Metamath Proof Explorer


Theorem ttrcltr

Description: The transitive closure of a class is transitive. (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Assertion ttrcltr Could not format assertion : No typesetting found for |- ( t++ R o. t++ R ) C_ t++ R with typecode |-

Proof

Step Hyp Ref Expression
1 relco Could not format Rel ( t++ R o. t++ R ) : No typesetting found for |- Rel ( t++ R o. t++ R ) with typecode |-
2 eldifi n ω 1 𝑜 n ω
3 eldifi m ω 1 𝑜 m ω
4 nnacl n ω m ω n + 𝑜 m ω
5 2 3 4 syl2an n ω 1 𝑜 m ω 1 𝑜 n + 𝑜 m ω
6 eldif n ω 1 𝑜 n ω ¬ n 1 𝑜
7 1on 1 𝑜 On
8 7 onordi Ord 1 𝑜
9 nnord n ω Ord n
10 ordtri1 Ord 1 𝑜 Ord n 1 𝑜 n ¬ n 1 𝑜
11 8 9 10 sylancr n ω 1 𝑜 n ¬ n 1 𝑜
12 11 biimpar n ω ¬ n 1 𝑜 1 𝑜 n
13 6 12 sylbi n ω 1 𝑜 1 𝑜 n
14 13 adantr n ω 1 𝑜 m ω 1 𝑜 1 𝑜 n
15 nnaword1 n ω m ω n n + 𝑜 m
16 2 3 15 syl2an n ω 1 𝑜 m ω 1 𝑜 n n + 𝑜 m
17 14 16 sstrd n ω 1 𝑜 m ω 1 𝑜 1 𝑜 n + 𝑜 m
18 nnord n + 𝑜 m ω Ord n + 𝑜 m
19 5 18 syl n ω 1 𝑜 m ω 1 𝑜 Ord n + 𝑜 m
20 ordtri1 Ord 1 𝑜 Ord n + 𝑜 m 1 𝑜 n + 𝑜 m ¬ n + 𝑜 m 1 𝑜
21 8 19 20 sylancr n ω 1 𝑜 m ω 1 𝑜 1 𝑜 n + 𝑜 m ¬ n + 𝑜 m 1 𝑜
22 17 21 mpbid n ω 1 𝑜 m ω 1 𝑜 ¬ n + 𝑜 m 1 𝑜
23 5 22 eldifd n ω 1 𝑜 m ω 1 𝑜 n + 𝑜 m ω 1 𝑜
24 0elsuc Ord n + 𝑜 m suc n + 𝑜 m
25 19 24 syl n ω 1 𝑜 m ω 1 𝑜 suc n + 𝑜 m
26 eleq1 p = p suc n suc n
27 fveq2 p = f p = f
28 eqeq2 p = n + 𝑜 q = p n + 𝑜 q =
29 28 riotabidv p = ι q ω | n + 𝑜 q = p = ι q ω | n + 𝑜 q =
30 29 fveq2d p = g ι q ω | n + 𝑜 q = p = g ι q ω | n + 𝑜 q =
31 26 27 30 ifbieq12d p = if p suc n f p g ι q ω | n + 𝑜 q = p = if suc n f g ι q ω | n + 𝑜 q =
32 eqid p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p
33 fvex f V
34 fvex g ι q ω | n + 𝑜 q = V
35 33 34 ifex if suc n f g ι q ω | n + 𝑜 q = V
36 31 32 35 fvmpt suc n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p = if suc n f g ι q ω | n + 𝑜 q =
37 25 36 syl n ω 1 𝑜 m ω 1 𝑜 p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p = if suc n f g ι q ω | n + 𝑜 q =
38 2 adantr n ω 1 𝑜 m ω 1 𝑜 n ω
39 38 9 syl n ω 1 𝑜 m ω 1 𝑜 Ord n
40 0elsuc Ord n suc n
41 39 40 syl n ω 1 𝑜 m ω 1 𝑜 suc n
42 41 iftrued n ω 1 𝑜 m ω 1 𝑜 if suc n f g ι q ω | n + 𝑜 q = = f
43 37 42 eqtrd n ω 1 𝑜 m ω 1 𝑜 p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p = f
44 simpl2l f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b f = x
45 43 44 sylan9eq n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p = x
46 ovex n + 𝑜 m V
47 46 sucid n + 𝑜 m suc n + 𝑜 m
48 eleq1 p = n + 𝑜 m p suc n n + 𝑜 m suc n
49 fveq2 p = n + 𝑜 m f p = f n + 𝑜 m
50 eqeq2 p = n + 𝑜 m n + 𝑜 q = p n + 𝑜 q = n + 𝑜 m
51 50 riotabidv p = n + 𝑜 m ι q ω | n + 𝑜 q = p = ι q ω | n + 𝑜 q = n + 𝑜 m
52 51 fveq2d p = n + 𝑜 m g ι q ω | n + 𝑜 q = p = g ι q ω | n + 𝑜 q = n + 𝑜 m
53 48 49 52 ifbieq12d p = n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p = if n + 𝑜 m suc n f n + 𝑜 m g ι q ω | n + 𝑜 q = n + 𝑜 m
54 fvex f n + 𝑜 m V
55 fvex g ι q ω | n + 𝑜 q = n + 𝑜 m V
56 54 55 ifex if n + 𝑜 m suc n f n + 𝑜 m g ι q ω | n + 𝑜 q = n + 𝑜 m V
57 53 32 56 fvmpt n + 𝑜 m suc n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p n + 𝑜 m = if n + 𝑜 m suc n f n + 𝑜 m g ι q ω | n + 𝑜 q = n + 𝑜 m
58 47 57 mp1i n ω 1 𝑜 m ω 1 𝑜 p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p n + 𝑜 m = if n + 𝑜 m suc n f n + 𝑜 m g ι q ω | n + 𝑜 q = n + 𝑜 m
59 df-1o 1 𝑜 = suc
60 59 difeq2i ω 1 𝑜 = ω suc
61 60 eleq2i n ω 1 𝑜 n ω suc
62 peano1 ω
63 eldifsucnn ω n ω suc x ω n = suc x
64 62 63 ax-mp n ω suc x ω n = suc x
65 dif0 ω = ω
66 65 rexeqi x ω n = suc x x ω n = suc x
67 61 64 66 3bitri n ω 1 𝑜 x ω n = suc x
68 60 eleq2i m ω 1 𝑜 m ω suc
69 eldifsucnn ω m ω suc y ω m = suc y
70 62 69 ax-mp m ω suc y ω m = suc y
71 65 rexeqi y ω m = suc y y ω m = suc y
72 68 70 71 3bitri m ω 1 𝑜 y ω m = suc y
73 67 72 anbi12i n ω 1 𝑜 m ω 1 𝑜 x ω n = suc x y ω m = suc y
74 reeanv x ω y ω n = suc x m = suc y x ω n = suc x y ω m = suc y
75 73 74 bitr4i n ω 1 𝑜 m ω 1 𝑜 x ω y ω n = suc x m = suc y
76 peano2 x ω suc x ω
77 nnaword1 suc x ω y ω suc x suc x + 𝑜 y
78 76 77 sylan x ω y ω suc x suc x + 𝑜 y
79 76 adantr x ω y ω suc x ω
