Step |
Hyp |
Ref |
Expression |
1 |
|
mbff |
|
2 |
1
|
ad2antrr |
|
3 |
2
|
ffnd |
|
4 |
|
iblmbf |
|
5 |
4
|
ad2antlr |
|
6 |
|
mbff |
|
7 |
5 6
|
syl |
|
8 |
7
|
ffnd |
|
9 |
|
mbfdm |
|
10 |
9
|
ad2antrr |
|
11 |
|
mbfdm |
|
12 |
5 11
|
syl |
|
13 |
|
eqid |
|
14 |
|
eqidd |
|
15 |
|
eqidd |
|
16 |
3 8 10 12 13 14 15
|
offval |
|
17 |
|
ovexd |
|
18 |
|
simpll |
|
19 |
18 5
|
mbfmul |
|
20 |
16 19
|
eqeltrrd |
|
21 |
|
absf |
|
22 |
21
|
a1i |
|
23 |
20 17
|
mbfmptcl |
|
24 |
22 23
|
cofmpt |
|
25 |
23
|
fmpttd |
|
26 |
|
ax-resscn |
|
27 |
|
ssid |
|
28 |
|
cncfss |
|
29 |
26 27 28
|
mp2an |
|
30 |
|
abscncf |
|
31 |
29 30
|
sselii |
|
32 |
31
|
a1i |
|
33 |
|
cncombf |
|
34 |
20 25 32 33
|
syl3anc |
|
35 |
24 34
|
eqeltrrd |
|
36 |
23
|
abscld |
|
37 |
36
|
rexrd |
|
38 |
23
|
absge0d |
|
39 |
|
elxrge0 |
|
40 |
37 38 39
|
sylanbrc |
|
41 |
|
0e0iccpnf |
|
42 |
41
|
a1i |
|
43 |
40 42
|
ifclda |
|
44 |
43
|
adantr |
|
45 |
44
|
fmpttd |
|
46 |
|
reex |
|
47 |
46
|
a1i |
|
48 |
|
simprl |
|
49 |
48
|
ad2antrr |
|
50 |
|
elinel2 |
|
51 |
|
ffvelrn |
|
52 |
7 50 51
|
syl2an |
|
53 |
52
|
abscld |
|
54 |
52
|
absge0d |
|
55 |
|
elrege0 |
|
56 |
53 54 55
|
sylanbrc |
|
57 |
|
0e0icopnf |
|
58 |
57
|
a1i |
|
59 |
56 58
|
ifclda |
|
60 |
59
|
ad2antrr |
|
61 |
|
fconstmpt |
|
62 |
61
|
a1i |
|
63 |
|
eqidd |
|
64 |
47 49 60 62 63
|
offval2 |
|
65 |
|
ovif2 |
|
66 |
48
|
recnd |
|
67 |
66
|
adantr |
|
68 |
67
|
mul01d |
|
69 |
68
|
ifeq2d |
|
70 |
65 69
|
eqtrid |
|
71 |
70
|
mpteq2dv |
|
72 |
64 71
|
eqtrd |
|
73 |
72
|
fveq2d |
|
74 |
59
|
adantr |
|
75 |
74
|
fmpttd |
|
76 |
75
|
adantr |
|
77 |
|
inss2 |
|
78 |
77
|
a1i |
|
79 |
20 17
|
mbfdm2 |
|
80 |
7
|
ffvelrnda |
|
81 |
7
|
feqmptd |
|
82 |
|
simplr |
|
83 |
81 82
|
eqeltrrd |
|
84 |
78 79 80 83
|
iblss |
|
85 |
52 84
|
iblabs |
|
86 |
53 54
|
iblpos |
|
87 |
85 86
|
mpbid |
|
88 |
87
|
simprd |
|
89 |
88
|
adantr |
|
90 |
|
simplrl |
|
91 |
|
neq0 |
|
92 |
|
0re |
|
93 |
92
|
a1i |
|
94 |
|
elinel1 |
|
95 |
|
ffvelrn |
|
96 |
2 94 95
|
syl2an |
|
97 |
96
|
abscld |
|
98 |
|
simplrl |
|
99 |
96
|
absge0d |
|
100 |
|
simprr |
|
101 |
|
2fveq3 |
|
102 |
101
|
breq1d |
|
103 |
102
|
rspccva |
|
104 |
100 94 103
|
syl2an |
|
105 |
93 97 98 99 104
|
letrd |
|
106 |
105
|
ex |
|
107 |
106
|
exlimdv |
|
108 |
91 107
|
syl5bi |
|
109 |
108
|
imp |
|
110 |
|
elrege0 |
|
111 |
90 109 110
|
sylanbrc |
|
112 |
76 89 111
|
itg2mulc |
|
113 |
73 112
|
eqtr3d |
|
114 |
90 89
|
remulcld |
|
115 |
113 114
|
eqeltrd |
|
116 |
115
|
ex |
|
117 |
|
noel |
|
118 |
|
eleq2 |
|
119 |
117 118
|
mtbiri |
|
120 |
|
iffalse |
|
121 |
119 120
|
syl |
|
122 |
121
|
mpteq2dv |
|
123 |
|
fconstmpt |
|
124 |
122 123
|
eqtr4di |
|
125 |
124
|
fveq2d |
|
126 |
|
itg20 |
|
127 |
126 92
|
eqeltri |
|
128 |
125 127
|
eqeltrdi |
|
129 |
116 128
|
pm2.61d2 |
|
130 |
98 53
|
remulcld |
|
131 |
130
|
rexrd |
|
132 |
98 53 105 54
|
mulge0d |
|
133 |
|
elxrge0 |
|
134 |
131 132 133
|
sylanbrc |
|
135 |
134 42
|
ifclda |
|
136 |
135
|
adantr |
|
137 |
136
|
fmpttd |
|
138 |
96 52
|
absmuld |
|
139 |
|
abscl |
|
140 |
|
absge0 |
|
141 |
139 140
|
jca |
|
142 |
52 141
|
syl |
|
143 |
|
lemul1a |
|
144 |
97 98 142 104 143
|
syl31anc |
|
145 |
138 144
|
eqbrtrd |
|
146 |
|
iftrue |
|
147 |
146
|
adantl |
|
148 |
|
iftrue |
|
149 |
148
|
adantl |
|
150 |
145 147 149
|
3brtr4d |
|
151 |
|
0le0 |
|
152 |
151
|
a1i |
|
153 |
|
iffalse |
|
154 |
152 153 120
|
3brtr4d |
|
155 |
154
|
adantl |
|
156 |
150 155
|
pm2.61dan |
|
157 |
156
|
ralrimivw |
|
158 |
46
|
a1i |
|
159 |
|
eqidd |
|
160 |
|
eqidd |
|
161 |
158 44 136 159 160
|
ofrfval2 |
|
162 |
157 161
|
mpbird |
|
163 |
|
itg2le |
|
164 |
45 137 162 163
|
syl3anc |
|
165 |
|
itg2lecl |
|
166 |
45 129 164 165
|
syl3anc |
|
167 |
36 38
|
iblpos |
|
168 |
35 166 167
|
mpbir2and |
|
169 |
17 20 168
|
iblabsr |
|
170 |
16 169
|
eqeltrd |
|
171 |
170
|
rexlimdvaa |
|
172 |
171
|
3impia |
|