Metamath Proof Explorer


Theorem sticksstones10

Description: Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024)

Ref Expression
Hypotheses sticksstones10.1 φN0
sticksstones10.2 φK
sticksstones10.3 G=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
sticksstones10.4 A=g|g:1K+10i=1K+1gi=N
sticksstones10.5 B=f|f:1K1N+Kx1Ky1Kx<yfx<fy
Assertion sticksstones10 φG:BA

Proof

Step Hyp Ref Expression
1 sticksstones10.1 φN0
2 sticksstones10.2 φK
3 sticksstones10.3 G=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
4 sticksstones10.4 A=g|g:1K+10i=1K+1gi=N
5 sticksstones10.5 B=f|f:1K1N+Kx1Ky1Kx<yfx<fy
6 2 nnne0d φK0
7 6 adantr φbBK0
8 7 neneqd φbB¬K=0
9 8 iffalsed φbBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
10 9 eqcomd φbBk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=ifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
11 eleq1 N+K-bK=ifk=K+1N+K-bKifk=1b11bk-bk1-1N+K-bK0ifk=K+1N+K-bKifk=1b11bk-bk1-10
12 eleq1 ifk=1b11bk-bk1-1=ifk=K+1N+K-bKifk=1b11bk-bk1-1ifk=1b11bk-bk1-10ifk=K+1N+K-bKifk=1b11bk-bk1-10
13 1 nn0zd φN
14 13 adantr φbBN
15 2 nnzd φK
16 15 adantr φbBK
17 14 16 zaddcld φbBN+K
18 5 eleq2i bBbf|f:1K1N+Kx1Ky1Kx<yfx<fy
19 vex bV
20 feq1 f=bf:1K1N+Kb:1K1N+K
21 fveq1 f=bfx=bx
22 fveq1 f=bfy=by
23 21 22 breq12d f=bfx<fybx<by
24 23 imbi2d f=bx<yfx<fyx<ybx<by
25 24 2ralbidv f=bx1Ky1Kx<yfx<fyx1Ky1Kx<ybx<by
26 20 25 anbi12d f=bf:1K1N+Kx1Ky1Kx<yfx<fyb:1K1N+Kx1Ky1Kx<ybx<by
27 19 26 elab bf|f:1K1N+Kx1Ky1Kx<yfx<fyb:1K1N+Kx1Ky1Kx<ybx<by
28 18 27 bitri bBb:1K1N+Kx1Ky1Kx<ybx<by
29 28 biimpi bBb:1K1N+Kx1Ky1Kx<ybx<by
30 29 adantl φbBb:1K1N+Kx1Ky1Kx<ybx<by
31 30 simpld φbBb:1K1N+K
32 1zzd φbB1
33 2 nnge1d φ1K
34 33 adantr φbB1K
35 16 zred φbBK
36 35 leidd φbBKK
37 32 16 16 34 36 elfzd φbBK1K
38 31 37 ffvelcdmd φbBbK1N+K
39 elfznn bK1N+KbK
40 38 39 syl φbBbK
41 40 nnzd φbBbK
42 17 41 zsubcld φbBN+K-bK
43 40 nnred φbBbK
44 43 recnd φbBbK
45 44 addridd φbBbK+0=bK
46 elfzle2 bK1N+KbKN+K
47 38 46 syl φbBbKN+K
48 45 47 eqbrtrd φbBbK+0N+K
49 0red φbB0
50 17 zred φbBN+K
51 43 49 50 leaddsub2d φbBbK+0N+K0N+K-bK
52 48 51 mpbid φbB0N+K-bK
53 42 52 jca φbBN+K-bK0N+K-bK
54 elnn0z N+K-bK0N+K-bK0N+K-bK
55 53 54 sylibr φbBN+K-bK0
56 55 adantr φbBk1K+1N+K-bK0
57 56 3impa φbBk1K+1N+K-bK0
58 57 adantr φbBk1K+1k=K+1N+K-bK0
59 eleq1 b11=ifk=1b11bk-bk1-1b110ifk=1b11bk-bk1-10
60 eleq1 bk-bk1-1=ifk=1b11bk-bk1-1bk-bk1-10ifk=1b11bk-bk1-10
61 1red φbB1
62 61 leidd φbB11
63 32 16 32 62 34 elfzd φbB11K
64 31 63 ffvelcdmd φbBb11N+K
65 elfznn b11N+Kb1
66 65 nnzd b11N+Kb1
67 64 66 syl φbBb1
68 67 32 zsubcld φbBb11
69 1cnd φbB1
70 69 addridd φbB1+0=1
71 elfzle1 b11N+K1b1
72 64 71 syl φbB1b1
73 70 72 eqbrtrd φbB1+0b1
74 67 zred φbBb1
75 61 49 74 leaddsub2d φbB1+0b10b11
