Step |
Hyp |
Ref |
Expression |
1 |
|
relco |
Could not format Rel ( t++ R o. t++ R ) : No typesetting found for |- Rel ( t++ R o. t++ R ) with typecode |- |
2 |
|
eldifi |
|
3 |
|
eldifi |
|
4 |
|
nnacl |
|
5 |
2 3 4
|
syl2an |
|
6 |
|
eldif |
|
7 |
|
1on |
|
8 |
7
|
onordi |
|
9 |
|
nnord |
|
10 |
|
ordtri1 |
|
11 |
8 9 10
|
sylancr |
|
12 |
11
|
biimpar |
|
13 |
6 12
|
sylbi |
|
14 |
13
|
adantr |
|
15 |
|
nnaword1 |
|
16 |
2 3 15
|
syl2an |
|
17 |
14 16
|
sstrd |
|
18 |
|
nnord |
|
19 |
5 18
|
syl |
|
20 |
|
ordtri1 |
|
21 |
8 19 20
|
sylancr |
|
22 |
17 21
|
mpbid |
|
23 |
5 22
|
eldifd |
|
24 |
|
0elsuc |
|
25 |
19 24
|
syl |
|
26 |
|
eleq1 |
|
27 |
|
fveq2 |
|
28 |
|
eqeq2 |
|
29 |
28
|
riotabidv |
|
30 |
29
|
fveq2d |
|
31 |
26 27 30
|
ifbieq12d |
|
32 |
|
eqid |
|
33 |
|
fvex |
|
34 |
|
fvex |
|
35 |
33 34
|
ifex |
|
36 |
31 32 35
|
fvmpt |
|
37 |
25 36
|
syl |
|
38 |
2
|
adantr |
|
39 |
38 9
|
syl |
|
40 |
|
0elsuc |
|
41 |
39 40
|
syl |
|
42 |
41
|
iftrued |
|
43 |
37 42
|
eqtrd |
|
44 |
|
simpl2l |
|
45 |
43 44
|
sylan9eq |
|
46 |
|
ovex |
|
47 |
46
|
sucid |
|
48 |
|
eleq1 |
|
49 |
|
fveq2 |
|
50 |
|
eqeq2 |
|
51 |
50
|
riotabidv |
|
52 |
51
|
fveq2d |
|
53 |
48 49 52
|
ifbieq12d |
|
54 |
|
fvex |
|
55 |
|
fvex |
|
56 |
54 55
|
ifex |
|
57 |
53 32 56
|
fvmpt |
|
58 |
47 57
|
mp1i |
|
59 |
|
df-1o |
|
60 |
59
|
difeq2i |
|
61 |
60
|
eleq2i |
|
62 |
|
peano1 |
|
63 |
|
eldifsucnn |
|
64 |
62 63
|
ax-mp |
|
65 |
|
dif0 |
|
66 |
65
|
rexeqi |
|
67 |
61 64 66
|
3bitri |
|
68 |
60
|
eleq2i |
|
69 |
|
eldifsucnn |
|
70 |
62 69
|
ax-mp |
|
71 |
65
|
rexeqi |
|
72 |
68 70 71
|
3bitri |
|
73 |
67 72
|
anbi12i |
|
74 |
|
reeanv |
|
75 |
73 74
|
bitr4i |
|
76 |
|
peano2 |
|
77 |
|
nnaword1 |
|
78 |
76 77
|
sylan |
|
79 |
76
|
adantr |
|
80 |
|
nnord |
|
81 |
79 80
|
syl |
|
82 |
|
nnacl |
|
83 |
76 82
|
sylan |
|
84 |
|
nnord |
|
85 |
83 84
|
syl |
|
86 |
|
ordsucsssuc |
|
87 |
81 85 86
|
syl2anc |
|
88 |
78 87
|
mpbid |
|
89 |
|
nnasuc |
|
90 |
76 89
|
sylan |
|
91 |
88 90
|
sseqtrrd |
|
92 |
|
peano2 |
|
93 |
79 92
|
syl |
|
94 |
|
nnord |
|
95 |
93 94
|
syl |
|
96 |
|
peano2 |
|
97 |
|
nnacl |
|
98 |
76 96 97
|
syl2an |
|
99 |
|
nnord |
|
100 |
98 99
|
syl |
|
101 |
|
ordtri1 |
|
102 |
95 100 101
|
syl2anc |
|
103 |
91 102
|
mpbid |
|
104 |
|
oveq12 |
|
105 |
|
suceq |
|
106 |
105
|
adantr |
|
107 |
104 106
|
eleq12d |
|
108 |
107
|
notbid |
|
109 |
103 108
|
syl5ibrcom |
|
110 |
109
|
rexlimivv |
|
111 |
75 110
|
sylbi |
|
112 |
111
|
iffalsed |
|
