Metamath Proof Explorer


Theorem zarcmplem

Description: Lemma for zarcmp . (Contributed by Thierry Arnoux, 2-Jul-2024)

Ref Expression
Hypotheses zartop.1 No typesetting found for |- S = ( Spec ` R ) with typecode |-
zartop.2 J=TopOpenS
zarcmplem.1 No typesetting found for |- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
Assertion zarcmplem RCRingJComp

Proof

Step Hyp Ref Expression
1 zartop.1 Could not format S = ( Spec ` R ) : No typesetting found for |- S = ( Spec ` R ) with typecode |-
2 zartop.2 J=TopOpenS
3 zarcmplem.1 Could not format V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) : No typesetting found for |- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
4 crngring RCRingRRing
5 eqid BaseR=BaseR
6 1 2 5 zar0ring RRingBaseR=1J=
7 4 6 sylan RCRingBaseR=1J=
8 0cmp Comp
9 7 8 eqeltrdi RCRingBaseR=1JComp
10 1 2 zartop RCRingJTop
11 fvex LIdealRV
12 11 mptex Could not format ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) e. _V : No typesetting found for |- ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) e. _V with typecode |-
13 3 12 eqeltri VV
14 imaexg VVVasupp0RV
15 13 14 mp1i RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallVasupp0RV
16 suppssdm asupp0Rdoma
17 imass2 asupp0RdomaVasupp0RVdoma
18 16 17 mp1i RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallVasupp0RVdoma
19 3 funmpt2 FunV
20 ssidd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xalldomadoma
21 simpllr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RaaBaseRV-1x
22 fvexd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RaBaseRV
23 13 cnvex V-1V
24 23 imaex V-1xV
25 24 a1i RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RaV-1xV
26 22 25 elmapd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RaaBaseRV-1xa:V-1xBaseR
27 21 26 mpbid RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=Raa:V-1xBaseR
28 27 fdmd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=Radoma=V-1x
29 28 adantr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xalldoma=V-1x
30 20 29 sseqtrd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xalldomaV-1x
31 funimass2 FunVdomaV-1xVdomax
32 19 30 31 sylancr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallVdomax
33 18 32 sstrd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallVasupp0Rx
34 15 33 elpwd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallVasupp0R𝒫x
35 simpllr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallfinSupp0Ra
36 35 fsuppimpd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0RFin
37 imafi FunVasupp0RFinVasupp0RFin
38 19 36 37 sylancr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallVasupp0RFin
39 34 38 elind RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallVasupp0R𝒫xFin
40 inteq y=Vasupp0Ry=Vasupp0R
41 40 eqeq2d y=Vasupp0R=y=Vasupp0R
42 41 adantl RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xally=Vasupp0R=y=Vasupp0R
43 16 29 sseqtrid RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0RV-1x
44 cnvimass V-1xdomV
45 43 44 sstrdi RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0RdomV
46 intimafv FunVasupp0RdomVVasupp0R=lasupp0RVl
47 19 45 46 sylancr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallVasupp0R=lasupp0RVl
48 simplll RCRingBaseR1x𝒫ClsdJx=RCRing
49 48 crngringd RCRingBaseR1x𝒫ClsdJx=RRing
50 49 ad4antr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallRRing
51 fvex Could not format ( PrmIdeal ` R ) e. _V : No typesetting found for |- ( PrmIdeal ` R ) e. _V with typecode |-
52 51 rabex Could not format { j e. ( PrmIdeal ` R ) | i C_ j } e. _V : No typesetting found for |- { j e. ( PrmIdeal ` R ) | i C_ j } e. _V with typecode |-
53 52 3 dmmpti domV=LIdealR
54 45 53 sseqtrdi RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0RLIdealR
55 simp-7r RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallBaseR1
56 simpllr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=1R=Ra
57 eqid 0R=0R
58 ringcmn RRingRCMnd
59 4 58 syl RCRingRCMnd
60 59 ad8antr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=RCMnd
61 24 a1i RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=V-1xV
62 27 ad2antrr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=a:V-1xBaseR
63 simpr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=asupp0R=
64 ssidd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=
65 63 64 eqsstrd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=asupp0R
66 35 adantr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=finSupp0Ra
67 5 57 60 61 62 65 66 gsumres RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=Ra=Ra
68 res0 a=
69 68 oveq2i Ra=R
70 57 gsum0 R=0R
71 69 70 eqtri Ra=0R
72 67 71 eqtr3di RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=Ra=0R
73 56 72 eqtr2d RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=0R=1R
74 eqid 1R=1R
75 5 57 74 01eq0ring RRing0R=1RBaseR=0R
76 50 73 75 syl2an2r RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=BaseR=0R
77 76 fveq2d RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=BaseR=0R
78 fvex 0RV
79 hashsng 0RV0R=1
80 78 79 ax-mp 0R=1
81 77 80 eqtrdi RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R=BaseR=1
82 55 81 mteqand RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0R
83 eqid RSpanR=RSpanR
84 3 83 zarclsiin RRingasupp0RLIdealRasupp0Rlasupp0RVl=VRSpanRsupp0Ra
85 50 54 82 84 syl3anc RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xalllasupp0RVl=VRSpanRsupp0Ra
86 nfv lRCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=Ra
87 nfra1 llV-1xall
88 86 87 nfan lRCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xall
89 54 sselda RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xalllsupp0RalLIdealR
90 eqid LIdealR=LIdealR
91 5 90 lidlss lLIdealRlBaseR
92 89 91 syl RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xalllsupp0RalBaseR
93 92 ex RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xalllsupp0RalBaseR
94 88 93 ralrimi RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xalllsupp0RalBaseR
95 unissb supp0RaBaseRlsupp0RalBaseR
96 94 95 sylibr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallsupp0RaBaseR
97 83 5 90 rspcl RRingsupp0RaBaseRRSpanRsupp0RaLIdealR
98 50 96 97 syl2anc RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallRSpanRsupp0RaLIdealR
99 5 90 lidlss RSpanRsupp0RaLIdealRRSpanRsupp0RaBaseR
100 98 99 syl RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallRSpanRsupp0RaBaseR
101 83 5 74 rsp1 RRingRSpanR1R=BaseR
102 50 101 syl RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallRSpanR1R=BaseR
103 27 adantr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xalla:V-1xBaseR
104 103 43 fssresd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0Ra:asupp0RBaseR
105 fvex BaseRV
106 ovex asupp0RV
107 105 106 elmap asupp0RaBaseRsupp0Raasupp0Ra:asupp0RBaseR
