Metamath Proof Explorer


Theorem breprexplemc

Description: Lemma for breprexp (induction step). (Contributed by Thierry Arnoux, 6-Dec-2021)

Ref Expression
Hypotheses breprexp.n φN0
breprexp.s φS0
breprexp.z φZ
breprexp.h φL:0..^S
breprexplemc.t φT0
breprexplemc.s φT+1S
breprexplemc.1 φa0..^Tb=1NLabZb=m=0T Nd1NreprTma0..^TLadaZm
Assertion breprexplemc φa0..^T+1b=1NLabZb=m=0T+1 Nd1NreprT+1ma0..^T+1LadaZm

Proof

Step Hyp Ref Expression
1 breprexp.n φN0
2 breprexp.s φS0
3 breprexp.z φZ
4 breprexp.h φL:0..^S
5 breprexplemc.t φT0
6 breprexplemc.s φT+1S
7 breprexplemc.1 φa0..^Tb=1NLabZb=m=0T Nd1NreprTma0..^TLadaZm
8 nn0uz 0=0
9 5 8 eleqtrdi φT0
10 fzosplitsn T00..^T+1=0..^TT
11 9 10 syl φ0..^T+1=0..^TT
12 11 prodeq1d φa0..^T+1b=1NLabZb=a0..^TTb=1NLabZb
13 nfv aφ
14 nfcv _ab=1NLTbZb
15 fzofi 0..^TFin
16 15 a1i φ0..^TFin
17 fzonel ¬T0..^T
18 17 a1i φ¬T0..^T
19 fzfid φa0..^T1NFin
20 1 ad2antrr φa0..^Tb1NN0
21 2 ad2antrr φa0..^Tb1NS0
22 3 ad2antrr φa0..^Tb1NZ
23 4 adantr φa0..^TL:0..^S
24 23 adantr φa0..^Tb1NL:0..^S
25 5 nn0zd φT
26 2 nn0zd φS
27 5 nn0red φT
28 1red φ1
29 27 28 readdcld φT+1
30 2 nn0red φS
31 27 lep1d φTT+1
32 27 29 30 31 6 letrd φTS
33 eluz1 TSTSTS
34 33 biimpar TSTSST
35 25 26 32 34 syl12anc φST
36 fzoss2 ST0..^T0..^S
37 35 36 syl φ0..^T0..^S
38 37 sselda φa0..^Ta0..^S
39 38 adantr φa0..^Tb1Na0..^S
40 fz1ssnn 1N
41 40 a1i φa0..^T1N
42 41 sselda φa0..^Tb1Nb
43 20 21 22 24 39 42 breprexplemb φa0..^Tb1NLab
44 nnssnn0 0
45 40 44 sstri 1N0
46 45 a1i φ1N0
47 46 ralrimivw φa0..^T1N0
48 47 r19.21bi φa0..^T1N0
49 48 sselda φa0..^Tb1Nb0
50 22 49 expcld φa0..^Tb1NZb
51 43 50 mulcld φa0..^Tb1NLabZb
52 19 51 fsumcl φa0..^Tb=1NLabZb
53 simpl a=Tb1Na=T
54 53 fveq2d a=Tb1NLa=LT
55 54 fveq1d a=Tb1NLab=LTb
56 55 oveq1d a=Tb1NLabZb=LTbZb
57 56 sumeq2dv a=Tb=1NLabZb=b=1NLTbZb
58 fzfid φ1NFin
59 1 adantr φb1NN0
60 2 adantr φb1NS0
61 3 adantr φb1NZ
62 4 adantr φb1NL:0..^S
63 5 nn0ge0d φ0T
64 zltp1le TST<ST+1S
65 25 26 64 syl2anc φT<ST+1S
66 6 65 mpbird φT<S
67 0zd φ0
68 elfzo T0ST0..^S0TT<S
69 25 67 26 68 syl3anc φT0..^S0TT<S
70 63 66 69 mpbir2and φT0..^S
71 70 adantr φb1NT0..^S
72 40 a1i φ1N
73 72 sselda φb1Nb
74 59 60 61 62 71 73 breprexplemb φb1NLTb
75 46 sselda φb1Nb0