80 nnord suc x ω Ord suc x
81 79 80 syl x ω y ω Ord suc x
82 nnacl suc x ω y ω suc x + 𝑜 y ω
83 76 82 sylan x ω y ω suc x + 𝑜 y ω
84 nnord suc x + 𝑜 y ω Ord suc x + 𝑜 y
85 83 84 syl x ω y ω Ord suc x + 𝑜 y
86 ordsucsssuc Ord suc x Ord suc x + 𝑜 y suc x suc x + 𝑜 y suc suc x suc suc x + 𝑜 y
87 81 85 86 syl2anc x ω y ω suc x suc x + 𝑜 y suc suc x suc suc x + 𝑜 y
88 78 87 mpbid x ω y ω suc suc x suc suc x + 𝑜 y
89 nnasuc suc x ω y ω suc x + 𝑜 suc y = suc suc x + 𝑜 y
90 76 89 sylan x ω y ω suc x + 𝑜 suc y = suc suc x + 𝑜 y
91 88 90 sseqtrrd x ω y ω suc suc x suc x + 𝑜 suc y
92 peano2 suc x ω suc suc x ω
93 79 92 syl x ω y ω suc suc x ω
94 nnord suc suc x ω Ord suc suc x
95 93 94 syl x ω y ω Ord suc suc x
96 peano2 y ω suc y ω
97 nnacl suc x ω suc y ω suc x + 𝑜 suc y ω
98 76 96 97 syl2an x ω y ω suc x + 𝑜 suc y ω
99 nnord suc x + 𝑜 suc y ω Ord suc x + 𝑜 suc y
100 98 99 syl x ω y ω Ord suc x + 𝑜 suc y
101 ordtri1 Ord suc suc x Ord suc x + 𝑜 suc y suc suc x suc x + 𝑜 suc y ¬ suc x + 𝑜 suc y suc suc x
102 95 100 101 syl2anc x ω y ω suc suc x suc x + 𝑜 suc y ¬ suc x + 𝑜 suc y suc suc x
103 91 102 mpbid x ω y ω ¬ suc x + 𝑜 suc y suc suc x
104 oveq12 n = suc x m = suc y n + 𝑜 m = suc x + 𝑜 suc y
105 suceq n = suc x suc n = suc suc x
106 105 adantr n = suc x m = suc y suc n = suc suc x
107 104 106 eleq12d n = suc x m = suc y n + 𝑜 m suc n suc x + 𝑜 suc y suc suc x
108 107 notbid n = suc x m = suc y ¬ n + 𝑜 m suc n ¬ suc x + 𝑜 suc y suc suc x
109 103 108 syl5ibrcom x ω y ω n = suc x m = suc y ¬ n + 𝑜 m suc n
110 109 rexlimivv x ω y ω n = suc x m = suc y ¬ n + 𝑜 m suc n
111 75 110 sylbi n ω 1 𝑜 m ω 1 𝑜 ¬ n + 𝑜 m suc n
112 111 iffalsed n ω 1 𝑜 m ω 1 𝑜 if n + 𝑜 m suc n f n + 𝑜 m g ι q ω | n + 𝑜 q = n + 𝑜 m = g ι q ω | n + 𝑜 q = n + 𝑜 m
113 3 adantl n ω 1 𝑜 m ω 1 𝑜 m ω
114 38 adantr n ω 1 𝑜 m ω 1 𝑜 q ω n ω
115 simpr n ω 1 𝑜 m ω 1 𝑜 q ω q ω
116 113 adantr n ω 1 𝑜 m ω 1 𝑜 q ω m ω
117 nnacan n ω q ω m ω n + 𝑜 q = n + 𝑜 m q = m
118 114 115 116 117 syl3anc n ω 1 𝑜 m ω 1 𝑜 q ω n + 𝑜 q = n + 𝑜 m q = m
119 113 118 riota5 n ω 1 𝑜 m ω 1 𝑜 ι q ω | n + 𝑜 q = n + 𝑜 m = m
120 119 fveq2d n ω 1 𝑜 m ω 1 𝑜 g ι q ω | n + 𝑜 q = n + 𝑜 m = g m
121 58 112 120 3eqtrd n ω 1 𝑜 m ω 1 𝑜 p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p n + 𝑜 m = g m
122 simpr2r f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b g m = y
123 121 122 sylan9eq n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p n + 𝑜 m = y
124 simprl3 n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b a n f a R f suc a
125 fveq2 a = c f a = f c
126 suceq a = c suc a = suc c
127 126 fveq2d a = c f suc a = f suc c
128 125 127 breq12d a = c f a R f suc a f c R f suc c
129 128 rspcv c n a n f a R f suc a f c R f suc c
130 124 129 mpan9 n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n f c R f suc c
131 elelsuc c n c suc n
132 131 adantl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n c suc n
133 132 iftrued n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n if c suc n f c g ι q ω | n + 𝑜 q = c = f c
134 ordsucelsuc Ord n c n suc c suc n
135 39 134 syl n ω 1 𝑜 m ω 1 𝑜 c n suc c suc n
136 135 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n suc c suc n
137 136 biimpa n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n suc c suc n
138 137 iftrued n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n if suc c suc n f suc c g ι q ω | n + 𝑜 q = suc c = f suc c
139 130 133 138 3brtr4d n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n if c suc n f c g ι q ω | n + 𝑜 q = c R if suc c suc n f suc c g ι q ω | n + 𝑜 q = suc c
140 139 adantlr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m c n if c suc n f c g ι q ω | n + 𝑜 q = c R if suc c suc n f suc c g ι q ω | n + 𝑜 q = suc c
141 39 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b Ord n
142 5 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b n + 𝑜 m ω
143 elnn c n + 𝑜 m n + 𝑜 m ω c ω
144 143 ancoms n + 𝑜 m ω c n + 𝑜 m c ω
145 142 144 sylan n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m c ω
146 nnord c ω Ord c