76 73 75 mpbid φbB0b11
77 68 76 jca φbBb110b11
78 elnn0z b110b110b11
79 77 78 sylibr φbBb110
80 79 adantr φbBk1K+1b110
81 80 3impa φbBk1K+1b110
82 81 adantr φbBk1K+1¬k=K+1b110
83 82 adantr φbBk1K+1¬k=K+1k=1b110
84 31 3adant3 φbBk1K+1b:1K1N+K
85 84 adantr φbBk1K+1¬k=K+1b:1K1N+K
86 1zzd φbBk1K+1¬k=K+11
87 16 3adant3 φbBk1K+1K
88 87 adantr φbBk1K+1¬k=K+1K
89 simp3 φbBk1K+1k1K+1
90 elfznn k1K+1k
91 89 90 syl φbBk1K+1k
92 91 adantr φbBk1K+1¬k=K+1k
93 92 nnzd φbBk1K+1¬k=K+1k
94 92 nnge1d φbBk1K+1¬k=K+11k
95 elfzle2 k1K+1kK+1
96 89 95 syl φbBk1K+1kK+1
97 96 adantr φbBk1K+1¬k=K+1kK+1
98 neqne ¬k=K+1kK+1
99 98 adantl φbBk1K+1¬k=K+1kK+1
100 99 necomd φbBk1K+1¬k=K+1K+1k
101 97 100 jca φbBk1K+1¬k=K+1kK+1K+1k
102 92 nnred φbBk1K+1¬k=K+1k
103 88 zred φbBk1K+1¬k=K+1K
104 1red φbBk1K+1¬k=K+11
105 103 104 readdcld φbBk1K+1¬k=K+1K+1
106 102 105 ltlend φbBk1K+1¬k=K+1k<K+1kK+1K+1k
107 101 106 mpbird φbBk1K+1¬k=K+1k<K+1
108 91 nnzd φbBk1K+1k
109 zleltp1 kKkKk<K+1
110 108 87 109 syl2anc φbBk1K+1kKk<K+1
111 110 adantr φbBk1K+1¬k=K+1kKk<K+1
112 107 111 mpbird φbBk1K+1¬k=K+1kK
113 86 88 93 94 112 elfzd φbBk1K+1¬k=K+1k1K
114 85 113 ffvelcdmd φbBk1K+1¬k=K+1bk1N+K
115 elfznn bk1N+Kbk
116 114 115 syl φbBk1K+1¬k=K+1bk
117 116 nnzd φbBk1K+1¬k=K+1bk
118 117 adantr φbBk1K+1¬k=K+1¬k=1bk
119 85 adantr φbBk1K+1¬k=K+1¬k=1b:1K1N+K
120 1zzd φbBk1K+1¬k=K+1¬k=11
121 88 adantr φbBk1K+1¬k=K+1¬k=1K
122 93 adantr φbBk1K+1¬k=K+1¬k=1k
123 122 120 zsubcld φbBk1K+1¬k=K+1¬k=1k1
124 94 adantr φbBk1K+1¬k=K+1¬k=11k
125 neqne ¬k=1k1
126 125 adantl φbBk1K+1¬k=K+1¬k=1k1
127 124 126 jca φbBk1K+1¬k=K+1¬k=11kk1
128 104 adantr φbBk1K+1¬k=K+1¬k=11
129 102 adantr φbBk1K+1¬k=K+1¬k=1k
130 128 129 ltlend φbBk1K+1¬k=K+1¬k=11<k1kk1
131 127 130 mpbird φbBk1K+1¬k=K+1¬k=11<k
132 120 122 zltlem1d φbBk1K+1¬k=K+1¬k=11<k1k1
133 131 132 mpbid φbBk1K+1¬k=K+1¬k=11k1
134 91 nnred φbBk1K+1k
135 61 3adant3 φbBk1K+11
136 35 3adant3 φbBk1K+1K
137 lesubadd k1Kk1KkK+1
138 134 135 136 137 syl3anc φbBk1K+1k1KkK+1
139 96 138 mpbird φbBk1K+1k1K
140 139 adantr φbBk1K+1¬k=K+1k1K
141 140 adantr φbBk1K+1¬k=K+1¬k=1k1K
142 120 121 123 133 141 elfzd φbBk1K+1¬k=K+1¬k=1k11K
143 119 142 ffvelcdmd φbBk1K+1¬k=K+1¬k=1bk11N+K
144 elfznn bk11N+Kbk1
145 143 144 syl φbBk1K+1¬k=K+1¬k=1bk1
146 145 nnzd φbBk1K+1¬k=K+1¬k=1bk1
147 118 146 zsubcld φbBk1K+1¬k=K+1¬k=1bkbk1
148 147 120 zsubcld φbBk1K+1¬k=K+1¬k=1bk-bk1-1
149 0p1e1 0+1=1
150 149 a1i φbBk1K+1¬k=K+1¬k=10+1=1
151 1cnd φbBk1K+1¬k=K+1¬k=11
152 151 subidd φbBk1K+1¬k=K+1¬k=111=0
153 146 zred φbBk1K+1¬k=K+1¬k=1bk1
154 153 recnd φbBk1K+1¬k=K+1¬k=1bk1
155 154 addridd φbBk1K+1¬k=K+1¬k=1bk1+0=bk1
156 129 ltm1d φbBk1K+1¬k=K+1¬k=1k1<k
157 113 adantr φbBk1K+1¬k=K+1¬k=1k1K
158 142 157 jca φbBk1K+1¬k=K+1¬k=1k11Kk1K
159 30 simprd φbBx1Ky1Kx<ybx<by