76 61 75 expcld φb1NZb
77 74 76 mulcld φb1NLTbZb
78 58 77 fsumcl φb=1NLTbZb
79 13 14 16 5 18 52 57 78 fprodsplitsn φa0..^TTb=1NLabZb=a0..^Tb=1NLabZbb=1NLTbZb
80 7 oveq1d φa0..^Tb=1NLabZbb=1NLTbZb=m=0T Nd1NreprTma0..^TLadaZmb=1NLTbZb
81 fzfid φ0T NFin
82 40 a1i φm0T N1N
83 simpr φm0T Nm0T N
84 83 elfzelzd φm0T Nm
85 5 adantr φm0T NT0
86 58 adantr φm0T N1NFin
87 82 84 85 86 reprfi φm0T N1NreprTmFin
88 15 a1i φm0T Nd1NreprTm0..^TFin
89 1 adantr φm0T NN0
90 89 ad2antrr φm0T Nd1NreprTma0..^TN0
91 2 ad3antrrr φm0T Nd1NreprTma0..^TS0
92 3 ad3antrrr φm0T Nd1NreprTma0..^TZ
93 4 ad3antrrr φm0T Nd1NreprTma0..^TL:0..^S
94 37 ad2antrr φm0T Nd1NreprTm0..^T0..^S
95 94 sselda φm0T Nd1NreprTma0..^Ta0..^S
96 40 a1i φm0T Nd1NreprTma0..^T1N
97 84 ad2antrr φm0T Nd1NreprTma0..^Tm
98 85 ad2antrr φm0T Nd1NreprTma0..^TT0
99 simplr φm0T Nd1NreprTma0..^Td1NreprTm
100 96 97 98 99 reprf φm0T Nd1NreprTma0..^Td:0..^T1N
101 simpr φm0T Nd1NreprTma0..^Ta0..^T
102 100 101 ffvelcdmd φm0T Nd1NreprTma0..^Tda1N
103 40 102 sselid φm0T Nd1NreprTma0..^Tda
104 90 91 92 93 95 103 breprexplemb φm0T Nd1NreprTma0..^TLada
105 88 104 fprodcl φm0T Nd1NreprTma0..^TLada
106 3 ad2antrr φm0T Nd1NreprTmZ
107 fz0ssnn0 0T N0
108 107 83 sselid φm0T Nm0
109 108 adantr φm0T Nd1NreprTmm0
110 106 109 expcld φm0T Nd1NreprTmZm
111 105 110 mulcld φm0T Nd1NreprTma0..^TLadaZm
112 87 111 fsumcl φm0T Nd1NreprTma0..^TLadaZm
113 81 58 112 77 fsum2mul φm=0T Nb=1Nd1NreprTma0..^TLadaZmLTbZb=m=0T Nd1NreprTma0..^TLadaZmb=1NLTbZb
114 40 a1i φm0T+1 Nb1N1N
115 simpr φm0T+1 Nm0T+1 N
116 115 elfzelzd φm0T+1 Nm
117 116 adantr φm0T+1 Nb1Nm
118 simpr φm0T+1 Nb1Nb1N
119 118 elfzelzd φm0T+1 Nb1Nb
120 117 119 zsubcld φm0T+1 Nb1Nmb
121 5 adantr φm0T+1 NT0
122 121 adantr φm0T+1 Nb1NT0
123 58 adantr φm0T+1 N1NFin
124 123 adantr φm0T+1 Nb1N1NFin
125 114 120 122 124 reprfi φm0T+1 Nb1N1NreprTmbFin
126 74 adantlr φm0T+1 Nb1NLTb
127 3 adantr φm0T+1 NZ
128 fz0ssnn0 0T+1 N0
129 128 115 sselid φm0T+1 Nm0
130 127 129 expcld φm0T+1 NZm
131 130 adantr φm0T+1 Nb1NZm
132 126 131 mulcld φm0T+1 Nb1NLTbZm
133 15 a1i φm0T+1 Nb1Nd1NreprTmb0..^TFin
134 1 adantr φm0T+1 NN0
135 134 adantr φm0T+1 Nb1NN0
136 135 ad2antrr φm0T+1 Nb1Nd1NreprTmba0..^TN0
137 2 ad4antr φm0T+1 Nb1Nd1NreprTmba0..^TS0