147 145 146 syl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m Ord c
148 ordtri3or Ord n Ord c n c n = c c n
149 141 147 148 syl2an2r n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n = c c n
150 3orel3 ¬ c n n c n = c c n n c n = c
151 149 150 syl5com n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m ¬ c n n c n = c
152 fveq2 b = ι q ω | n + 𝑜 q = c g b = g ι q ω | n + 𝑜 q = c
153 suceq b = ι q ω | n + 𝑜 q = c suc b = suc ι q ω | n + 𝑜 q = c
154 153 fveq2d b = ι q ω | n + 𝑜 q = c g suc b = g suc ι q ω | n + 𝑜 q = c
155 152 154 breq12d b = ι q ω | n + 𝑜 q = c g b R g suc b g ι q ω | n + 𝑜 q = c R g suc ι q ω | n + 𝑜 q = c
156 simprr3 n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b b m g b R g suc b
157 156 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m b m g b R g suc b
158 157 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c b m g b R g suc b
159 ordelss Ord c n c n c
160 147 159 sylan n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n c
161 38 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b n ω
162 161 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n ω
163 145 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c c ω
164 nnawordex n ω c ω n c q ω n + 𝑜 q = c
165 162 163 164 syl2an2r n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n c q ω n + 𝑜 q = c
166 160 165 mpbid n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c q ω n + 𝑜 q = c
167 oveq2 q = p n + 𝑜 q = n + 𝑜 p
168 167 eqeq1d q = p n + 𝑜 q = c n + 𝑜 p = c
169 168 cbvrexvw q ω n + 𝑜 q = c p ω n + 𝑜 p = c
170 166 169 sylib n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 p = c
171 simprr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 p = c n + 𝑜 p = c
172 simpllr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 p = c c n + 𝑜 m
173 171 172 eqeltrd n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 p = c n + 𝑜 p n + 𝑜 m
174 simprl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 p = c p ω
175 3 ad4antlr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c m ω
176 175 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 p = c m ω
177 162 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n ω
178 177 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 p = c n ω
179 nnaord p ω m ω n ω p m n + 𝑜 p n + 𝑜 m
180 174 176 178 179 syl3anc n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 p = c p m n + 𝑜 p n + 𝑜 m
181 173 180 mpbird n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 p = c p m
182 170 181 171 reximssdv n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p m n + 𝑜 p = c
183 elnn p m m ω p ω
184 183 ancoms m ω p m p ω
185 175 184 sylan n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p m p ω
186 nnasmo n ω * q ω n + 𝑜 q = c
187 177 186 syl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c * q ω n + 𝑜 q = c
188 reu5 ∃! q ω n + 𝑜 q = c q ω n + 𝑜 q = c * q ω n + 𝑜 q = c
189 166 187 188 sylanbrc n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c ∃! q ω n + 𝑜 q = c
190 189 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p m ∃! q ω n + 𝑜 q = c
191 168 riota2 p ω ∃! q ω n + 𝑜 q = c n + 𝑜 p = c ι q ω | n + 𝑜 q = c = p
192 185 190 191 syl2anc n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p m n + 𝑜 p = c ι q ω | n + 𝑜 q = c = p
193 eqcom ι q ω | n + 𝑜 q = c = p p = ι q ω | n + 𝑜 q = c
194 192 193 bitrdi n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p m n + 𝑜 p = c p = ι q ω | n + 𝑜 q = c
195 194 rexbidva n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p m n + 𝑜 p = c p m p = ι q ω | n + 𝑜 q = c
196 182 195 mpbid n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p m p = ι q ω | n + 𝑜 q = c
197 risset ι q ω | n + 𝑜 q = c m p m p = ι q ω | n + 𝑜 q = c
198 196 197 sylibr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c ι q ω | n + 𝑜 q = c m
199 155 158 198 rspcdva n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c g ι q ω | n + 𝑜 q = c R g suc ι q ω | n + 𝑜 q = c
200 simpr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n c
201 vex n V