160 159 3adant3 φbBk1K+1x1Ky1Kx<ybx<by
161 160 adantr φbBk1K+1¬k=K+1x1Ky1Kx<ybx<by
162 161 adantr φbBk1K+1¬k=K+1¬k=1x1Ky1Kx<ybx<by
163 breq1 x=k1x<yk1<y
164 fveq2 x=k1bx=bk1
165 164 breq1d x=k1bx<bybk1<by
166 163 165 imbi12d x=k1x<ybx<byk1<ybk1<by
167 breq2 y=kk1<yk1<k
168 fveq2 y=kby=bk
169 168 breq2d y=kbk1<bybk1<bk
170 167 169 imbi12d y=kk1<ybk1<byk1<kbk1<bk
171 166 170 rspc2va k11Kk1Kx1Ky1Kx<ybx<byk1<kbk1<bk
172 158 162 171 syl2anc φbBk1K+1¬k=K+1¬k=1k1<kbk1<bk
173 156 172 mpd φbBk1K+1¬k=K+1¬k=1bk1<bk
174 155 173 eqbrtrd φbBk1K+1¬k=K+1¬k=1bk1+0<bk
175 0red φbBk1K+1¬k=K+1¬k=10
176 118 zred φbBk1K+1¬k=K+1¬k=1bk
177 153 175 176 ltaddsub2d φbBk1K+1¬k=K+1¬k=1bk1+0<bk0<bkbk1
178 174 177 mpbid φbBk1K+1¬k=K+1¬k=10<bkbk1
179 152 178 eqbrtrd φbBk1K+1¬k=K+1¬k=111<bkbk1
180 zlem1lt 1bkbk11bkbk111<bkbk1
181 120 147 180 syl2anc φbBk1K+1¬k=K+1¬k=11bkbk111<bkbk1
182 179 181 mpbird φbBk1K+1¬k=K+1¬k=11bkbk1
183 150 182 eqbrtrd φbBk1K+1¬k=K+1¬k=10+1bkbk1
184 147 zred φbBk1K+1¬k=K+1¬k=1bkbk1
185 leaddsub 01bkbk10+1bkbk10bk-bk1-1
186 175 128 184 185 syl3anc φbBk1K+1¬k=K+1¬k=10+1bkbk10bk-bk1-1
187 183 186 mpbid φbBk1K+1¬k=K+1¬k=10bk-bk1-1
188 148 187 jca φbBk1K+1¬k=K+1¬k=1bk-bk1-10bk-bk1-1
189 elnn0z bk-bk1-10bk-bk1-10bk-bk1-1
190 188 189 sylibr φbBk1K+1¬k=K+1¬k=1bk-bk1-10
191 59 60 83 190 ifbothda φbBk1K+1¬k=K+1ifk=1b11bk-bk1-10
192 11 12 58 191 ifbothda φbBk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-10
193 192 3expa φbBk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-10
194 193 fmpttd φbBk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1:1K+10
195 eqidd φbBi1K+1k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
196 simpr φbBi1K+1k=ik=i
197 196 eqeq1d φbBi1K+1k=ik=K+1i=K+1
198 196 eqeq1d φbBi1K+1k=ik=1i=1
199 196 fveq2d φbBi1K+1k=ibk=bi
200 196 fvoveq1d φbBi1K+1k=ibk1=bi1
201 199 200 oveq12d φbBi1K+1k=ibkbk1=bibi1
202 201 oveq1d φbBi1K+1k=ibk-bk1-1=bi-bi1-1
203 198 202 ifbieq2d φbBi1K+1k=iifk=1b11bk-bk1-1=ifi=1b11bi-bi1-1
204 197 203 ifbieq2d φbBi1K+1k=iifk=K+1N+K-bKifk=1b11bk-bk1-1=ifi=K+1N+K-bKifi=1b11bi-bi1-1
205 simpr φbBi1K+1i1K+1
206 ovexd φbBi1K+1N+K-bKV
207 ovexd φbBi1K+1b11V
208 ovexd φbBi1K+1bi-bi1-1V
209 207 208 ifcld φbBi1K+1ifi=1b11bi-bi1-1V
210 206 209 ifcld φbBi1K+1ifi=K+1N+K-bKifi=1b11bi-bi1-1V
211 195 204 205 210 fvmptd φbBi1K+1k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i=ifi=K+1N+K-bKifi=1b11bi-bi1-1
212 211 sumeq2dv φbBi=1K+1k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i=i=1K+1ifi=K+1N+K-bKifi=1b11bi-bi1-1
213 2 adantr φbBK
214 nnuz =1
215 213 214 eleqtrdi φbBK1
216 eleq1 N+K-bK=ifi=K+1N+K-bKifi=1b11bi-bi1-1N+K-bKifi=K+1N+K-bKifi=1b11bi-bi1-1
217 eleq1 ifi=1b11bi-bi1-1=ifi=K+1N+K-bKifi=1b11bi-bi1-1ifi=1b11bi-bi1-1ifi=K+1N+K-bKifi=1b11bi-bi1-1
