝑜ω𝑜CCOnAωω𝑜COn
38 33 jctl COnωOnCOn
39 peano1 ω
40 oen0 ωOnCOnωω𝑜C
41 38 39 40 sylancl COnω𝑜C
42 41 adantl B=ω𝑜ω𝑜CCOnω𝑜C
43 42 ad2antlr ABAB=ω𝑜ω𝑜CCOnAωω𝑜C
44 omabs AωAω𝑜COnω𝑜CA𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
45 31 32 37 43 44 syl22anc ABAB=ω𝑜ω𝑜CCOnAωA𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
46 oveq2 B=ω𝑜ω𝑜CA𝑜B=A𝑜ω𝑜ω𝑜C
47 id B=ω𝑜ω𝑜CB=ω𝑜ω𝑜C
48 46 47 eqeq12d B=ω𝑜ω𝑜CA𝑜B=BA𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
49 48 adantr B=ω𝑜ω𝑜CCOnA𝑜B=BA𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
50 49 ad2antlr ABAB=ω𝑜ω𝑜CCOnAωA𝑜B=BA𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
51 45 50 mpbird ABAB=ω𝑜ω𝑜CCOnAωA𝑜B=B
52 simpl B=ω𝑜ω𝑜CCOnB=ω𝑜ω𝑜C
53 oecl ωOnω𝑜COnω𝑜ω𝑜COn
54 33 35 53 sylancr COnω𝑜ω𝑜COn
55 54 adantl B=ω𝑜ω𝑜CCOnω𝑜ω𝑜COn
56 52 55 eqeltrd B=ω𝑜ω𝑜CCOnBOn
57 simpl ABAAB
58 onelon BOnABAOn
59 56 57 58 syl2anr ABAB=ω𝑜ω𝑜CCOnAOn
60 simplr ABAB=ω𝑜ω𝑜CCOnA
61 ondif1 AOn1𝑜AOnA
62 59 60 61 sylanbrc ABAB=ω𝑜ω𝑜CCOnAOn1𝑜
63 1onn 1𝑜ω
64 ondif2 ωOn2𝑜ωOn1𝑜ω
65 33 63 64 mpbir2an ωOn2𝑜
66 62 65 jctil ABAB=ω𝑜ω𝑜CCOnωOn2𝑜AOn1𝑜
67 66 adantr ABAB=ω𝑜ω𝑜CCOnωAωOn2𝑜AOn1𝑜
68 oeeu ωOn2𝑜AOn1𝑜∃!wxOnyω1𝑜zω𝑜xw=xyzω𝑜x𝑜y+𝑜z=A
69 67 68 syl ABAB=ω𝑜ω𝑜CCOnωA∃!wxOnyω1𝑜zω𝑜xw=xyzω𝑜x𝑜y+𝑜z=A
70 euex ∃!wxOnyω1𝑜zω𝑜xw=xyzω𝑜x𝑜y+𝑜z=AwxOnyω1𝑜zω𝑜xw=xyzω𝑜x𝑜y+𝑜z=A
71 simpr w=xyzω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜y+𝑜z=A
72 0ss z
73 0elon On
74 simpr ABAB=ω𝑜ω𝑜CCOnωAxOnxOn
75 oecl ωOnxOnω𝑜xOn
76 33 74 75 sylancr ABAB=ω𝑜ω𝑜CCOnωAxOnω𝑜xOn
77 76 ad2antrr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜xOn
78 onelon ω𝑜xOnzω𝑜xzOn
79 77 78 sylancom ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xzOn
80 1on 1𝑜On
81 omcl ω𝑜xOn1𝑜Onω𝑜x𝑜1𝑜On
82 76 80 81 sylancl ABAB=ω𝑜ω𝑜CCOnωAxOnω𝑜x𝑜1𝑜On
83 82 ad5ant12 ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜1𝑜On
84 oaword OnzOnω𝑜x𝑜1𝑜Onzω𝑜x𝑜1𝑜+𝑜ω𝑜x𝑜1𝑜+𝑜z
85 84 biimpd OnzOnω𝑜x𝑜1𝑜Onzω𝑜x𝑜1𝑜+𝑜ω𝑜x𝑜1𝑜+𝑜z
86 73 79 83 85 mp3an2ani ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Azω𝑜x𝑜1𝑜+𝑜ω𝑜x𝑜1𝑜+𝑜z
87 72 86 mpi ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜1𝑜+𝑜ω𝑜x𝑜1𝑜+𝑜z
88 simpllr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ayω1𝑜
89 omsson ωOn
90 ssdif ωOnω1𝑜On1𝑜
91 89 90 ax-mp ω1𝑜On1𝑜
92 91 sseli yω1𝑜yOn1𝑜
93 ondif1 yOn1𝑜yOny
94 df-1o 1𝑜=suc
95 eloni yOnOrdy
96 ordsucss Ordyysucy
97 95 96 syl yOnysucy
98 97 imp yOnysucy
99 94 98 eqsstrid yOny1𝑜y
100 93 99 sylbi yOn1𝑜1𝑜y
101 88 92 100 3syl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=A1𝑜y
102 eldifi yω1𝑜yω
103 nnon yωyOn
104 102 103 syl yω1𝑜yOn
105 104 ad2antlr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xyOn