202 147 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c Ord c
203 ordelsuc n V Ord c n c suc n c
204 201 202 203 sylancr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n c suc n c
205 peano2 n ω suc n ω
206 38 205 syl n ω 1 𝑜 m ω 1 𝑜 suc n ω
207 nnord suc n ω Ord suc n
208 206 207 syl n ω 1 𝑜 m ω 1 𝑜 Ord suc n
209 208 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b Ord suc n
210 209 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m Ord suc n
211 ordtri1 Ord suc n Ord c suc n c ¬ c suc n
212 210 202 211 syl2an2r n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c suc n c ¬ c suc n
213 204 212 bitrd n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n c ¬ c suc n
214 200 213 mpbid n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c ¬ c suc n
215 214 iffalsed n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c if c suc n f c g ι q ω | n + 𝑜 q = c = g ι q ω | n + 𝑜 q = c
216 riotacl ∃! q ω n + 𝑜 q = c ι q ω | n + 𝑜 q = c ω
217 189 216 syl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c ι q ω | n + 𝑜 q = c ω
218 nnasuc n ω ι q ω | n + 𝑜 q = c ω n + 𝑜 suc ι q ω | n + 𝑜 q = c = suc n + 𝑜 ι q ω | n + 𝑜 q = c
219 162 217 218 syl2an2r n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n + 𝑜 suc ι q ω | n + 𝑜 q = c = suc n + 𝑜 ι q ω | n + 𝑜 q = c
220 eqidd n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c ι q ω | n + 𝑜 q = c = ι q ω | n + 𝑜 q = c
221 nfriota1 _ q ι q ω | n + 𝑜 q = c
222 nfcv _ q n
223 nfcv _ q + 𝑜
224 222 223 221 nfov _ q n + 𝑜 ι q ω | n + 𝑜 q = c
225 224 nfeq1 q n + 𝑜 ι q ω | n + 𝑜 q = c = c
226 oveq2 q = ι q ω | n + 𝑜 q = c n + 𝑜 q = n + 𝑜 ι q ω | n + 𝑜 q = c
227 226 eqeq1d q = ι q ω | n + 𝑜 q = c n + 𝑜 q = c n + 𝑜 ι q ω | n + 𝑜 q = c = c
228 221 225 227 riota2f ι q ω | n + 𝑜 q = c ω ∃! q ω n + 𝑜 q = c n + 𝑜 ι q ω | n + 𝑜 q = c = c ι q ω | n + 𝑜 q = c = ι q ω | n + 𝑜 q = c
229 217 189 228 syl2anc n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n + 𝑜 ι q ω | n + 𝑜 q = c = c ι q ω | n + 𝑜 q = c = ι q ω | n + 𝑜 q = c
230 220 229 mpbird n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n + 𝑜 ι q ω | n + 𝑜 q = c = c
231 suceq n + 𝑜 ι q ω | n + 𝑜 q = c = c suc n + 𝑜 ι q ω | n + 𝑜 q = c = suc c
232 230 231 syl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c suc n + 𝑜 ι q ω | n + 𝑜 q = c = suc c
233 219 232 eqtrd n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n + 𝑜 suc ι q ω | n + 𝑜 q = c = suc c
234 peano2 ι q ω | n + 𝑜 q = c ω suc ι q ω | n + 𝑜 q = c ω
235 217 234 syl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c suc ι q ω | n + 𝑜 q = c ω
236 peano2 p ω suc p ω
237 nnasuc n ω p ω n + 𝑜 suc p = suc n + 𝑜 p
238 177 237 sylan n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 suc p = suc n + 𝑜 p
239 oveq2 q = suc p n + 𝑜 q = n + 𝑜 suc p
240 239 eqeq1d q = suc p n + 𝑜 q = suc n + 𝑜 p n + 𝑜 suc p = suc n + 𝑜 p
241 240 rspcev suc p ω n + 𝑜 suc p = suc n + 𝑜 p q ω n + 𝑜 q = suc n + 𝑜 p
242 236 238 241 syl2an2 n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω q ω n + 𝑜 q = suc n + 𝑜 p
243 suceq n + 𝑜 p = c suc n + 𝑜 p = suc c
244 243 eqeq2d n + 𝑜 p = c n + 𝑜 q = suc n + 𝑜 p n + 𝑜 q = suc c
245 244 rexbidv n + 𝑜 p = c q ω n + 𝑜 q = suc n + 𝑜 p q ω n + 𝑜 q = suc c
246 242 245 syl5ibcom n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 p = c q ω n + 𝑜 q = suc c
247 246 rexlimdva n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c p ω n + 𝑜 p = c q ω n + 𝑜 q = suc c
248 170 247 mpd n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c q ω n + 𝑜 q = suc c
249 nnasmo n ω * q ω n + 𝑜 q = suc c
250 177 249 syl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c * q ω n + 𝑜 q = suc c
251 reu5 ∃! q ω n + 𝑜 q = suc c q ω n + 𝑜 q = suc c * q ω n + 𝑜 q = suc c
252 248 250 251 sylanbrc n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c ∃! q ω n + 𝑜 q = suc c
253 221 nfsuc _ q suc ι q ω | n + 𝑜 q = c
254 222 223 253 nfov _ q n + 𝑜 suc ι q ω | n + 𝑜 q = c
255 254 nfeq1 q n + 𝑜 suc ι q ω | n + 𝑜 q = c = suc c
256 oveq2 q = suc ι q ω | n + 𝑜 q = c n + 𝑜 q = n + 𝑜 suc ι q ω | n + 𝑜 q = c