218 14 3adant3 φbBi1K+1N
219 218 adantr φbBi1K+1i=K+1N
220 16 3adant3 φbBi1K+1K
221 220 adantr φbBi1K+1i=K+1K
222 219 221 zaddcld φbBi1K+1i=K+1N+K
223 40 3adant3 φbBi1K+1bK
224 223 adantr φbBi1K+1i=K+1bK
225 224 nnzd φbBi1K+1i=K+1bK
226 222 225 zsubcld φbBi1K+1i=K+1N+K-bK
227 eleq1 b11=ifi=1b11bi-bi1-1b11ifi=1b11bi-bi1-1
228 eleq1 bi-bi1-1=ifi=1b11bi-bi1-1bi-bi1-1ifi=1b11bi-bi1-1
229 67 3adant3 φbBi1K+1b1
230 229 adantr φbBi1K+1¬i=K+1b1
231 230 adantr φbBi1K+1¬i=K+1i=1b1
232 1zzd φbBi1K+1¬i=K+1i=11
233 231 232 zsubcld φbBi1K+1¬i=K+1i=1b11
234 31 3adant3 φbBi1K+1b:1K1N+K
235 234 adantr φbBi1K+1¬i=K+1b:1K1N+K
236 235 adantr φbBi1K+1¬i=K+1¬i=1b:1K1N+K
237 1zzd φbBi1K+1¬i=K+11
238 220 adantr φbBi1K+1¬i=K+1K
239 elfznn i1K+1i
240 239 adantl φbBi1K+1i
241 240 3impa φbBi1K+1i
242 241 nnzd φbBi1K+1i
243 242 adantr φbBi1K+1¬i=K+1i
244 241 nnge1d φbBi1K+11i
245 244 adantr φbBi1K+1¬i=K+11i
246 simp3 φbBi1K+1i1K+1
247 elfzle2 i1K+1iK+1
248 246 247 syl φbBi1K+1iK+1
249 248 adantr φbBi1K+1¬i=K+1iK+1
250 neqne ¬i=K+1iK+1
251 250 adantl φbBi1K+1¬i=K+1iK+1
252 251 necomd φbBi1K+1¬i=K+1K+1i
253 249 252 jca φbBi1K+1¬i=K+1iK+1K+1i
254 243 zred φbBi1K+1¬i=K+1i
255 238 zred φbBi1K+1¬i=K+1K
256 1red φbBi1K+1¬i=K+11
257 255 256 readdcld φbBi1K+1¬i=K+1K+1
258 254 257 ltlend φbBi1K+1¬i=K+1i<K+1iK+1K+1i
259 253 258 mpbird φbBi1K+1¬i=K+1i<K+1
260 zleltp1 iKiKi<K+1
261 243 238 260 syl2anc φbBi1K+1¬i=K+1iKi<K+1
262 259 261 mpbird φbBi1K+1¬i=K+1iK
263 237 238 243 245 262 elfzd φbBi1K+1¬i=K+1i1K
264 263 adantr φbBi1K+1¬i=K+1¬i=1i1K
265 236 264 ffvelcdmd φbBi1K+1¬i=K+1¬i=1bi1N+K
266 elfznn bi1N+Kbi
267 265 266 syl φbBi1K+1¬i=K+1¬i=1bi
268 267 nnzd φbBi1K+1¬i=K+1¬i=1bi
269 1zzd φbBi1K+1¬i=K+1¬i=11
270 238 adantr φbBi1K+1¬i=K+1¬i=1K
271 243 adantr φbBi1K+1¬i=K+1¬i=1i
272 271 269 zsubcld φbBi1K+1¬i=K+1¬i=1i1
273 245 adantr φbBi1K+1¬i=K+1¬i=11i
274 neqne ¬i=1i1
275 274 adantl φbBi1K+1¬i=K+1¬i=1i1
276 273 275 jca φbBi1K+1¬i=K+1¬i=11ii1
277 1red φbBi1K+1¬i=K+1¬i=11
278 271 zred φbBi1K+1¬i=K+1¬i=1i
279 277 278 ltlend φbBi1K+1¬i=K+1¬i=11<i1ii1
280 276 279 mpbird φbBi1K+1¬i=K+1¬i=11<i
281 zltp1le 1i1<i1+1i
282 269 271 281 syl2anc φbBi1K+1¬i=K+1¬i=11<i1+1i
283 280 282 mpbid φbBi1K+1¬i=K+1¬i=11+1i
284 leaddsub 11i1+1i1i1
285 277 277 278 284 syl3anc φbBi1K+1¬i=K+1¬i=11+1i1i1
286 283 285 mpbid φbBi1K+1¬i=K+1¬i=11i1
287 249 adantr φbBi1K+1¬i=K+1¬i=1iK+1
288 255 adantr φbBi1K+1¬i=K+1¬i=1K
289 lesubadd i1Ki1KiK+1
290 278 277 288 289 syl3anc φbBi1K+1¬i=K+1¬i=1i1KiK+1
291 287 290 mpbird φbBi1K+1¬i=K+1¬i=1i1K
292 269 270 272 286 291 elfzd φbBi1K+1¬i=K+1¬i=1i11K
293 236 292 ffvelcdmd φbBi1K+1¬i=K+1¬i=1bi11N+K
294 elfznn bi11N+Kbi1
295 293 294 syl φbBi1K+1¬i=K+1¬i=1bi1