106 simp-4r ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AxOn
107 33 106 75 sylancr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜xOn
108 omwordi 1𝑜OnyOnω𝑜xOn1𝑜yω𝑜x𝑜1𝑜ω𝑜x𝑜y
109 80 105 107 108 mp3an2ani ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=A1𝑜yω𝑜x𝑜1𝑜ω𝑜x𝑜y
110 101 109 mpd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜1𝑜ω𝑜x𝑜y
111 105 adantr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AyOn
112 omcl ω𝑜xOnyOnω𝑜x𝑜yOn
113 107 111 112 syl2anc ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜yOn
114 79 adantr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AzOn
115 oawordri ω𝑜x𝑜1𝑜Onω𝑜x𝑜yOnzOnω𝑜x𝑜1𝑜ω𝑜x𝑜yω𝑜x𝑜1𝑜+𝑜zω𝑜x𝑜y+𝑜z
116 83 113 114 115 syl3anc ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜1𝑜ω𝑜x𝑜yω𝑜x𝑜1𝑜+𝑜zω𝑜x𝑜y+𝑜z
117 110 116 mpd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜1𝑜+𝑜zω𝑜x𝑜y+𝑜z
118 87 117 sstrd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜1𝑜+𝑜ω𝑜x𝑜y+𝑜z
119 33 75 mpan xOnω𝑜xOn
120 119 80 81 sylancl xOnω𝑜x𝑜1𝑜On
121 oa0 ω𝑜x𝑜1𝑜Onω𝑜x𝑜1𝑜+𝑜=ω𝑜x𝑜1𝑜
122 120 121 syl xOnω𝑜x𝑜1𝑜+𝑜=ω𝑜x𝑜1𝑜
123 om1 ω𝑜xOnω𝑜x𝑜1𝑜=ω𝑜x
124 119 123 syl xOnω𝑜x𝑜1𝑜=ω𝑜x
125 122 124 eqtrd xOnω𝑜x𝑜1𝑜+𝑜=ω𝑜x
126 106 125 syl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜1𝑜+𝑜=ω𝑜x
127 simpr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜y+𝑜z=A
128 118 126 127 3sstr3d ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜xA
129 simp-7l ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AAB
130 simplrl ABAB=ω𝑜ω𝑜CCOnωAB=ω𝑜ω𝑜C
131 130 ad4antr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AB=ω𝑜ω𝑜C
132 129 131 eleqtrd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AAω𝑜ω𝑜C
133 55 ad6antlr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜ω𝑜COn
134 ontr2 ω𝑜xOnω𝑜ω𝑜COnω𝑜xAAω𝑜ω𝑜Cω𝑜xω𝑜ω𝑜C
135 107 133 134 syl2anc ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜xAAω𝑜ω𝑜Cω𝑜xω𝑜ω𝑜C
136 128 132 135 mp2and ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜xω𝑜ω𝑜C
137 36 ad6antlr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜COn
138 65 a1i ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AωOn2𝑜
139 oeord xOnω𝑜COnωOn2𝑜xω𝑜Cω𝑜xω𝑜ω𝑜C
140 106 137 138 139 syl3anc ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Axω𝑜Cω𝑜xω𝑜ω𝑜C
141 136 140 mpbird ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Axω𝑜C
142 simp-5r ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AωA
143 142 128 unssd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aωω𝑜xA
144 simplr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Azω𝑜x
145 onelpss zOnω𝑜xOnzω𝑜xzω𝑜xzω𝑜x
146 145 biimpd zOnω𝑜xOnzω𝑜xzω𝑜xzω𝑜x
147 79 107 146 syl2an2r ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Azω𝑜xzω𝑜xzω𝑜x