257 256 eqeq1d q = suc ι q ω | n + 𝑜 q = c n + 𝑜 q = suc c n + 𝑜 suc ι q ω | n + 𝑜 q = c = suc c
258 253 255 257 riota2f suc ι q ω | n + 𝑜 q = c ω ∃! q ω n + 𝑜 q = suc c n + 𝑜 suc ι q ω | n + 𝑜 q = c = suc c ι q ω | n + 𝑜 q = suc c = suc ι q ω | n + 𝑜 q = c
259 235 252 258 syl2anc n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n + 𝑜 suc ι q ω | n + 𝑜 q = c = suc c ι q ω | n + 𝑜 q = suc c = suc ι q ω | n + 𝑜 q = c
260 233 259 mpbid n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c ι q ω | n + 𝑜 q = suc c = suc ι q ω | n + 𝑜 q = c
261 260 fveq2d n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c g ι q ω | n + 𝑜 q = suc c = g suc ι q ω | n + 𝑜 q = c
262 199 215 261 3brtr4d n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c if c suc n f c g ι q ω | n + 𝑜 q = c R g ι q ω | n + 𝑜 q = suc c
263 262 ex n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c if c suc n f c g ι q ω | n + 𝑜 q = c R g ι q ω | n + 𝑜 q = suc c
264 fveq2 b = g b = g
265 suceq b = suc b = suc
266 265 59 eqtr4di b = suc b = 1 𝑜
267 266 fveq2d b = g suc b = g 1 𝑜
268 264 267 breq12d b = g b R g suc b g R g 1 𝑜
269 eldif m ω 1 𝑜 m ω ¬ m 1 𝑜
270 nnord m ω Ord m
271 ordtri1 Ord 1 𝑜 Ord m 1 𝑜 m ¬ m 1 𝑜
272 8 270 271 sylancr m ω 1 𝑜 m ¬ m 1 𝑜
273 272 biimpar m ω ¬ m 1 𝑜 1 𝑜 m
274 269 273 sylbi m ω 1 𝑜 1 𝑜 m
275 274 adantl n ω 1 𝑜 m ω 1 𝑜 1 𝑜 m
276 59 275 eqsstrrid n ω 1 𝑜 m ω 1 𝑜 suc m
277 0ex V
278 113 270 syl n ω 1 𝑜 m ω 1 𝑜 Ord m
279 ordelsuc V Ord m m suc m
280 277 278 279 sylancr n ω 1 𝑜 m ω 1 𝑜 m suc m
281 276 280 mpbird n ω 1 𝑜 m ω 1 𝑜 m
282 281 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b m
283 268 156 282 rspcdva n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b g R g 1 𝑜
284 simpl2r f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b f n = z
285 simpr2l f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b g = z
286 284 285 eqtr4d f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b f n = g
287 286 adantl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b f n = g
288 nnon n ω n On
289 38 288 syl n ω 1 𝑜 m ω 1 𝑜 n On
290 oa1suc n On n + 𝑜 1 𝑜 = suc n
291 289 290 syl n ω 1 𝑜 m ω 1 𝑜 n + 𝑜 1 𝑜 = suc n
292 1onn 1 𝑜 ω
293 oveq2 q = 1 𝑜 n + 𝑜 q = n + 𝑜 1 𝑜
294 293 eqeq1d q = 1 𝑜 n + 𝑜 q = suc n n + 𝑜 1 𝑜 = suc n
295 294 rspcev 1 𝑜 ω n + 𝑜 1 𝑜 = suc n q ω n + 𝑜 q = suc n
296 292 291 295 sylancr n ω 1 𝑜 m ω 1 𝑜 q ω n + 𝑜 q = suc n
297 nnasmo n ω * q ω n + 𝑜 q = suc n
298 38 297 syl n ω 1 𝑜 m ω 1 𝑜 * q ω n + 𝑜 q = suc n
299 reu5 ∃! q ω n + 𝑜 q = suc n q ω n + 𝑜 q = suc n * q ω n + 𝑜 q = suc n
300 296 298 299 sylanbrc n ω 1 𝑜 m ω 1 𝑜 ∃! q ω n + 𝑜 q = suc n
301 294 riota2 1 𝑜 ω ∃! q ω n + 𝑜 q = suc n n + 𝑜 1 𝑜 = suc n ι q ω | n + 𝑜 q = suc n = 1 𝑜
302 292 300 301 sylancr n ω 1 𝑜 m ω 1 𝑜 n + 𝑜 1 𝑜 = suc n ι q ω | n + 𝑜 q = suc n = 1 𝑜
303 291 302 mpbid n ω 1 𝑜 m ω 1 𝑜 ι q ω | n + 𝑜 q = suc n = 1 𝑜
304 303 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b ι q ω | n + 𝑜 q = suc n = 1 𝑜
305 304 fveq2d n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b g ι q ω | n + 𝑜 q = suc n = g 1 𝑜
306 283 287 305 3brtr4d n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b f n R g ι q ω | n + 𝑜 q = suc n
307 201 sucid n suc n
308 307 iftruei if n suc n f n g ι q ω | n + 𝑜 q = c = f n
309 eleq1 n = c n suc n c suc n
310 fveq2 n = c f n = f c
311 309 310 ifbieq1d n = c if n suc n f n g ι q ω | n + 𝑜 q = c = if c suc n f c g ι q ω | n + 𝑜 q = c
312 308 311 eqtr3id n = c f n = if c suc n f c g ι q ω | n + 𝑜 q = c
313 suceq n = c suc n = suc c
314 313 eqeq2d n = c n + 𝑜 q = suc n n + 𝑜 q = suc c
315 314 riotabidv n = c ι q ω | n + 𝑜 q = suc n = ι q ω | n + 𝑜 q = suc c
316 315 fveq2d n = c g ι q ω | n + 𝑜 q = suc n = g ι q ω | n + 𝑜 q = suc c
317 312 316 breq12d n = c f n R g ι q ω | n + 𝑜 q = suc n if c suc n f c g ι q ω | n + 𝑜 q = c R g ι q ω | n + 𝑜 q = suc c
318 306 317 syl5ibcom n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b n = c if c suc n f c g ι q ω | n + 𝑜 q = c R g ι q ω | n + 𝑜 q = suc c