296 295 nnzd φbBi1K+1¬i=K+1¬i=1bi1
297 268 296 zsubcld φbBi1K+1¬i=K+1¬i=1bibi1
298 297 269 zsubcld φbBi1K+1¬i=K+1¬i=1bi-bi1-1
299 227 228 233 298 ifbothda φbBi1K+1¬i=K+1ifi=1b11bi-bi1-1
300 216 217 226 299 ifbothda φbBi1K+1ifi=K+1N+K-bKifi=1b11bi-bi1-1
301 300 3expa φbBi1K+1ifi=K+1N+K-bKifi=1b11bi-bi1-1
302 301 zcnd φbBi1K+1ifi=K+1N+K-bKifi=1b11bi-bi1-1
303 eqeq1 i=K+1i=K+1K+1=K+1
304 eqeq1 i=K+1i=1K+1=1
305 fveq2 i=K+1bi=bK+1
306 fvoveq1 i=K+1bi1=bK+1-1
307 305 306 oveq12d i=K+1bibi1=bK+1bK+1-1
308 307 oveq1d i=K+1bi-bi1-1=bK+1-bK+1-1-1
309 304 308 ifbieq2d i=K+1ifi=1b11bi-bi1-1=ifK+1=1b11bK+1-bK+1-1-1
310 303 309 ifbieq2d i=K+1ifi=K+1N+K-bKifi=1b11bi-bi1-1=ifK+1=K+1N+K-bKifK+1=1b11bK+1-bK+1-1-1
311 215 302 310 fsump1 φbBi=1K+1ifi=K+1N+K-bKifi=1b11bi-bi1-1=i=1Kifi=K+1N+K-bKifi=1b11bi-bi1-1+ifK+1=K+1N+K-bKifK+1=1b11bK+1-bK+1-1-1
312 eqidd φbBK+1=K+1
313 312 iftrued φbBifK+1=K+1N+K-bKifK+1=1b11bK+1-bK+1-1-1=N+K-bK
314 313 oveq2d φbBi=1Kifi=K+1N+K-bKifi=1b11bi-bi1-1+ifK+1=K+1N+K-bKifK+1=1b11bK+1-bK+1-1-1=i=1Kifi=K+1N+K-bKifi=1b11bi-bi1-1+N+K-bK
315 elfznn i1Ki
316 315 adantl φbBi1Ki
317 316 nnred φbBi1Ki
318 35 adantr φbBi1KK
319 1red φbBi1K1
320 318 319 readdcld φbBi1KK+1
321 elfzle2 i1KiK
322 321 adantl φbBi1KiK
323 318 ltp1d φbBi1KK<K+1
324 317 318 320 322 323 lelttrd φbBi1Ki<K+1
325 317 324 ltned φbBi1KiK+1
326 325 neneqd φbBi1K¬i=K+1
327 326 iffalsed φbBi1Kifi=K+1N+K-bKifi=1b11bi-bi1-1=ifi=1b11bi-bi1-1
328 327 sumeq2dv φbBi=1Kifi=K+1N+K-bKifi=1b11bi-bi1-1=i=1Kifi=1b11bi-bi1-1
329 328 oveq1d φbBi=1Kifi=K+1N+K-bKifi=1b11bi-bi1-1+N+K-bK=i=1Kifi=1b11bi-bi1-1+N+K-bK
330 eqeq1 b11=ifi=1b11bi-bi1-1b11=ifi=1b1bibi11ifi=1b11bi-bi1-1=ifi=1b1bibi11
331 eqeq1 bi-bi1-1=ifi=1b11bi-bi1-1bi-bi1-1=ifi=1b1bibi11ifi=1b11bi-bi1-1=ifi=1b1bibi11
332 eqidd φbBi1Ki=1b11=b11
333 simpr φbBi1Ki=1i=1
334 333 iftrued φbBi1Ki=1ifi=1b1bibi1=b1
335 334 eqcomd φbBi1Ki=1b1=ifi=1b1bibi1
336 335 oveq1d φbBi1Ki=1b11=ifi=1b1bibi11
337 332 336 eqtrd φbBi1Ki=1b11=ifi=1b1bibi11
338 eqidd φbBi1K¬i=1bi-bi1-1=bi-bi1-1
339 simpr φbBi1K¬i=1¬i=1
340 339 iffalsed φbBi1K¬i=1ifi=1b1bibi1=bibi1
341 340 oveq1d φbBi1K¬i=1ifi=1b1bibi11=bi-bi1-1
342 341 eqcomd φbBi1K¬i=1bi-bi1-1=ifi=1b1bibi11
343 338 342 eqtrd φbBi1K¬i=1bi-bi1-1=ifi=1b1bibi11
344 330 331 337 343 ifbothda φbBi1Kifi=1b11bi-bi1-1=ifi=1b1bibi11
345 344 sumeq2dv φbBi=1Kifi=1b11bi-bi1-1=i=1Kifi=1b1bibi11
346 345 oveq1d φbBi=1Kifi=1b11bi-bi1-1+N+K-bK=i=1Kifi=1b1bibi11+N+K-bK
347 fzfid φbB1KFin
348 eleq1 b1=ifi=1b1bibi1b1ifi=1b1bibi1
349 eleq1 bibi1=ifi=1b1bibi1bibi1ifi=1b1bibi1
350 67 ad2antrr φbBi1Ki=1b1
351 31 adantr φbBi1Kb:1K1N+K
352 simpr φbBi1Ki1K
353 351 352 ffvelcdmd φbBi1Kbi1N+K
354 266 nnzd bi1N+Kbi
355 353 354 syl φbBi1Kbi
356 355 adantr φbBi1K¬i=1bi