148 144 147 mpd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Azω𝑜xzω𝑜x
149 simpl zω𝑜xzω𝑜xzω𝑜x
150 148 149 syl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Azω𝑜x
151 oaword zOnω𝑜xOnω𝑜x𝑜yOnzω𝑜xω𝑜x𝑜y+𝑜zω𝑜x𝑜y+𝑜ω𝑜x
152 151 biimpd zOnω𝑜xOnω𝑜x𝑜yOnzω𝑜xω𝑜x𝑜y+𝑜zω𝑜x𝑜y+𝑜ω𝑜x
153 114 107 113 152 syl3anc ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Azω𝑜xω𝑜x𝑜y+𝑜zω𝑜x𝑜y+𝑜ω𝑜x
154 150 153 mpd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜y+𝑜zω𝑜x𝑜y+𝑜ω𝑜x
155 omsuc ω𝑜xOnyOnω𝑜x𝑜sucy=ω𝑜x𝑜y+𝑜ω𝑜x
156 107 111 155 syl2anc ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜sucy=ω𝑜x𝑜y+𝑜ω𝑜x
157 154 156 sseqtrrd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜y+𝑜zω𝑜x𝑜sucy
158 ordom Ordω
159 88 102 syl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ayω
160 ordsucss Ordωyωsucyω
161 158 159 160 mpsyl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Asucyω
162 oe1 ωOnω𝑜1𝑜=ω
163 33 162 ax-mp ω𝑜1𝑜=ω
164 simpr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=x=
165 164 oveq2d ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=ω𝑜x=ω𝑜
166 oe0 ωOnω𝑜=1𝑜
167 33 166 ax-mp ω𝑜=1𝑜
168 165 167 eqtrdi ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=ω𝑜x=1𝑜
169 168 oveq1d ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=ω𝑜x𝑜y=1𝑜𝑜y
170 104 adantl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜yOn
171 170 ad5ant12 ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=yOn
172 om1r yOn1𝑜𝑜y=y
173 171 172 syl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=1𝑜𝑜y=y
174 169 173 eqtrd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=ω𝑜x𝑜y=y
175 simpllr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=zω𝑜x
176 175 168 eleqtrd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=z1𝑜
177 el1o z1𝑜z=
178 176 177 sylib ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=z=
179 174 178 oveq12d ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=ω𝑜x𝑜y+𝑜z=y+𝑜
180 simplr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=ω𝑜x𝑜y+𝑜z=A
181 oa0 yOny+𝑜=y
182 171 181 syl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=y+𝑜=y
183 179 180 182 3eqtr3d ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=A=y
184 159 adantr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=yω
185 183 184 eqeltrd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=Aω
186 185 ex ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=Aω
187 33 33 pm3.2i ωOnωOn
188 ontr2 ωOnωOnωAAωωω
189 188 expd ωOnωOnωAAωωω
190 187 142 189 mpsyl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AAωωω
191 elirr ¬ωω
192 191 pm2.21i ωω1𝑜x
193 192 a1i ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aωω1𝑜x