113 |
3
|
adantl |
|
114 |
38
|
adantr |
|
115 |
|
simpr |
|
116 |
113
|
adantr |
|
117 |
|
nnacan |
|
118 |
114 115 116 117
|
syl3anc |
|
119 |
113 118
|
riota5 |
|
120 |
119
|
fveq2d |
|
121 |
58 112 120
|
3eqtrd |
|
122 |
|
simpr2r |
|
123 |
121 122
|
sylan9eq |
|
124 |
|
simprl3 |
|
125 |
|
fveq2 |
|
126 |
|
suceq |
|
127 |
126
|
fveq2d |
|
128 |
125 127
|
breq12d |
|
129 |
128
|
rspcv |
|
130 |
124 129
|
mpan9 |
|
131 |
|
elelsuc |
|
132 |
131
|
adantl |
|
133 |
132
|
iftrued |
|
134 |
|
ordsucelsuc |
|
135 |
39 134
|
syl |
|
136 |
135
|
adantr |
|
137 |
136
|
biimpa |
|
138 |
137
|
iftrued |
|
139 |
130 133 138
|
3brtr4d |
|
140 |
139
|
adantlr |
|
141 |
39
|
adantr |
|
142 |
5
|
adantr |
|
143 |
|
elnn |
|
144 |
143
|
ancoms |
|
145 |
142 144
|
sylan |
|
146 |
|
nnord |
|
147 |
145 146
|
syl |
|
148 |
|
ordtri3or |
|
149 |
141 147 148
|
syl2an2r |
|
150 |
|
3orel3 |
|
151 |
149 150
|
syl5com |
|
152 |
|
fveq2 |
|
153 |
|
suceq |
|
154 |
153
|
fveq2d |
|
155 |
152 154
|
breq12d |
|
156 |
|
simprr3 |
|
157 |
156
|
adantr |
|
158 |
157
|
adantr |
|
159 |
|
ordelss |
|
160 |
147 159
|
sylan |
|
161 |
38
|
adantr |
|
162 |
161
|
adantr |
|
163 |
145
|
adantr |
|
164 |
|
nnawordex |
|
165 |
162 163 164
|
syl2an2r |
|
166 |
160 165
|
mpbid |
|
167 |
|
oveq2 |
|
168 |
167
|
eqeq1d |
|
169 |
168
|
cbvrexvw |
|
170 |
166 169
|
sylib |
|
171 |
|
simprr |
|
172 |
|
simpllr |
|
173 |
171 172
|
eqeltrd |
|
174 |
|
simprl |
|
175 |
3
|
ad4antlr |
|
176 |
175
|
adantr |
|
177 |
162
|
adantr |
|
178 |
177
|
adantr |
|
179 |
|
nnaord |
|
180 |
174 176 178 179
|
syl3anc |
|
181 |
173 180
|
mpbird |
|
182 |
170 181 171
|
reximssdv |
|
183 |
|
elnn |
|
184 |
183
|
ancoms |
|
185 |
175 184
|
sylan |
|
186 |
|
nnasmo |
|
187 |
177 186
|
syl |
|
188 |
|
reu5 |
|
189 |
166 187 188
|
sylanbrc |
|
190 |
189
|
adantr |
|
191 |
168
|
riota2 |
|
192 |
185 190 191
|
syl2anc |
|
193 |
|
eqcom |
|
194 |
192 193
|
bitrdi |
|
195 |
194
|
rexbidva |
|
196 |
182 195
|
mpbid |
|
197 |
|
risset |
|
198 |
196 197
|
sylibr |
|
199 |
155 158 198
|
rspcdva |
|
200 |
|
simpr |
|
201 |
|
vex |
|
202 |
147
|
adantr |
|
203 |
|
ordelsuc |
|
204 |
201 202 203
|
sylancr |
|
205 |
|
peano2 |
|
206 |
38 205
|
syl |
|
207 |
|
nnord |
|
208 |
206 207
|
syl |
|
209 |
208
|
adantr |
|
210 |
209
|
adantr |
|
211 |
|
ordtri1 |
|
212 |
210 202 211
|
syl2an2r |
|
213 |
204 212
|
bitrd |
|
214 |
200 213
|
mpbid |
|
215 |
214
|
iffalsed |
|
216 |
|
riotacl |
|
217 |
189 216
|
syl |
|
218 |
|
nnasuc |
|