357 351 adantr φbBi1K¬i=1b:1K1N+K
358 1zzd φbBi1K¬i=11
359 16 ad2antrr φbBi1K¬i=1K
360 316 nnzd φbBi1Ki
361 360 adantr φbBi1K¬i=1i
362 361 358 zsubcld φbBi1K¬i=1i1
363 316 nnge1d φbBi1K1i
364 363 adantr φbBi1K¬i=11i
365 339 274 syl φbBi1K¬i=1i1
366 364 365 jca φbBi1K¬i=11ii1
367 319 adantr φbBi1K¬i=11
368 317 adantr φbBi1K¬i=1i
369 367 368 ltlend φbBi1K¬i=11<i1ii1
370 366 369 mpbird φbBi1K¬i=11<i
371 zltlem1 1i1<i1i1
372 358 361 371 syl2anc φbBi1K¬i=11<i1i1
373 370 372 mpbid φbBi1K¬i=11i1
374 317 319 resubcld φbBi1Ki1
375 317 lem1d φbBi1Ki1i
376 374 317 318 375 322 letrd φbBi1Ki1K
377 376 adantr φbBi1K¬i=1i1K
378 358 359 362 373 377 elfzd φbBi1K¬i=1i11K
379 357 378 ffvelcdmd φbBi1K¬i=1bi11N+K
380 379 294 syl φbBi1K¬i=1bi1
381 380 nnzd φbBi1K¬i=1bi1
382 356 381 zsubcld φbBi1K¬i=1bibi1
383 348 349 350 382 ifbothda φbBi1Kifi=1b1bibi1
384 383 zcnd φbBi1Kifi=1b1bibi1
385 69 adantr φbBi1K1
386 347 384 385 fsumsub φbBi=1Kifi=1b1bibi11=i=1Kifi=1b1bibi1i=1K1
387 id i=1i=1
388 387 iftrued i=1ifi=1b1bibi1=b1
389 215 384 388 fsum1p φbBi=1Kifi=1b1bibi1=b1+i=1+1Kifi=1b1bibi1
390 61 adantr φbBi1+1K1
391 elfzle1 i1+1K1+1i
392 391 adantl φbBi1+1K1+1i
393 32 adantr φbBi1+1K1
394 elfzelz i1+1Ki
395 394 adantl φbBi1+1Ki
396 393 395 281 syl2anc φbBi1+1K1<i1+1i
397 392 396 mpbird φbBi1+1K1<i
398 390 397 ltned φbBi1+1K1i
399 398 necomd φbBi1+1Ki1
400 399 neneqd φbBi1+1K¬i=1
401 400 iffalsed φbBi1+1Kifi=1b1bibi1=bibi1
402 401 sumeq2dv φbBi=1+1Kifi=1b1bibi1=i=1+1Kbibi1
403 402 oveq2d φbBb1+i=1+1Kifi=1b1bibi1=b1+i=1+1Kbibi1
404 35 recnd φbBK
405 404 69 npcand φbBK-1+1=K
406 405 eqcomd φbBK=K-1+1
407 406 oveq2d φbB1+1K=1+1K-1+1
408 407 sumeq1d φbBi=1+1Kbibi1=i=1+1K-1+1bibi1
409 408 oveq2d φbBb1+i=1+1Kbibi1=b1+i=1+1K-1+1bibi1
410 elfzelz i1+1K-1+1i
411 410 adantl φbBi1+1K-1+1i
412 411 zcnd φbBi1+1K-1+1i
413 1cnd φbBi1+1K-1+11
414 412 413 npcand φbBi1+1K-1+1i-1+1=i
415 414 eqcomd φbBi1+1K-1+1i=i-1+1
416 415 fveq2d φbBi1+1K-1+1bi=bi-1+1
417 eqidd φbBi1+1K-1+1bi1=bi1
418 416 417 oveq12d φbBi1+1K-1+1bibi1=bi-1+1bi1
419 418 sumeq2dv φbBi=1+1K-1+1bibi1=i=1+1K-1+1bi-1+1bi1
420 419 oveq2d φbBb1+i=1+1K-1+1bibi1=b1+i=1+1K-1+1bi-1+1bi1
421 16 32 zsubcld φbBK1
422 31 adantr φbBs1K1b:1K1N+K
423 1zzd φbBs1K11
424 16 adantr φbBs1K1K
425 elfznn s1K1s
426 425 adantl φbBs1K1s
427 426 nnzd φbBs1K1s
428 427 peano2zd φbBs1K1s+1
429 1red φbBs1K11
430 426 nnred φbBs1K1s
431 430 429 readdcld φbBs1K1s+1
432 426 nnge1d φbBs1K11s
433 430 lep1d φbBs1K1ss+1
434 429 430 431 432 433 letrd φbBs1K11s+1
435 elfzle2 s1K1sK1
436 435 adantl φbBs1K1sK1
437 35 adantr φbBs1K1K
438 leaddsub s1Ks+1KsK1
439 430 429 437 438 syl3anc φbBs1K1s+1KsK1
440 436 439 mpbird φbBs1K1s+1K
441 423 424 428 434 440 elfzd φbBs1K1s+11K
442 422 441 ffvelcdmd φbBs1K1bs+11N+K