194 186 190 193 3syld ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=1𝑜x
195 eloni xOnOrdx
196 ordsucss Ordxxsucx
197 196 imp Ordxxsucx
198 94 197 eqsstrid Ordxx1𝑜x
199 198 ex Ordxx1𝑜x
200 106 195 199 3syl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax1𝑜x
201 on0eqel xOnx=x
202 106 201 syl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Ax=x
203 194 200 202 mpjaod ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=A1𝑜x
204 80 a1i ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=A1𝑜On
205 33 a1i ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AωOn
206 204 106 205 3jca ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=A1𝑜OnxOnωOn
207 oewordi 1𝑜OnxOnωOnω1𝑜xω𝑜1𝑜ω𝑜x
208 206 39 207 sylancl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=A1𝑜xω𝑜1𝑜ω𝑜x
209 203 208 mpd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜1𝑜ω𝑜x
210 163 209 eqsstrrid ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aωω𝑜x
211 161 210 sstrd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Asucyω𝑜x
212 onsuc yOnsucyOn
213 111 212 syl ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AsucyOn
214 omwordi sucyOnω𝑜xOnω𝑜xOnsucyω𝑜xω𝑜x𝑜sucyω𝑜x𝑜ω𝑜x
215 213 107 107 214 syl3anc ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Asucyω𝑜xω𝑜x𝑜sucyω𝑜x𝑜ω𝑜x
216 211 215 mpd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜sucyω𝑜x𝑜ω𝑜x
217 157 216 sstrd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x𝑜y+𝑜zω𝑜x𝑜ω𝑜x
218 127 eqcomd ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AA=ω𝑜x𝑜y+𝑜z
219 oeoa ωOnxOnxOnω𝑜x+𝑜x=ω𝑜x𝑜ω𝑜x
220 33 106 106 219 mp3an2i ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Aω𝑜x+𝑜x=ω𝑜x𝑜ω𝑜x
221 217 218 220 3sstr4d ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AAω𝑜x+𝑜x
222 simpr3 ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xAω𝑜x+𝑜x
223 59 adantr ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xAOn
224 simprr ABAB=ω𝑜ω𝑜CCOnCOn
225 simp1 xω𝑜Cωω𝑜xAAω𝑜x+𝑜xxω𝑜C
226 224 225 anim12i ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xCOnxω𝑜C
227 onelon ω𝑜COnxω𝑜CxOn
228 35 227 sylan COnxω𝑜CxOn
229 pm4.24 xOnxOnxOn
230 228 229 sylib COnxω𝑜CxOnxOn
231 oacl xOnxOnx+𝑜xOn
232 230 231 syl COnxω𝑜Cx+𝑜xOn
233 oecl ωOnx+𝑜xOnω𝑜x+𝑜xOn
234 33 232 233 sylancr COnxω𝑜Cω𝑜x+𝑜xOn
235 226 234 syl ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xω𝑜x+𝑜xOn
236 55 ad2antlr ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xω𝑜ω𝑜COn
237 omwordri AOnω𝑜x+𝑜xOnω𝑜ω𝑜COnAω𝑜x+𝑜xA𝑜ω𝑜ω𝑜Cω𝑜x+𝑜x𝑜ω𝑜ω𝑜C
238 223 235 236 237 syl3anc ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xAω𝑜x+𝑜xA𝑜ω𝑜ω𝑜Cω𝑜x+𝑜x𝑜ω𝑜ω𝑜C
239 222 238 mpd ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xA𝑜ω𝑜ω𝑜Cω𝑜x+𝑜x𝑜ω𝑜ω𝑜C