319 318 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n = c if c suc n f c g ι q ω | n + 𝑜 q = c R g ι q ω | n + 𝑜 q = suc c
320 263 319 jaod n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m n c n = c if c suc n f c g ι q ω | n + 𝑜 q = c R g ι q ω | n + 𝑜 q = suc c
321 151 320 syld n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m ¬ c n if c suc n f c g ι q ω | n + 𝑜 q = c R g ι q ω | n + 𝑜 q = suc c
322 321 imp n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m ¬ c n if c suc n f c g ι q ω | n + 𝑜 q = c R g ι q ω | n + 𝑜 q = suc c
323 135 notbid n ω 1 𝑜 m ω 1 𝑜 ¬ c n ¬ suc c suc n
324 323 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b ¬ c n ¬ suc c suc n
325 324 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m ¬ c n ¬ suc c suc n
326 325 biimpa n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m ¬ c n ¬ suc c suc n
327 326 iffalsed n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m ¬ c n if suc c suc n f suc c g ι q ω | n + 𝑜 q = suc c = g ι q ω | n + 𝑜 q = suc c
328 322 327 breqtrrd n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m ¬ c n if c suc n f c g ι q ω | n + 𝑜 q = c R if suc c suc n f suc c g ι q ω | n + 𝑜 q = suc c
329 140 328 pm2.61dan n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m if c suc n f c g ι q ω | n + 𝑜 q = c R if suc c suc n f suc c g ι q ω | n + 𝑜 q = suc c
330 elelsuc c n + 𝑜 m c suc n + 𝑜 m
331 330 adantl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m c suc n + 𝑜 m
332 eleq1 p = c p suc n c suc n
333 fveq2 p = c f p = f c
334 eqeq2 p = c n + 𝑜 q = p n + 𝑜 q = c
335 334 riotabidv p = c ι q ω | n + 𝑜 q = p = ι q ω | n + 𝑜 q = c
336 335 fveq2d p = c g ι q ω | n + 𝑜 q = p = g ι q ω | n + 𝑜 q = c
337 332 333 336 ifbieq12d p = c if p suc n f p g ι q ω | n + 𝑜 q = p = if c suc n f c g ι q ω | n + 𝑜 q = c
338 fvex f c V
339 fvex g ι q ω | n + 𝑜 q = c V
340 338 339 ifex if c suc n f c g ι q ω | n + 𝑜 q = c V
341 337 32 340 fvmpt c suc n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p c = if c suc n f c g ι q ω | n + 𝑜 q = c
342 331 341 syl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p c = if c suc n f c g ι q ω | n + 𝑜 q = c
343 ordsucelsuc Ord n + 𝑜 m c n + 𝑜 m suc c suc n + 𝑜 m
344 19 343 syl n ω 1 𝑜 m ω 1 𝑜 c n + 𝑜 m suc c suc n + 𝑜 m
345 344 adantr n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m suc c suc n + 𝑜 m
346 345 biimpa n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m suc c suc n + 𝑜 m
347 eleq1 p = suc c p suc n suc c suc n
348 fveq2 p = suc c f p = f suc c
349 eqeq2 p = suc c n + 𝑜 q = p n + 𝑜 q = suc c
350 349 riotabidv p = suc c ι q ω | n + 𝑜 q = p = ι q ω | n + 𝑜 q = suc c
351 350 fveq2d p = suc c g ι q ω | n + 𝑜 q = p = g ι q ω | n + 𝑜 q = suc c
352 347 348 351 ifbieq12d p = suc c if p suc n f p g ι q ω | n + 𝑜 q = p = if suc c suc n f suc c g ι q ω | n + 𝑜 q = suc c
353 fvex f suc c V
354 fvex g ι q ω | n + 𝑜 q = suc c V
355 353 354 ifex if suc c suc n f suc c g ι q ω | n + 𝑜 q = suc c V
356 352 32 355 fvmpt suc c suc n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p suc c = if suc c suc n f suc c g ι q ω | n + 𝑜 q = suc c
357 346 356 syl n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p suc c = if suc c suc n f suc c g ι q ω | n + 𝑜 q = suc c
358 329 342 357 3brtr4d n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p c R p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p suc c
359 358 ralrimiva n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b c n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p c R p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p suc c
360 fvex f p V
361 fvex g ι q ω | n + 𝑜 q = p V
362 360 361 ifex if p suc n f p g ι q ω | n + 𝑜 q = p V
363 362 32 fnmpti p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p Fn suc n + 𝑜 m
364 46 sucex suc n + 𝑜 m V
365 364 mptex p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p V
366 fneq1 h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p h Fn suc n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p Fn suc n + 𝑜 m
367 fveq1 h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p