443 elfznn bs+11N+Kbs+1
444 442 443 syl φbBs1K1bs+1
445 444 nnzd φbBs1K1bs+1
446 437 429 resubcld φbBs1K1K1
447 437 lem1d φbBs1K1K1K
448 430 446 437 436 447 letrd φbBs1K1sK
449 423 424 427 432 448 elfzd φbBs1K1s1K
450 422 449 ffvelcdmd φbBs1K1bs1N+K
451 elfznn bs1N+Kbs
452 451 nnzd bs1N+Kbs
453 450 452 syl φbBs1K1bs
454 445 453 zsubcld φbBs1K1bs+1bs
455 454 zcnd φbBs1K1bs+1bs
456 fvoveq1 s=i1bs+1=bi-1+1
457 fveq2 s=i1bs=bi1
458 456 457 oveq12d s=i1bs+1bs=bi-1+1bi1
459 32 32 421 455 458 fsumshft φbBs=1K1bs+1bs=i=1+1K-1+1bi-1+1bi1
460 459 oveq2d φbBb1+s=1K1bs+1bs=b1+i=1+1K-1+1bi-1+1bi1
461 460 eqcomd φbBb1+i=1+1K-1+1bi-1+1bi1=b1+s=1K1bs+1bs
462 fvoveq1 s=ibs+1=bi+1
463 fveq2 s=ibs=bi
464 462 463 oveq12d s=ibs+1bs=bi+1bi
465 nfcv _i1K1
466 nfcv _s1K1
467 nfcv _ibs+1bs
468 nfcv _sbi+1bi
469 464 465 466 467 468 cbvsum s=1K1bs+1bs=i=1K1bi+1bi
470 469 a1i φbBs=1K1bs+1bs=i=1K1bi+1bi
471 470 oveq2d φbBb1+s=1K1bs+1bs=b1+i=1K1bi+1bi
472 fveq2 w=ibw=bi
473 fveq2 w=i+1bw=bi+1
474 fveq2 w=1bw=b1
475 fveq2 w=K-1+1bw=bK-1+1
476 405 215 eqeltrd φbBK-1+11
477 31 adantr φbBw1K-1+1b:1K1N+K
478 1zzd φbBw1K-1+11
479 16 adantr φbBw1K-1+1K
480 elfzelz w1K-1+1w
481 480 adantl φbBw1K-1+1w
482 elfzle1 w1K-1+11w
483 482 adantl φbBw1K-1+11w
484 elfzle2 w1K-1+1wK-1+1
485 484 adantl φbBw1K-1+1wK-1+1
486 405 adantr φbBw1K-1+1K-1+1=K
487 485 486 breqtrd φbBw1K-1+1wK
488 478 479 481 483 487 elfzd φbBw1K-1+1w1K
489 477 488 ffvelcdmd φbBw1K-1+1bw1N+K
490 elfznn bw1N+Kbw
491 490 nncnd bw1N+Kbw
492 489 491 syl φbBw1K-1+1bw
493 472 473 474 475 421 476 492 telfsum2 φbBi=1K1bi+1bi=bK-1+1b1
494 493 oveq2d φbBb1+i=1K1bi+1bi=b1+bK-1+1-b1
495 74 recnd φbBb1
496 40 nncnd φbBbK
497 405 fveq2d φbBbK-1+1=bK
498 497 eleq1d φbBbK-1+1bK
499 496 498 mpbird φbBbK-1+1
500 495 499 pncan3d φbBb1+bK-1+1-b1=bK-1+1
501 500 497 eqtrd φbBb1+bK-1+1-b1=bK
502 494 501 eqtrd φbBb1+i=1K1bi+1bi=bK
503 471 502 eqtrd φbBb1+s=1K1bs+1bs=bK
504 461 503 eqtrd φbBb1+i=1+1K-1+1bi-1+1bi1=bK
505 420 504 eqtrd φbBb1+i=1+1K-1+1bibi1=bK
506 409 505 eqtrd φbBb1+i=1+1Kbibi1=bK
507 403 506 eqtrd φbBb1+i=1+1Kifi=1b1bibi1=bK
508 389 507 eqtrd φbBi=1Kifi=1b1bibi1=bK
509 fsumconst 1KFin1i=1K1=1K1
510 347 69 509 syl2anc φbBi=1K1=1K1
511 213 nnnn0d φbBK0
512 hashfz1 K01K=K
513 511 512 syl φbB1K=K
514 513 oveq1d φbB1K1=K1
515 404 mulridd φbBK1=K
516 514 515 eqtrd φbB1K1=K
517 510 516 eqtrd φbBi=1K1=K
518 508 517 oveq12d φbBi=1Kifi=1b1bibi1i=1K1=bKK
519 386 518 eqtrd φbBi=1Kifi=1b1bibi11=bKK
520 44 addlidd φbB0+bK=bK
521 520 eqcomd φbBbK=0+bK
522 521 oveq1d φbBbKK=0+bK-K
523 519 522 eqtrd φbBi=1Kifi=1b1bibi11=0+bK-K
524 0cnd φbB0
525 524 404 44 subsub3d φbB0KbK=0+bK-K
526 525 eqcomd φbB0+bK-K=0KbK
527 523 526 eqtrd φbBi=1Kifi=1b1bibi11=0KbK
