| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zartop.1 |
|
| 2 |
|
zartop.2 |
|
| 3 |
|
zarcmplem.1 |
|
| 4 |
|
crngring |
|
| 5 |
|
eqid |
|
| 6 |
1 2 5
|
zar0ring |
|
| 7 |
4 6
|
sylan |
|
| 8 |
|
0cmp |
|
| 9 |
7 8
|
eqeltrdi |
|
| 10 |
1 2
|
zartop |
|
| 11 |
|
fvex |
|
| 12 |
11
|
mptex |
|
| 13 |
3 12
|
eqeltri |
|
| 14 |
|
imaexg |
|
| 15 |
13 14
|
mp1i |
|
| 16 |
|
suppssdm |
|
| 17 |
|
imass2 |
|
| 18 |
16 17
|
mp1i |
|
| 19 |
3
|
funmpt2 |
|
| 20 |
|
ssidd |
|
| 21 |
|
simpllr |
|
| 22 |
|
fvexd |
|
| 23 |
13
|
cnvex |
|
| 24 |
23
|
imaex |
|
| 25 |
24
|
a1i |
|
| 26 |
22 25
|
elmapd |
|
| 27 |
21 26
|
mpbid |
|
| 28 |
27
|
fdmd |
|
| 29 |
28
|
adantr |
|
| 30 |
20 29
|
sseqtrd |
|
| 31 |
|
funimass2 |
|
| 32 |
19 30 31
|
sylancr |
|
| 33 |
18 32
|
sstrd |
|
| 34 |
15 33
|
elpwd |
|
| 35 |
|
simpllr |
|
| 36 |
35
|
fsuppimpd |
|
| 37 |
|
imafi |
|
| 38 |
19 36 37
|
sylancr |
|
| 39 |
34 38
|
elind |
|
| 40 |
|
inteq |
|
| 41 |
40
|
eqeq2d |
|
| 42 |
41
|
adantl |
|
| 43 |
16 29
|
sseqtrid |
|
| 44 |
|
cnvimass |
|
| 45 |
43 44
|
sstrdi |
|
| 46 |
|
intimafv |
|
| 47 |
19 45 46
|
sylancr |
|
| 48 |
|
simplll |
|
| 49 |
48
|
crngringd |
|
| 50 |
49
|
ad4antr |
|
| 51 |
|
fvex |
|
| 52 |
51
|
rabex |
|
| 53 |
52 3
|
dmmpti |
|
| 54 |
45 53
|
sseqtrdi |
|
| 55 |
|
simp-7r |
|
| 56 |
|
simpllr |
|
| 57 |
|
eqid |
|
| 58 |
|
ringcmn |
|
| 59 |
4 58
|
syl |
|
| 60 |
59
|
ad8antr |
|
| 61 |
24
|
a1i |
|
| 62 |
27
|
ad2antrr |
|
| 63 |
|
simpr |
|
| 64 |
|
ssidd |
|
| 65 |
63 64
|
eqsstrd |
|
| 66 |
35
|
adantr |
|
| 67 |
5 57 60 61 62 65 66
|
gsumres |
|
| 68 |
|
res0 |
|
| 69 |
68
|
oveq2i |
|
| 70 |
57
|
gsum0 |
|
| 71 |
69 70
|
eqtri |
|
| 72 |
67 71
|
eqtr3di |
|
| 73 |
56 72
|
eqtr2d |
|
| 74 |
|
eqid |
|
| 75 |
5 57 74
|
01eq0ring |
|
| 76 |
50 73 75
|
syl2an2r |
|
| 77 |
76
|
fveq2d |
|
| 78 |
|
fvex |
|
| 79 |
|
hashsng |
|
| 80 |
78 79
|
ax-mp |
|
| 81 |
77 80
|
eqtrdi |
|
| 82 |
55 81
|
mteqand |
|
| 83 |
|
eqid |
|
| 84 |
3 83
|
zarclsiin |
|
| 85 |
50 54 82 84
|
syl3anc |
|
| 86 |
|
nfv |
|
| 87 |
|
nfra1 |
|
| 88 |
86 87
|
nfan |
|
| 89 |
54
|
sselda |
|
| 90 |
|
eqid |
|
| 91 |
5 90
|
lidlss |
|
| 92 |
89 91
|
syl |
|
| 93 |
92
|
ex |
|
| 94 |
88 93
|
ralrimi |
|
| 95 |
|
unissb |
|
| 96 |
94 95
|
sylibr |
|
| 97 |
83 5 90
|
rspcl |
|
| 98 |
50 96 97
|
syl2anc |
|
| 99 |
5 90
|
lidlss |
|
| 100 |
98 99
|
syl |
|
| 101 |
83 5 74
|
rsp1 |
|
| 102 |
50 101
|
syl |
|
| 103 |
27
|
adantr |
|
| 104 |
103 43
|
fssresd |
|
| 105 |
|
fvex |
|
| 106 |
|
ovex |
|
| 107 |
105 106
|
elmap |
|
| 108 |
104 107
|
sylibr |
|
| 109 |
|
breq1 |
|
| 110 |
|
oveq2 |
|
| 111 |
110
|
eqeq2d |
|
| 112 |
|
fveq1 |
|
| 113 |
112
|
eleq1d |
|
| 114 |
113
|
ralbidv |
|
| 115 |
109 111 114
|
3anbi123d |
|
| 116 |
115
|
adantl |
|
| 117 |
|
fvexd |
|
| 118 |
35 117
|