368 367 eqeq1d h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p h = x p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p = x
369 fveq1 h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p h n + 𝑜 m = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p n + 𝑜 m
370 369 eqeq1d h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p h n + 𝑜 m = y p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p n + 𝑜 m = y
371 368 370 anbi12d h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p h = x h n + 𝑜 m = y p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p = x p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p n + 𝑜 m = y
372 fveq1 h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p h c = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p c
373 fveq1 h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p h suc c = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p suc c
374 372 373 breq12d h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p h c R h suc c p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p c R p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p suc c
375 374 ralbidv h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p c n + 𝑜 m h c R h suc c c n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p c R p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p suc c
376 366 371 375 3anbi123d h = p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p h Fn suc n + 𝑜 m h = x h n + 𝑜 m = y c n + 𝑜 m h c R h suc c p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p Fn suc n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p = x p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p n + 𝑜 m = y c n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p c R p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p suc c
377 365 376 spcev p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p Fn suc n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p = x p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p n + 𝑜 m = y c n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p c R p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p suc c h h Fn suc n + 𝑜 m h = x h n + 𝑜 m = y c n + 𝑜 m h c R h suc c
378 363 377 mp3an1 p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p = x p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p n + 𝑜 m = y c n + 𝑜 m p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p c R p suc n + 𝑜 m if p suc n f p g ι q ω | n + 𝑜 q = p suc c h h Fn suc n + 𝑜 m h = x h n + 𝑜 m = y c n + 𝑜 m h c R h suc c
379 45 123 359 378 syl21anc n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b h h Fn suc n + 𝑜 m h = x h n + 𝑜 m = y c n + 𝑜 m h c R h suc c
380 suceq p = n + 𝑜 m suc p = suc n + 𝑜 m
381 380 fneq2d p = n + 𝑜 m h Fn suc p h Fn suc n + 𝑜 m
382 fveqeq2 p = n + 𝑜 m h p = y h n + 𝑜 m = y
383 382 anbi2d p = n + 𝑜 m h = x h p = y h = x h n + 𝑜 m = y
384 raleq p = n + 𝑜 m c p h c R h suc c c n + 𝑜 m h c R h suc c
385 381 383 384 3anbi123d p = n + 𝑜 m h Fn suc p h = x h p = y c p h c R h suc c h Fn suc n + 𝑜 m h = x h n + 𝑜 m = y c n + 𝑜 m h c R h suc c
386 385 exbidv p = n + 𝑜 m h h Fn suc p h = x h p = y c p h c R h suc c h h Fn suc n + 𝑜 m h = x h n + 𝑜 m = y c n + 𝑜 m h c R h suc c
387 386 rspcev n + 𝑜 m ω 1 𝑜 h h Fn suc n + 𝑜 m h = x h n + 𝑜 m = y c n + 𝑜 m h c R h suc c p ω 1 𝑜 h h Fn suc p h = x h p = y c p h c R h suc c
388 23 379 387 syl2an2r n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b p ω 1 𝑜 h h Fn suc p h = x h p = y c p h c R h suc c
389 388 ex n ω 1 𝑜 m ω 1 𝑜 f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b p ω 1 𝑜 h h Fn suc p h = x h p = y c p h c R h suc c
390 389 exlimdvv n ω 1 𝑜 m ω 1 𝑜 f g f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b p ω 1 𝑜 h h Fn suc p h = x h p = y c p h c R h suc c
391 390 rexlimivv n ω 1 𝑜 m ω 1 𝑜 f g f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b p ω 1 𝑜 h h Fn suc p h = x h p = y c p h c R h suc c
392 391 exlimiv z n ω 1 𝑜 m ω 1 𝑜 f g f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b p ω 1 𝑜 h h Fn suc p h = x h p = y c p h c R h suc c