528 14 zcnd φbBN
529 528 subidd φbBNN=0
530 529 eqcomd φbB0=NN
531 530 oveq1d φbB0KbK=N-N-KbK
532 527 531 eqtrd φbBi=1Kifi=1b1bibi11=N-N-KbK
533 404 44 subcld φbBKbK
534 528 528 533 subsub4d φbBN-N-KbK=NN+K-bK
535 532 534 eqtrd φbBi=1Kifi=1b1bibi11=NN+K-bK
536 528 404 44 addsubassd φbBN+K-bK=N+K-bK
537 536 eqcomd φbBN+K-bK=N+K-bK
538 537 oveq2d φbBNN+K-bK=NN+K-bK
539 535 538 eqtrd φbBi=1Kifi=1b1bibi11=NN+K-bK
540 1zzd φbBi1K1
541 383 540 zsubcld φbBi1Kifi=1b1bibi11
542 347 541 fsumzcl φbBi=1Kifi=1b1bibi11
543 542 zcnd φbBi=1Kifi=1b1bibi11
544 55 nn0cnd φbBN+K-bK
545 543 544 528 addlsub φbBi=1Kifi=1b1bibi11+N+K-bK=Ni=1Kifi=1b1bibi11=NN+K-bK
546 539 545 mpbird φbBi=1Kifi=1b1bibi11+N+K-bK=N
547 346 546 eqtrd φbBi=1Kifi=1b11bi-bi1-1+N+K-bK=N
548 329 547 eqtrd φbBi=1Kifi=K+1N+K-bKifi=1b11bi-bi1-1+N+K-bK=N
549 314 548 eqtrd φbBi=1Kifi=K+1N+K-bKifi=1b11bi-bi1-1+ifK+1=K+1N+K-bKifK+1=1b11bK+1-bK+1-1-1=N
550 311 549 eqtrd φbBi=1K+1ifi=K+1N+K-bKifi=1b11bi-bi1-1=N
551 212 550 eqtrd φbBi=1K+1k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i=N
552 194 551 jca φbBk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1:1K+10i=1K+1k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i=N
553 ovex 1K+1V
554 553 mptex k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1V
555 feq1 g=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1g:1K+10k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1:1K+10
556 simpl g=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i1K+1g=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
557 556 fveq1d g=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i1K+1gi=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i
558 557 sumeq2dv g=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i=1K+1gi=i=1K+1k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i
559 558 eqeq1d g=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i=1K+1gi=Ni=1K+1k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i=N
560 555 559 anbi12d g=k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1g:1K+10i=1K+1gi=Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1:1K+10i=1K+1k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i=N
561 554 560 elab k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1g|g:1K+10i=1K+1gi=Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1:1K+10i=1K+1k1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1i=N
562 552 561 sylibr φbBk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1g|g:1K+10i=1K+1gi=N
563 4 a1i φbBA=g|g:1K+10i=1K+1gi=N
564 562 563 eleqtrrd φbBk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1A
565 10 564 eqeltrrd φbBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1A
566 565 3 fmptd φG:BA