fsuppres |
|
| 119 |
|
simplr |
|
| 120 |
50 58
|
syl |
|
| 121 |
24
|
a1i |
|
| 122 |
|
ssidd |
|
| 123 |
5 57 120 121 103 122 35
|
gsumres |
|
| 124 |
119 123
|
eqtr4d |
|
| 125 |
|
simpr |
|
| 126 |
125
|
fvresd |
|
| 127 |
16 28
|
sseqtrid |
|
| 128 |
127
|
sselda |
|
| 129 |
|
fveq2 |
|
| 130 |
|
id |
|
| 131 |
129 130
|
eleq12d |
|
| 132 |
131
|
adantl |
|
| 133 |
128 132
|
rspcdv |
|
| 134 |
133
|
imp |
|
| 135 |
134
|
an32s |
|
| 136 |
126 135
|
eqeltrd |
|
| 137 |
136
|
ralrimiva |
|
| 138 |
118 124 137
|
3jca |
|
| 139 |
108 116 138
|
rspcedvd |
|
| 140 |
|
eqid |
|
| 141 |
83 5 57 140 50 54
|
elrspunidl |
|
| 142 |
139 141
|
mpbird |
|
| 143 |
142
|
snssd |
|
| 144 |
83 90
|
rspssp |
|
| 145 |
50 98 143 144
|
syl3anc |
|
| 146 |
102 145
|
eqsstrrd |
|
| 147 |
100 146
|
eqssd |
|
| 148 |
147
|
fveq2d |
|
| 149 |
90 5
|
lidl1 |
|
| 150 |
4 149
|
syl |
|
| 151 |
3 5
|
zarcls1 |
|
| 152 |
150 151
|
mpdan |
|
| 153 |
5 152
|
mpbiri |
|
| 154 |
153
|
ad7antr |
|
| 155 |
148 154
|
eqtrd |
|
| 156 |
47 85 155
|
3eqtrrd |
|
| 157 |
39 42 156
|
rspcedvd |
|
| 158 |
157
|
exp41 |
|
| 159 |
158
|
3imp2 |
|
| 160 |
5 74
|
ringidcl |
|
| 161 |
49 160
|
syl |
|
| 162 |
|
simplr |
|
| 163 |
|
eqid |
|
| 164 |
1 2 163 3
|
zartopn |
|
| 165 |
164
|
simprd |
|
| 166 |
48 165
|
syl |
|
| 167 |
166
|
pweqd |
|
| 168 |
162 167
|
eleqtrrd |
|
| 169 |
168
|
elpwid |
|
| 170 |
|
intimafv |
|
| 171 |
19 44 170
|
mp2an |
|
| 172 |
|
funimacnv |
|
| 173 |
19 172
|
ax-mp |
|
| 174 |
|
dfss2 |
|
| 175 |
174
|
biimpi |
|
| 176 |
173 175
|
eqtrid |
|
| 177 |
176
|
inteqd |
|
| 178 |
171 177
|
eqtr3id |
|
| 179 |
169 178
|
syl |
|
| 180 |
44
|
a1i |
|
| 181 |
180 53
|
sseqtrdi |
|
| 182 |
19
|
a1i |
|
| 183 |
|
inteq |
|
| 184 |
|
int0 |
|
| 185 |
183 184
|
eqtrdi |
|
| 186 |
|
vn0 |
|
| 187 |
|
neeq1 |
|
| 188 |
186 187
|
mpbiri |
|
| 189 |
185 188
|
syl |
|
| 190 |
189
|
necon2i |
|
| 191 |
190
|
adantl |
|
| 192 |
|
preiman0 |
|
| 193 |
182 169 191 192
|
syl3anc |
|
| 194 |
3 83
|
zarclsiin |
|
| 195 |
49 181 193 194
|
syl3anc |
|
| 196 |
|
simpr |
|
| 197 |
179 195 196
|
3eqtr3d |
|
| 198 |
181
|
sselda |
|
| 199 |
198 91
|
syl |
|
| 200 |
199
|
ralrimiva |
|
| 201 |
|
unissb |
|
| 202 |
200 201
|
sylibr |
|
| 203 |
83 5 90
|
rspcl |
|
| 204 |
49 202 203
|
syl2anc |
|
| 205 |
3 5
|
zarcls1 |
|
| 206 |
48 204 205
|
syl2anc |
|
| 207 |
197 206
|
mpbid |
|
| 208 |
161 207
|
eleqtrrd |
|
| 209 |
83 5 57 140 49 181
|
elrspunidl |
|
| 210 |
208 209
|
mpbid |
|
| 211 |
159 210
|
r19.29a |
|
| 212 |
|
0ex |
|
| 213 |
|
vex |
|
| 214 |
|
elfi |
|
| 215 |
212 213 214
|
mp2an |
|
| 216 |
211 215
|
sylibr |
|
| 217 |
216
|
ex |
|
| 218 |
217
|
necon3bd |
|
| 219 |
218
|
ralrimiva |
|
| 220 |
|
cmpfi |
|
| 221 |
220
|
biimpar |
|
| 222 |
10 219 221
|
syl2an2r |
|
| 223 |
9 222
|
pm2.61dane |
|