393 vex x V
394 vex y V
395 393 394 opelco Could not format ( <. x , y >. e. ( t++ R o. t++ R ) <-> E. z ( x t++ R z /\ z t++ R y ) ) : No typesetting found for |- ( <. x , y >. e. ( t++ R o. t++ R ) <-> E. z ( x t++ R z /\ z t++ R y ) ) with typecode |-
396 reeanv n ω 1 𝑜 m ω 1 𝑜 f f Fn suc n f = x f n = z a n f a R f suc a g g Fn suc m g = z g m = y b m g b R g suc b n ω 1 𝑜 f f Fn suc n f = x f n = z a n f a R f suc a m ω 1 𝑜 g g Fn suc m g = z g m = y b m g b R g suc b
397 eeanv f g f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b f f Fn suc n f = x f n = z a n f a R f suc a g g Fn suc m g = z g m = y b m g b R g suc b
398 397 2rexbii n ω 1 𝑜 m ω 1 𝑜 f g f Fn suc n f = x f n = z a n f a R f suc a g Fn suc m g = z g m = y b m g b R g suc b n ω 1 𝑜 m ω 1 𝑜 f f Fn suc n f = x f n = z a n f a R f suc a g g Fn suc m g = z g m = y b m g b R g suc b
399 brttrcl Could not format ( x t++ R z <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) : No typesetting found for |- ( x t++ R z <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) with typecode |-
400 brttrcl Could not format ( z t++ R y <-> E. m e. ( _om \ 1o ) E. g ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) : No typesetting found for |- ( z t++ R y <-> E. m e. ( _om \ 1o ) E. g ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) with typecode |-
401 399 400 anbi12i Could not format ( ( x t++ R z /\ z t++ R y ) <-> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ E. m e. ( _om \ 1o ) E. g ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) : No typesetting found for |- ( ( x t++ R z /\ z t++ R y ) <-> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ E. m e. ( _om \ 1o ) E. g ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) with typecode |-
402 396 398 401 3bitr4ri Could not format ( ( x t++ R z /\ z t++ R y ) <-> E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) : No typesetting found for |- ( ( x t++ R z /\ z t++ R y ) <-> E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) with typecode |-
403 402 exbii Could not format ( E. z ( x t++ R z /\ z t++ R y ) <-> E. z E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) : No typesetting found for |- ( E. z ( x t++ R z /\ z t++ R y ) <-> E. z E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) with typecode |-
404 395 403 bitri Could not format ( <. x , y >. e. ( t++ R o. t++ R ) <-> E. z E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) : No typesetting found for |- ( <. x , y >. e. ( t++ R o. t++ R ) <-> E. z E. n e. ( _om \ 1o ) E. m e. ( _om \ 1o ) E. f E. g ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) /\ ( g Fn suc m /\ ( ( g ` (/) ) = z /\ ( g ` m ) = y ) /\ A. b e. m ( g ` b ) R ( g ` suc b ) ) ) ) with typecode |-
405 df-br Could not format ( x t++ R y <-> <. x , y >. e. t++ R ) : No typesetting found for |- ( x t++ R y <-> <. x , y >. e. t++ R ) with typecode |-
406 brttrcl Could not format ( x t++ R y <-> E. p e. ( _om \ 1o ) E. h ( h Fn suc p /\ ( ( h ` (/) ) = x /\ ( h ` p ) = y ) /\ A. c e. p ( h ` c ) R ( h ` suc c ) ) ) : No typesetting found for |- ( x t++ R y <-> E. p e. ( _om \ 1o ) E. h ( h Fn suc p /\ ( ( h ` (/) ) = x /\ ( h ` p ) = y ) /\ A. c e. p ( h ` c ) R ( h ` suc c ) ) ) with typecode |-
407 405 406 bitr3i Could not format ( <. x , y >. e. t++ R <-> E. p e. ( _om \ 1o ) E. h ( h Fn suc p /\ ( ( h ` (/) ) = x /\ ( h ` p ) = y ) /\ A. c e. p ( h ` c ) R ( h ` suc c ) ) ) : No typesetting found for |- ( <. x , y >. e. t++ R <-> E. p e. ( _om \ 1o ) E. h ( h Fn suc p /\ ( ( h ` (/) ) = x /\ ( h ` p ) = y ) /\ A. c e. p ( h ` c ) R ( h ` suc c ) ) ) with typecode |-
408 392 404 407 3imtr4i Could not format ( <. x , y >. e. ( t++ R o. t++ R ) -> <. x , y >. e. t++ R ) : No typesetting found for |- ( <. x , y >. e. ( t++ R o. t++ R ) -> <. x , y >. e. t++ R ) with typecode |-
409 1 408 relssi Could not format ( t++ R o. t++ R ) C_ t++ R : No typesetting found for |- ( t++ R o. t++ R ) C_ t++ R with typecode |-