240 226 230 231 3syl ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx+𝑜xOn
241 36 ad2antlr ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xω𝑜COn
242 oeoa ωOnx+𝑜xOnω𝑜COnω𝑜x+𝑜x+𝑜ω𝑜C=ω𝑜x+𝑜x𝑜ω𝑜ω𝑜C
243 33 240 241 242 mp3an2i ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xω𝑜x+𝑜x+𝑜ω𝑜C=ω𝑜x+𝑜x𝑜ω𝑜ω𝑜C
244 226 228 syl ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxOn
245 oaass xOnxOnω𝑜COnx+𝑜x+𝑜ω𝑜C=x+𝑜x+𝑜ω𝑜C
246 244 244 241 245 syl3anc ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx+𝑜x+𝑜ω𝑜C=x+𝑜x+𝑜ω𝑜C
247 simpr1 ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxω𝑜C
248 ssidd ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xω𝑜Cω𝑜C
249 oaabs2 xω𝑜Cω𝑜COnω𝑜Cω𝑜Cx+𝑜ω𝑜C=ω𝑜C
250 247 241 248 249 syl21anc ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx+𝑜ω𝑜C=ω𝑜C
251 250 oveq2d ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx+𝑜x+𝑜ω𝑜C=x+𝑜ω𝑜C
252 246 251 250 3eqtrd ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx+𝑜x+𝑜ω𝑜C=ω𝑜C
253 252 oveq2d ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xω𝑜x+𝑜x+𝑜ω𝑜C=ω𝑜ω𝑜C
254 243 253 eqtr3d ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xω𝑜x+𝑜x𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
255 239 254 sseqtrd ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xA𝑜ω𝑜ω𝑜Cω𝑜ω𝑜C
256 oveq2 x=ω𝑜x=ω𝑜
257 256 167 eqtrdi x=ω𝑜x=1𝑜
258 257 uneq2d x=ωω𝑜x=ω1𝑜
259 33 oneluni 1𝑜ωω1𝑜=ω
260 63 259 ax-mp ω1𝑜=ω
261 260 163 eqtr4i ω1𝑜=ω𝑜1𝑜
262 258 261 eqtrdi x=ωω𝑜x=ω𝑜1𝑜
263 262 adantl ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=ωω𝑜x=ω𝑜1𝑜
264 263 oveq1d ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=ωω𝑜x𝑜ω𝑜ω𝑜C=ω𝑜1𝑜𝑜ω𝑜ω𝑜C
265 224 ad2antrr ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=COn
266 oecl ωOnOnω𝑜On
267 33 73 266 mp2an ω𝑜On
268 oecl ωOnω𝑜Onω𝑜ω𝑜On
269 33 267 268 mp2an ω𝑜ω𝑜On
270 269 2a1i ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=COnω𝑜ω𝑜On
271 270 54 jca2 ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=COnω𝑜ω𝑜Onω𝑜ω𝑜COn
272 167 oveq2i ω𝑜ω𝑜=ω𝑜1𝑜
273 272 163 eqtri ω𝑜ω𝑜=ω
274 ssun1 ωωω𝑜x
275 273 274 eqsstri ω𝑜ω𝑜ωω𝑜x
276 simp2 xω𝑜Cωω𝑜xAAω𝑜x+𝑜xωω𝑜xA
277 275 276 sstrid xω𝑜Cωω𝑜xAAω𝑜x+𝑜xω𝑜ω𝑜A
278 277 adantl ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xω𝑜ω𝑜A
279 57 ad2antrr ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xAB
280 simplrl ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xB=ω𝑜ω𝑜C
281 279 280 eleqtrd ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xAω𝑜ω𝑜C
282 278 281 jca ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xω𝑜ω𝑜AAω𝑜ω𝑜C
283 282 adantr ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=ω𝑜ω𝑜AAω𝑜ω𝑜C