219 |
162 217 218
|
syl2an2r |
|
220 |
|
eqidd |
|
221 |
|
nfriota1 |
|
222 |
|
nfcv |
|
223 |
|
nfcv |
|
224 |
222 223 221
|
nfov |
|
225 |
224
|
nfeq1 |
|
226 |
|
oveq2 |
|
227 |
226
|
eqeq1d |
|
228 |
221 225 227
|
riota2f |
|
229 |
217 189 228
|
syl2anc |
|
230 |
220 229
|
mpbird |
|
231 |
|
suceq |
|
232 |
230 231
|
syl |
|
233 |
219 232
|
eqtrd |
|
234 |
|
peano2 |
|
235 |
217 234
|
syl |
|
236 |
|
peano2 |
|
237 |
|
nnasuc |
|
238 |
177 237
|
sylan |
|
239 |
|
oveq2 |
|
240 |
239
|
eqeq1d |
|
241 |
240
|
rspcev |
|
242 |
236 238 241
|
syl2an2 |
|
243 |
|
suceq |
|
244 |
243
|
eqeq2d |
|
245 |
244
|
rexbidv |
|
246 |
242 245
|
syl5ibcom |
|
247 |
246
|
rexlimdva |
|
248 |
170 247
|
mpd |
|
249 |
|
nnasmo |
|
250 |
177 249
|
syl |
|
251 |
|
reu5 |
|
252 |
248 250 251
|
sylanbrc |
|
253 |
221
|
nfsuc |
|
254 |
222 223 253
|
nfov |
|
255 |
254
|
nfeq1 |
|
256 |
|
oveq2 |
|
257 |
256
|
eqeq1d |
|
258 |
253 255 257
|
riota2f |
|
259 |
235 252 258
|
syl2anc |
|
260 |
233 259
|
mpbid |
|
261 |
260
|
fveq2d |
|
262 |
199 215 261
|
3brtr4d |
|
263 |
262
|
ex |
|
264 |
|
fveq2 |
|
265 |
|
suceq |
|
266 |
265 59
|
eqtr4di |
|
267 |
266
|
fveq2d |
|
268 |
264 267
|
breq12d |
|
269 |
|
eldif |
|
270 |
|
nnord |
|
271 |
|
ordtri1 |
|
272 |
8 270 271
|
sylancr |
|
273 |
272
|
biimpar |
|
274 |
269 273
|
sylbi |
|
275 |
274
|
adantl |
|
276 |
59 275
|
eqsstrrid |
|
277 |
|
0ex |
|
278 |
113 270
|
syl |
|
279 |
|
ordelsuc |
|
280 |
277 278 279
|
sylancr |
|
281 |
276 280
|
mpbird |
|
282 |
281
|
adantr |
|
283 |
268 156 282
|
rspcdva |
|
284 |
|
simpl2r |
|
285 |
|
simpr2l |
|
286 |
284 285
|
eqtr4d |
|
287 |
286
|
adantl |
|
288 |
|
nnon |
|
289 |
38 288
|
syl |
|
290 |
|
oa1suc |
|
291 |
289 290
|
syl |
|
292 |
|
1onn |
|
293 |
|
oveq2 |
|
294 |
293
|
eqeq1d |
|
295 |
294
|
rspcev |
|
296 |
292 291 295
|
sylancr |
|
297 |
|
nnasmo |
|
298 |
38 297
|
syl |
|
299 |
|
reu5 |
|
300 |
296 298 299
|
sylanbrc |
|
301 |
294
|
riota2 |
|
302 |
292 300 301
|
sylancr |
|
303 |
291 302
|
mpbid |
|
304 |
303
|
adantr |
|
305 |
304
|
fveq2d |
|
306 |
283 287 305
|
3brtr4d |
|
307 |
201
|
sucid |
|
308 |
307
|
iftruei |
|
309 |
|
eleq1 |
|
310 |
|
fveq2 |
|
311 |
309 310
|
ifbieq1d |
|
312 |
308 311
|
eqtr3id |
|
313 |
|
suceq |
|
314 |
313
|
eqeq2d |
|
315 |
314
|
riotabidv |
|
316 |
315
|
fveq2d |
|
317 |
312 316
|
breq12d |
|
318 |
306 317
|
syl5ibcom |
|
319 |
318
|
adantr |
|
320 |
263 319
|
jaod |
|
321 |
151 320
|
syld |
|
322 |
321
|
imp |
|
323 |
135
|
notbid |
|
324 |