108 104 107 sylibr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0RaBaseRsupp0Ra
109 breq1 b=asupp0RafinSupp0RbfinSupp0Rasupp0Ra
110 oveq2 b=asupp0RaRb=Rasupp0Ra
111 110 eqeq2d b=asupp0Ra1R=Rb1R=Rasupp0Ra
112 fveq1 b=asupp0Rabk=asupp0Rak
113 112 eleq1d b=asupp0Rabkkasupp0Rakk
114 113 ralbidv b=asupp0Raksupp0Rabkkksupp0Raasupp0Rakk
115 109 111 114 3anbi123d b=asupp0RafinSupp0Rb1R=Rbksupp0RabkkfinSupp0Rasupp0Ra1R=Rasupp0Raksupp0Raasupp0Rakk
116 115 adantl RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallb=asupp0RafinSupp0Rb1R=Rbksupp0RabkkfinSupp0Rasupp0Ra1R=Rasupp0Raksupp0Raasupp0Rakk
117 fvexd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xall0RV
118 35 117 fsuppres RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallfinSupp0Rasupp0Ra
119 simplr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xall1R=Ra
120 50 58 syl RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallRCMnd
121 24 a1i RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallV-1xV
122 ssidd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallasupp0Rasupp0R
123 5 57 120 121 103 122 35 gsumres RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallRasupp0Ra=Ra
124 119 123 eqtr4d RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xall1R=Rasupp0Ra
125 simpr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallksupp0Raksupp0Ra
126 125 fvresd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallksupp0Raasupp0Rak=ak
127 16 28 sseqtrid RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=Raasupp0RV-1x
128 127 sselda RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=Raksupp0RakV-1x
129 fveq2 l=kal=ak
130 id l=kl=k
131 129 130 eleq12d l=kallakk
132 131 adantl RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=Raksupp0Ral=kallakk
133 128 132 rspcdv RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=Raksupp0RalV-1xallakk
134 133 imp RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=Raksupp0RalV-1xallakk
135 134 an32s RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallksupp0Raakk
136 126 135 eqeltrd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallksupp0Raasupp0Rakk
137 136 ralrimiva RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallksupp0Raasupp0Rakk
138 118 124 137 3jca RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallfinSupp0Rasupp0Ra1R=Rasupp0Raksupp0Raasupp0Rakk
139 108 116 138 rspcedvd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallbBaseRsupp0RafinSupp0Rb1R=Rbksupp0Rabkk
140 eqid R=R
141 83 5 57 140 50 54 elrspunidl RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xall1RRSpanRsupp0RabBaseRsupp0RafinSupp0Rb1R=Rbksupp0Rabkk
142 139 141 mpbird RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xall1RRSpanRsupp0Ra
143 142 snssd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xall1RRSpanRsupp0Ra
144 83 90 rspssp RRingRSpanRsupp0RaLIdealR1RRSpanRsupp0RaRSpanR1RRSpanRsupp0Ra
145 50 98 143 144 syl3anc RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallRSpanR1RRSpanRsupp0Ra
146 102 145 eqsstrrd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallBaseRRSpanRsupp0Ra
147 100 146 eqssd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallRSpanRsupp0Ra=BaseR
148 147 fveq2d RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallVRSpanRsupp0Ra=VBaseR
149 90 5 lidl1 RRingBaseRLIdealR
150 4 149 syl RCRingBaseRLIdealR
151 3 5 zarcls1 RCRingBaseRLIdealRVBaseR=BaseR=BaseR
152 150 151 mpdan RCRingVBaseR=BaseR=BaseR
153 5 152 mpbiri RCRingVBaseR=