284 ontr2 ω𝑜ω𝑜Onω𝑜ω𝑜COnω𝑜ω𝑜AAω𝑜ω𝑜Cω𝑜ω𝑜ω𝑜ω𝑜C
285 271 283 284 syl6ci ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=COnω𝑜ω𝑜ω𝑜ω𝑜C
286 oeord OnCOnωOn2𝑜Cω𝑜ω𝑜C
287 73 65 286 mp3an13 COnCω𝑜ω𝑜C
288 65 a1i COnωOn2𝑜
289 oeord ω𝑜Onω𝑜COnωOn2𝑜ω𝑜ω𝑜Cω𝑜ω𝑜ω𝑜ω𝑜C
290 267 35 288 289 mp3an2i COnω𝑜ω𝑜Cω𝑜ω𝑜ω𝑜ω𝑜C
291 287 290 bitrd COnCω𝑜ω𝑜ω𝑜ω𝑜C
292 291 biimprd COnω𝑜ω𝑜ω𝑜ω𝑜CC
293 285 292 sylcom ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=COnC
294 eloni COnOrdC
295 ordsucss OrdCCsucC
296 94 sseq1i 1𝑜CsucC
297 295 296 syl6ibr OrdCC1𝑜C
298 294 297 syl COnC1𝑜C
299 293 298 sylcom ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=COn1𝑜C
300 265 299 jcai ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=COn1𝑜C
301 33 a1i COnωOn
302 80 a1i COn1𝑜On
303 301 302 35 3jca COnωOn1𝑜Onω𝑜COn
304 303 adantr COn1𝑜CωOn1𝑜Onω𝑜COn
305 oeoa ωOn1𝑜Onω𝑜COnω𝑜1𝑜+𝑜ω𝑜C=ω𝑜1𝑜𝑜ω𝑜ω𝑜C
306 304 305 syl COn1𝑜Cω𝑜1𝑜+𝑜ω𝑜C=ω𝑜1𝑜𝑜ω𝑜ω𝑜C
307 63 a1i COn1𝑜C1𝑜ω
308 35 adantr COn1𝑜Cω𝑜COn
309 oeword 1𝑜OnCOnωOn2𝑜1𝑜Cω𝑜1𝑜ω𝑜C
310 80 65 309 mp3an13 COn1𝑜Cω𝑜1𝑜ω𝑜C
311 310 biimpa COn1𝑜Cω𝑜1𝑜ω𝑜C
312 163 311 eqsstrrid COn1𝑜Cωω𝑜C
313 oaabs 1𝑜ωω𝑜COnωω𝑜C1𝑜+𝑜ω𝑜C=ω𝑜C
314 307 308 312 313 syl21anc COn1𝑜C1𝑜+𝑜ω𝑜C=ω𝑜C
315 314 oveq2d COn1𝑜Cω𝑜1𝑜+𝑜ω𝑜C=ω𝑜ω𝑜C
316 306 315 eqtr3d COn1𝑜Cω𝑜1𝑜𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
317 300 316 syl ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=ω𝑜1𝑜𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
318 264 317 eqtrd ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=ωω𝑜x𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
319 244 195 196 3syl ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxsucx
320 319 imp ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxsucx
321 94 320 eqsstrid ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx1𝑜x
322 247 adantr ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxxω𝑜C
323 241 322 227 syl2an2r ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxxOn
324 65 a1i ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxωOn2𝑜
325 oeword 1𝑜OnxOnωOn2𝑜1𝑜xω𝑜1𝑜ω𝑜x
326 80 323 324 325 mp3an2i ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx1𝑜xω𝑜1𝑜ω𝑜x
327 321 326 mpbid ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxω𝑜1𝑜ω𝑜x
328 163 327 eqsstrrid ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxωω𝑜x
329 ssequn1 ωω𝑜xωω𝑜x=ω𝑜x
330 328 329 sylib ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxωω𝑜x=ω𝑜x
331 330 oveq1d ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxωω𝑜x𝑜ω𝑜ω𝑜C=ω𝑜x𝑜ω𝑜ω𝑜C
332 241 adantr ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxω𝑜COn
333 oeoa ωOnxOnω𝑜COnω𝑜x+𝑜ω𝑜C=ω𝑜x𝑜ω𝑜ω𝑜C