138 127 ad3antrrr φm0T+1 Nb1Nd1NreprTmba0..^TZ
139 4 ad4antr φm0T+1 Nb1Nd1NreprTmba0..^TL:0..^S
140 38 ad5ant15 φm0T+1 Nb1Nd1NreprTmba0..^Ta0..^S
141 40 a1i φm0T+1 Nb1Nd1NreprTmba0..^T1N
142 120 ad2antrr φm0T+1 Nb1Nd1NreprTmba0..^Tmb
143 122 ad2antrr φm0T+1 Nb1Nd1NreprTmba0..^TT0
144 simplr φm0T+1 Nb1Nd1NreprTmba0..^Td1NreprTmb
145 141 142 143 144 reprf φm0T+1 Nb1Nd1NreprTmba0..^Td:0..^T1N
146 simpr φm0T+1 Nb1Nd1NreprTmba0..^Ta0..^T
147 145 146 ffvelcdmd φm0T+1 Nb1Nd1NreprTmba0..^Tda1N
148 40 147 sselid φm0T+1 Nb1Nd1NreprTmba0..^Tda
149 136 137 138 139 140 148 breprexplemb φm0T+1 Nb1Nd1NreprTmba0..^TLada
150 133 149 fprodcl φm0T+1 Nb1Nd1NreprTmba0..^TLada
151 125 132 150 fsummulc1 φm0T+1 Nb1Nd1NreprTmba0..^TLadaLTbZm=d1NreprTmba0..^TLadaLTbZm
152 151 sumeq2dv φm0T+1 Nb=1Nd1NreprTmba0..^TLadaLTbZm=b=1Nd1NreprTmba0..^TLadaLTbZm
153 elfzle2 m0T+1 NmT+1 N
154 153 adantl φm0T+1 NmT+1 N
155 134 ad2antrr φm0T+1 Nx0..^T+1yN0
156 2 ad3antrrr φm0T+1 Nx0..^T+1yS0
157 127 ad2antrr φm0T+1 Nx0..^T+1yZ
158 4 ad3antrrr φm0T+1 Nx0..^T+1yL:0..^S
159 25 peano2zd φT+1
160 eluz T+1SST+1T+1S
161 160 biimpar T+1ST+1SST+1
162 159 26 6 161 syl21anc φST+1
163 fzoss2 ST+10..^T+10..^S
164 162 163 syl φ0..^T+10..^S
165 164 ad3antrrr φm0T+1 Nx0..^T+1y0..^T+10..^S
166 simplr φm0T+1 Nx0..^T+1yx0..^T+1
167 165 166 sseldd φm0T+1 Nx0..^T+1yx0..^S
168 simpr φm0T+1 Nx0..^T+1yy
169 155 156 157 158 167 168 breprexplemb φm0T+1 Nx0..^T+1yLxy
170 134 121 129 154 169 breprexplema φm0T+1 Nd1NreprT+1ma0..^T+1Lada=b=1Nd1NreprTmba0..^TLadaLTb
171 170 oveq1d φm0T+1 Nd1NreprT+1ma0..^T+1LadaZm=b=1Nd1NreprTmba0..^TLadaLTbZm
172 126 adantr φm0T+1 Nb1Nd1NreprTmbLTb
173 150 172 mulcld φm0T+1 Nb1Nd1NreprTmba0..^TLadaLTb
174 125 173 fsumcl φm0T+1 Nb1Nd1NreprTmba0..^TLadaLTb
175 123 130 174 fsummulc1 φm0T+1 Nb=1Nd1NreprTmba0..^TLadaLTbZm=b=1Nd1NreprTmba0..^TLadaLTbZm
176 125 131 173 fsummulc1 φm0T+1 Nb1Nd1NreprTmba0..^TLadaLTbZm=d1NreprTmba0..^TLadaLTbZm
177 131 adantr φm0T+1 Nb1Nd1NreprTmbZm
178 150 172 177 mulassd φm0T+1 Nb1Nd1NreprTmba0..^TLadaLTbZm=a0..^TLadaLTbZm
179 178 sumeq2dv φm0T+1 Nb1Nd1NreprTmba0..^TLadaLTbZm=d1NreprTmba0..^TLadaLTbZm
180 176 179 eqtrd φm0T+1 Nb1Nd1NreprTmba0..^TLadaLTbZm=d1NreprTmba0..^TLadaLTbZm