323
|
adantr |
|
325 |
324
|
adantr |
|
326 |
325
|
biimpa |
|
327 |
326
|
iffalsed |
|
328 |
322 327
|
breqtrrd |
|
329 |
140 328
|
pm2.61dan |
|
330 |
|
elelsuc |
|
331 |
330
|
adantl |
|
332 |
|
eleq1 |
|
333 |
|
fveq2 |
|
334 |
|
eqeq2 |
|
335 |
334
|
riotabidv |
|
336 |
335
|
fveq2d |
|
337 |
332 333 336
|
ifbieq12d |
|
338 |
|
fvex |
|
339 |
|
fvex |
|
340 |
338 339
|
ifex |
|
341 |
337 32 340
|
fvmpt |
|
342 |
331 341
|
syl |
|
343 |
|
ordsucelsuc |
|
344 |
19 343
|
syl |
|
345 |
344
|
adantr |
|
346 |
345
|
biimpa |
|
347 |
|
eleq1 |
|
348 |
|
fveq2 |
|
349 |
|
eqeq2 |
|
350 |
349
|
riotabidv |
|
351 |
350
|
fveq2d |
|
352 |
347 348 351
|
ifbieq12d |
|
353 |
|
fvex |
|
354 |
|
fvex |
|
355 |
353 354
|
ifex |
|
356 |
352 32 355
|
fvmpt |
|
357 |
346 356
|
syl |
|
358 |
329 342 357
|
3brtr4d |
|
359 |
358
|
ralrimiva |
|
360 |
|
fvex |
|
361 |
|
fvex |
|
362 |
360 361
|
ifex |
|
363 |
362 32
|
fnmpti |
|
364 |
46
|
sucex |
|
365 |
364
|
mptex |
|
366 |
|
fneq1 |
|
367 |
|
fveq1 |
|
368 |
367
|
eqeq1d |
|
369 |
|
fveq1 |
|
370 |
369
|
eqeq1d |
|
371 |
368 370
|
anbi12d |
|
372 |
|
fveq1 |
|
373 |
|
fveq1 |
|
374 |
372 373
|
breq12d |
|
375 |
374
|
ralbidv |
|
376 |
366 371 375
|
3anbi123d |
|
377 |
365 376
|
spcev |
|
378 |
363 377
|
mp3an1 |
|
379 |
45 123 359 378
|
syl21anc |
|
380 |
|
suceq |
|
381 |
380
|
fneq2d |
|
382 |
|
fveqeq2 |
|
383 |
382
|
anbi2d |
|
384 |
|
raleq |
|
385 |
381 383 384
|
3anbi123d |
|
386 |
385
|
exbidv |
|
387 |
386
|
rspcev |
|
388 |
23 379 387
|
syl2an2r |
|
389 |
388
|
ex |
|
390 |
389
|
exlimdvv |
|
391 |
390
|
rexlimivv |
|
392 |
391
|
exlimiv |
|
393 |
|
vex |
|
394 |
|
vex |
|
395 |
393 394
|
opelco |
Could not format ( <. x , y >. e. ( t++ R o. t++ R ) <-> E. z ( x t++ R z /\ z t++ R y ) ) : No typesetting found for |- ( <. x , y >. e. ( t++ R o. t++ R ) <-> E. z ( x t++ R z /\ z t++ R y ) ) with typecode |- |
396 |
|
reeanv |
|
397 |
|
eeanv |
|
398 |
397
|
2rexbii |
|
399 |
|
brttrcl |
Could not format ( x t++ R z <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) : No typesetting found for |- ( x t++ R z <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) with typecode |- |
400 |
|
brttrcl |
Could not format ( z t++ R y <-> E. m e. ( _om \ 1o ) E. g ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) : No typesetting found for |- ( z t++ R y <-> E. m e. ( _om \ 1o ) E. g ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) with typecode |- |
401 |
399 400
|
anbi12i |