334 33 323 332 333 mp3an2i ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxω𝑜x+𝑜ω𝑜C=ω𝑜x𝑜ω𝑜ω𝑜C
335 ssidd ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxω𝑜Cω𝑜C
336 322 332 335 249 syl21anc ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxx+𝑜ω𝑜C=ω𝑜C
337 336 oveq2d ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxω𝑜x+𝑜ω𝑜C=ω𝑜ω𝑜C
338 331 334 337 3eqtr2d ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xxωω𝑜x𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
339 226 228 201 3syl ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xx=x
340 318 338 339 mpjaodan ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xωω𝑜x𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
341 276 adantl ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xωω𝑜xA
342 33 228 75 sylancr COnxω𝑜Cω𝑜xOn
343 342 33 jctil COnxω𝑜CωOnω𝑜xOn
344 onun2 ωOnω𝑜xOnωω𝑜xOn
345 226 343 344 3syl ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xωω𝑜xOn
346 omwordri ωω𝑜xOnAOnω𝑜ω𝑜COnωω𝑜xAωω𝑜x𝑜ω𝑜ω𝑜CA𝑜ω𝑜ω𝑜C
347 345 223 236 346 syl3anc ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xωω𝑜xAωω𝑜x𝑜ω𝑜ω𝑜CA𝑜ω𝑜ω𝑜C
348 341 347 mpd ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xωω𝑜x𝑜ω𝑜ω𝑜CA𝑜ω𝑜ω𝑜C
349 340 348 eqsstrrd ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xω𝑜ω𝑜CA𝑜ω𝑜ω𝑜C
350 255 349 eqssd ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xA𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
351 49 ad2antlr ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xA𝑜B=BA𝑜ω𝑜ω𝑜C=ω𝑜ω𝑜C
352 350 351 mpbird ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xA𝑜B=B
353 352 ex ABAB=ω𝑜ω𝑜CCOnxω𝑜Cωω𝑜xAAω𝑜x+𝑜xA𝑜B=B
354 353 ad5antr ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=Axω𝑜Cωω𝑜xAAω𝑜x+𝑜xA𝑜B=B
355 141 143 221 354 mp3and ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AA𝑜B=B
356 355 ex ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xω𝑜x𝑜y+𝑜z=AA𝑜B=B
357 71 356 syl5 ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xw=xyzω𝑜x𝑜y+𝑜z=AA𝑜B=B
358 357 rexlimdva ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xw=xyzω𝑜x𝑜y+𝑜z=AA𝑜B=B
359 358 rexlimdva ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xw=xyzω𝑜x𝑜y+𝑜z=AA𝑜B=B
360 359 rexlimdva ABAB=ω𝑜ω𝑜CCOnωAxOnyω1𝑜zω𝑜xw=xyzω𝑜x𝑜y+𝑜z=AA𝑜B=B
361 360 exlimdv ABAB=ω𝑜ω𝑜CCOnωAwxOnyω1𝑜zω𝑜xw=xyzω𝑜x𝑜y+𝑜z=AA𝑜B=B
362 70 361 syl5 ABAB=ω𝑜ω𝑜CCOnωA∃!wxOnyω1𝑜zω𝑜xw=xyzω𝑜x𝑜y+𝑜z=AA𝑜B=B
363 69 362 mpd ABAB=ω𝑜ω𝑜CCOnωAA𝑜B=B
364 eloni AOnOrdA
365 59 364 syl ABAB=ω𝑜ω𝑜CCOnOrdA
366 ordtri2or OrdAOrdωAωωA
367 365 158 366 sylancl ABAB=ω𝑜ω𝑜CCOnAωωA
368 51 363 367 mpjaodan ABAB=ω𝑜ω𝑜CCOnA𝑜B=B
369 368 ex ABAB=ω𝑜ω𝑜CCOnA𝑜B=B
370 6 30 369 3jaod ABAB=B=2𝑜B=ω𝑜ω𝑜CCOnA𝑜B=B
371 370 imp ABAB=B=2𝑜B=ω𝑜ω𝑜CCOnA𝑜B=B