181 180 sumeq2dv φm0T+1 Nb=1Nd1NreprTmba0..^TLadaLTbZm=b=1Nd1NreprTmba0..^TLadaLTbZm
182 171 175 181 3eqtrd φm0T+1 Nd1NreprT+1ma0..^T+1LadaZm=b=1Nd1NreprTmba0..^TLadaLTbZm
183 40 a1i φm0T+1 N1N
184 1nn0 10
185 184 a1i φm0T+1 N10
186 121 185 nn0addcld φm0T+1 NT+10
187 183 116 186 123 reprfi φm0T+1 N1NreprT+1mFin
188 fzofi 0..^T+1Fin
189 188 a1i φm0T+1 Nd1NreprT+1m0..^T+1Fin
190 134 ad2antrr φm0T+1 Nd1NreprT+1ma0..^T+1N0
191 2 ad3antrrr φm0T+1 Nd1NreprT+1ma0..^T+1S0
192 127 ad2antrr φm0T+1 Nd1NreprT+1ma0..^T+1Z
193 4 ad3antrrr φm0T+1 Nd1NreprT+1ma0..^T+1L:0..^S
194 164 ad2antrr φm0T+1 Nd1NreprT+1m0..^T+10..^S
195 194 sselda φm0T+1 Nd1NreprT+1ma0..^T+1a0..^S
196 40 a1i φm0T+1 Nd1NreprT+1ma0..^T+11N
197 116 ad2antrr φm0T+1 Nd1NreprT+1ma0..^T+1m
198 186 ad2antrr φm0T+1 Nd1NreprT+1ma0..^T+1T+10
199 simplr φm0T+1 Nd1NreprT+1ma0..^T+1d1NreprT+1m
200 196 197 198 199 reprf φm0T+1 Nd1NreprT+1ma0..^T+1d:0..^T+11N
201 simpr φm0T+1 Nd1NreprT+1ma0..^T+1a0..^T+1
202 200 201 ffvelcdmd φm0T+1 Nd1NreprT+1ma0..^T+1da1N
203 40 202 sselid φm0T+1 Nd1NreprT+1ma0..^T+1da
204 190 191 192 193 195 203 breprexplemb φm0T+1 Nd1NreprT+1ma0..^T+1Lada
205 189 204 fprodcl φm0T+1 Nd1NreprT+1ma0..^T+1Lada
206 187 130 205 fsummulc1 φm0T+1 Nd1NreprT+1ma0..^T+1LadaZm=d1NreprT+1ma0..^T+1LadaZm
207 152 182 206 3eqtr2rd φm0T+1 Nd1NreprT+1ma0..^T+1LadaZm=b=1Nd1NreprTmba0..^TLadaLTbZm
208 207 sumeq2dv φm=0T+1 Nd1NreprT+1ma0..^T+1LadaZm=m=0T+1 Nb=1Nd1NreprTmba0..^TLadaLTbZm
209 oveq1 n=mnb=mb
210 209 oveq2d n=m1NreprTnb=1NreprTmb
211 210 sumeq1d n=md1NreprTnba0..^TLada=d1NreprTmba0..^TLada
212 oveq2 n=mZn=Zm
213 212 oveq2d n=mLTbZn=LTbZm
214 211 213 oveq12d n=md1NreprTnba0..^TLadaLTbZn=d1NreprTmba0..^TLadaLTbZm
215 214 adantr n=mb1Nd1NreprTnba0..^TLadaLTbZn=d1NreprTmba0..^TLadaLTbZm
216 215 sumeq2dv n=mb=1Nd1NreprTnba0..^TLadaLTbZn=b=1Nd1NreprTmba0..^TLadaLTbZm
217 216 cbvsumv n=0T+1 Nb=1Nd1NreprTnba0..^TLadaLTbZn=m=0T+1 Nb=1Nd1NreprTmba0..^TLadaLTbZm
218 208 217 eqtr4di φm=0T+1 Nd1NreprT+1ma0..^T+1LadaZm=n=0T+1 Nb=1Nd1NreprTnba0..^TLadaLTbZn
219 5 1 nn0mulcld φT N0
220 oveq2 m=nb1NreprTm=1NreprTnb
221 220 sumeq1d m=nbd1NreprTma0..^TLada=d1NreprTnba0..^TLada
222 oveq1 m=nbm+b=n-b+b
223 222 oveq2d m=nbZm+b=Zn-b+b