Could not format ( ( x t++ R z /\ z t++ R y ) <-> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ E. m e. ( _om \ 1o ) E. g ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) : No typesetting found for |- ( ( x t++ R z /\ z t++ R y ) <-> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ E. m e. ( _om \ 1o ) E. g ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) with typecode |- |
402 |
396 398 401
|
3bitr4ri |
Could not format ( ( x t++ R z /\ z t++ R y ) <-> E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) : No typesetting found for |- ( ( x t++ R z /\ z t++ R y ) <-> E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) with typecode |- |
403 |
402
|
exbii |
Could not format ( E. z ( x t++ R z /\ z t++ R y ) <-> E. z E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) : No typesetting found for |- ( E. z ( x t++ R z /\ z t++ R y ) <-> E. z E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) with typecode |- |
404 |
395 403
|
bitri |
Could not format ( <. x , y >. e. ( t++ R o. t++ R ) <-> E. z E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) : No typesetting found for |- ( <. x , y >. e. ( t++ R o. t++ R ) <-> E. z E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) with typecode |- |
405 |
|
df-br |
Could not format ( x t++ R y <-> <. x , y >. e. t++ R ) : No typesetting found for |- ( x t++ R y <-> <. x , y >. e. t++ R ) with typecode |- |
406 |
|
brttrcl |
Could not format ( x t++ R y <-> E. p e. ( _om \ 1o ) E. h ( h Fn suc p /\ ( ( h ` (/) ) = x /\ ( h ` p ) = y ) /\ A. c e. p ( h ` c ) R ( h ` suc c ) ) ) : No typesetting found for |- ( x t++ R y <-> E. p e. ( _om \ 1o ) E. h ( h Fn suc p /\ ( ( h ` (/) ) = x /\ ( h ` p ) = y ) /\ A. c e. p ( h ` c ) R ( h ` suc c ) ) ) with typecode |- |
407 |
405 406
|
bitr3i |
Could not format ( <. x , y >. e. t++ R <-> E. p e. ( _om \ 1o ) E. h ( h Fn suc p /\ ( ( h ` (/) ) = x /\ ( h ` p ) = y ) /\ A. c e. p ( h ` c ) R ( h ` suc c ) ) ) : No typesetting found for |- ( <. x , y >. e. t++ R <-> E. p e. ( _om \ 1o ) E. h ( h Fn suc p /\ ( ( h ` (/) ) = x /\ ( h ` p ) = y ) /\ A. c e. p ( h ` c ) R ( h ` suc c ) ) ) with typecode |- |
408 |
392 404 407
|
3imtr4i |
Could not format ( <. x , y >. e. ( t++ R o. t++ R ) -> <. x , y >. e. t++ R ) : No typesetting found for |- ( <. x , y >. e. ( t++ R o. t++ R ) -> <. x , y >. e. t++ R ) with typecode |- |
409 |
1 408
|
relssi |
Could not format ( t++ R o. t++ R ) C_ t++ R : No typesetting found for |- ( t++ R o. t++ R ) C_ t++ R with typecode |- |