154 153 ad7antr RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallVBaseR=
155 148 154 eqtrd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xallVRSpanRsupp0Ra=
156 47 85 155 3eqtrrd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xall=Vasupp0R
157 39 42 156 rspcedvd RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xally𝒫xFin=y
158 157 exp41 RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xally𝒫xFin=y
159 158 3imp2 RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xally𝒫xFin=y
160 5 74 ringidcl RRing1RBaseR
161 49 160 syl RCRingBaseR1x𝒫ClsdJx=1RBaseR
162 simplr RCRingBaseR1x𝒫ClsdJx=x𝒫ClsdJ
163 eqid Could not format ( PrmIdeal ` R ) = ( PrmIdeal ` R ) : No typesetting found for |- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) with typecode |-
164 1 2 163 3 zartopn Could not format ( R e. CRing -> ( J e. ( TopOn ` ( PrmIdeal ` R ) ) /\ ran V = ( Clsd ` J ) ) ) : No typesetting found for |- ( R e. CRing -> ( J e. ( TopOn ` ( PrmIdeal ` R ) ) /\ ran V = ( Clsd ` J ) ) ) with typecode |-
165 164 simprd RCRingranV=ClsdJ
166 48 165 syl RCRingBaseR1x𝒫ClsdJx=ranV=ClsdJ
167 166 pweqd RCRingBaseR1x𝒫ClsdJx=𝒫ranV=𝒫ClsdJ
168 162 167 eleqtrrd RCRingBaseR1x𝒫ClsdJx=x𝒫ranV
169 168 elpwid RCRingBaseR1x𝒫ClsdJx=xranV
170 intimafv FunVV-1xdomVVV-1x=lV-1xVl
171 19 44 170 mp2an VV-1x=lV-1xVl
172 funimacnv FunVVV-1x=xranV
173 19 172 ax-mp VV-1x=xranV
174 df-ss xranVxranV=x
175 174 biimpi xranVxranV=x
176 173 175 eqtrid xranVVV-1x=x
177 176 inteqd xranVVV-1x=x
178 171 177 eqtr3id xranVlV-1xVl=x
179 169 178 syl RCRingBaseR1x𝒫ClsdJx=lV-1xVl=x
180 44 a1i RCRingBaseR1x𝒫ClsdJx=V-1xdomV
181 180 53 sseqtrdi RCRingBaseR1x𝒫ClsdJx=V-1xLIdealR
182 19 a1i RCRingBaseR1x𝒫ClsdJx=FunV
183 inteq x=x=
184 int0 =V
185 183 184 eqtrdi x=x=V
186 vn0 V
187 neeq1 x=VxV
188 186 187 mpbiri x=Vx
189 185 188 syl x=x
190 189 necon2i x=x
191 190 adantl RCRingBaseR1x𝒫ClsdJx=x
192 preiman0 FunVxranVxV-1x
193 182 169 191 192 syl3anc RCRingBaseR1x𝒫ClsdJx=V-1x
194 3 83 zarclsiin RRingV-1xLIdealRV-1xlV-1xVl=VRSpanRV-1x
195 49 181 193 194 syl3anc RCRingBaseR1x𝒫ClsdJx=lV-1xVl=VRSpanRV-1x
196 simpr RCRingBaseR1x𝒫ClsdJx=x=
197 179 195 196 3eqtr3d RCRingBaseR1x𝒫ClsdJx=VRSpanRV-1x=
198 181 sselda RCRingBaseR1x𝒫ClsdJx=lV-1xlLIdealR
199 198 91 syl RCRingBaseR1x𝒫ClsdJx=lV-1xlBaseR
200 199 ralrimiva RCRingBaseR1x𝒫ClsdJx=lV-1xlBaseR
201 unissb V-1xBaseRlV-1xlBaseR
202 200 201 sylibr RCRingBaseR1x𝒫ClsdJx=V-1xBaseR
203 83 5 90 rspcl RRingV-1xBaseRRSpanRV-1xLIdealR
204 49 202 203 syl2anc RCRingBaseR1x𝒫ClsdJx=RSpanRV-1xLIdealR
205 3 5 zarcls1 RCRingRSpanRV-1xLIdealRVRSpanRV-1x=RSpanRV-1x=BaseR
206 48 204 205 syl2anc RCRingBaseR1x𝒫ClsdJx=VRSpanRV-1x=RSpanRV-1x=BaseR
207 197 206 mpbid RCRingBaseR1x𝒫ClsdJx=RSpanRV-1x=BaseR
208 161 207 eleqtrrd RCRingBaseR1x𝒫ClsdJx=1RRSpanRV-1x
209 83 5 57 140 49 181 elrspunidl RCRingBaseR1x𝒫ClsdJx=1RRSpanRV-1xaBaseRV-1xfinSupp0Ra1R=RalV-1xall
210 208 209 mpbid RCRingBaseR1x𝒫ClsdJx=aBaseRV-1xfinSupp0Ra1R=RalV-1xall
211 159 210 r19.29a RCRingBaseR1x𝒫ClsdJx=y𝒫xFin=y
212 0ex V
213 vex xV
214 elfi VxVfixy𝒫xFin=y
215 212 213 214 mp2an fixy𝒫xFin=y
216 211 215 sylibr RCRingBaseR1x𝒫ClsdJx=fix
217 216 ex RCRingBaseR1x𝒫ClsdJx=fix
218 217 necon3bd RCRingBaseR1x𝒫ClsdJ¬fixx
219 218 ralrimiva RCRingBaseR1x𝒫ClsdJ¬fixx
220 cmpfi JTopJCompx𝒫ClsdJ¬fixx
221 220 biimpar JTopx𝒫ClsdJ¬fixxJComp
222 10 219 221 syl2an2r RCRingBaseR1JComp
223 9 222 pm2.61dane RCRingJComp