224 223 oveq2d m=nbLTbZm+b=LTbZn-b+b
225 221 224 oveq12d m=nbd1NreprTma0..^TLadaLTbZm+b=d1NreprTnba0..^TLadaLTbZn-b+b
226 40 a1i φmbb1N1N
227 uzssz b
228 simp2 φmbb1Nmb
229 227 228 sselid φmbb1Nm
230 5 3ad2ant1 φmbb1NT0
231 58 3ad2ant1 φmbb1N1NFin
232 226 229 230 231 reprfi φmbb1N1NreprTmFin
233 15 a1i φmbb1Nd1NreprTm0..^TFin
234 59 3adant2 φmbb1NN0
235 234 ad2antrr φmbb1Nd1NreprTma0..^TN0
236 60 3adant2 φmbb1NS0
237 236 ad2antrr φmbb1Nd1NreprTma0..^TS0
238 61 3adant2 φmbb1NZ
239 238 ad2antrr φmbb1Nd1NreprTma0..^TZ
240 62 3adant2 φmbb1NL:0..^S
241 240 ad2antrr φmbb1Nd1NreprTma0..^TL:0..^S
242 37 3ad2ant1 φmbb1N0..^T0..^S
243 242 adantr φmbb1Nd1NreprTm0..^T0..^S
244 243 sselda φmbb1Nd1NreprTma0..^Ta0..^S
245 40 a1i φmbb1Nd1NreprTm1N
246 229 adantr φmbb1Nd1NreprTmm
247 230 adantr φmbb1Nd1NreprTmT0
248 simpr φmbb1Nd1NreprTmd1NreprTm
249 245 246 247 248 reprf φmbb1Nd1NreprTmd:0..^T1N
250 249 adantr φmbb1Nd1NreprTma0..^Td:0..^T1N
251 simpr φmbb1Nd1NreprTma0..^Ta0..^T
252 250 251 ffvelcdmd φmbb1Nd1NreprTma0..^Tda1N
253 40 252 sselid φmbb1Nd1NreprTma0..^Tda
254 235 237 239 241 244 253 breprexplemb φmbb1Nd1NreprTma0..^TLada
255 233 254 fprodcl φmbb1Nd1NreprTma0..^TLada
256 232 255 fsumcl φmbb1Nd1NreprTma0..^TLada
257 71 3adant2 φmbb1NT0..^S
258 73 3adant2 φmbb1Nb
259 234 236 238 240 257 258 breprexplemb φmbb1NLTb
260 229 zcnd φmbb1Nm
261 simp3 φmbb1Nb1N
262 261 elfzelzd φmbb1Nb
263 262 zcnd φmbb1Nb
264 260 263 subnegd φmbb1Nmb=m+b
265 262 znegcld φmbb1Nb
266 eluzle mbbm
267 228 266 syl φmbb1Nbm
268 znn0sub bmbmmb0
269 268 biimpa bmbmmb0
270 265 229 267 269 syl21anc φmbb1Nmb0
271 264 270 eqeltrrd φmbb1Nm+b0
272 238 271 expcld φmbb1NZm+b
273 259 272 mulcld φmbb1NLTbZm+b
274 256 273 mulcld φmbb1Nd1NreprTma0..^TLadaLTbZm+b
275 59 adantr φb1NnT N+b+1T N+NN0
276 ssidd φb1NnT N+b+1T N+N1N1N
277 simpr φb1NnT N+b+1T N+NnT N+b+1T N+N
278 277 elfzelzd φb1NnT N+b+1T N+Nn
279 simplr φb1NnT N+b+1T N+Nb1N
280 279 elfzelzd φb1NnT N+b+1T N+Nb
281 278 280 zsubcld φb1NnT N+b+1T N+Nnb
282 5 ad2antrr φb1NnT N+b+1T N+NT0
283 27 ad2antrr φb1NnT N+b+1T N+NT
284 275 nn0red φb1NnT N+b+1T N+NN
285 283 284 remulcld φb1NnT N+b+1T N+NT N
286 280 zred φb1NnT N+b+1T N+Nb
287 219 adantr φb1NT N0
288 287 75 nn0addcld φb1NT N+b0
289 184 a1i φb1N10
290 288 289 nn0addcld φb1NT N+b+10
291 fz2ssnn0 T N+b+10T N+b+1T N+N0
292 290 291 syl φb1NT N+b+1T N+N0
293 292 sselda φb1NnT N+b+1T N+Nn0
294 293 nn0red φb1NnT N+b+1T N+Nn
295 25 ad2antrr φb1NnT N+b+1T N+NT
296 275 nn0zd φb1NnT N+b+1T N+NN
297 295 296 zmulcld φb1NnT N+b+1T N+NT N
298 297 280 zaddcld φb1NnT N+b+1T N+NT N+b
299 elfzle1 nT N+b+1T N+NT N+b+1n
300 277 299 syl φb1NnT N+b+1T N+NT N+b+1n
301 zltp1le T N+bnT N+b<nT N+b+1n
302 301 biimpar T N+bnT N+b+1nT N+b<n
303 298 278 300 302 syl21anc φb1NnT N+b+1T N+NT N+b<n
304 ltaddsub T NbnT N+b<nT N<nb
305 304 biimpa T NbnT N+b<nT N<nb
306 285 286 294 303 305 syl31anc φb1NnT N+b+1T N+NT N<nb
307 275 276 281 282 306 reprgt φb1NnT N+b+1T N+N1NreprTnb=
308 307 sumeq1d φb1NnT N+b+1T N+Nd1NreprTnba0..^TLada=da0..^TLada
309 sum0 da0..^TLada=0
310 308 309 eqtrdi φb1NnT N+b+1T N+Nd1NreprTnba0..^TLada=0
311 310 oveq1d φb1NnT N+b+1T N+Nd1NreprTnba0..^TLadaLTbZn-b+b=0LTbZn-b+b
312 74 adantr φb1NnT N+b+1T N+NLTb
313 61 adantr φb1NnT N+b+1T N+NZ
314 278 zcnd φb1NnT N+b+1T N+Nn
315 280 zcnd φb1NnT N+b+1T N+Nb
316 314 315 npcand φb1NnT N+b+1T N+Nn-b+b=n
317 316 293 eqeltrd φb1NnT N+b+1T N+Nn-b+b0
318 313 317 expcld φb1NnT N+b+1T N+NZn-b+b
319 312 318 mulcld φb1NnT N+b+1T N+NLTbZn-b+b
320 319 mul02d φb1NnT N+b+1T N+N0LTbZn-b+b=0
321 311 320 eqtrd φb1NnT N+b+1T N+Nd1NreprTnba0..^TLadaLTbZn-b+b=0
322 40 a1i φb1Nn0..^b1N
323 fzossfz 0..^b0b
324 fzssz 0b
325 323 324 sstri 0..^b
326 simpr φb1Nn0..^bn0..^b
327 325 326 sselid φb1Nn0..^bn
328 simplr φb1Nn0..^bb1N
329 328 elfzelzd φb1Nn0..^bb
330 327 329 zsubcld φb1Nn0..^bnb
331 5 ad2antrr φb1Nn0..^bT0
332 330 zred φb1Nn0..^bnb
333 0red φb1Nn0..^b0
334 27 ad2antrr φb1Nn0..^bT
335 elfzolt2 n0..^bn<b
336 335 adantl φb1Nn0..^bn<b
337 327 zred φb1Nn0..^bn
338 329 zred φb1Nn0..^bb
339 337 338 sublt0d φb1Nn0..^bnb<0n<b
340 336 339 mpbird φb1Nn0..^bnb<0
341 63 ad2antrr φb1Nn0..^b0T
342 332 333 334 340 341 ltletrd φb1Nn0..^bnb<T
343 322 330 331 342 reprlt φb1Nn0..^b1NreprTnb=
344 343 sumeq1d φb1Nn0..^bd1NreprTnba0..^TLada=da0..^TLada
345 344 309 eqtrdi φb1Nn0..^bd1NreprTnba0..^TLada=0
346 345 oveq1d φb1Nn0..^bd1NreprTnba0..^TLadaLTbZn-b+b=0LTbZn-b+b
347 74 adantr φb1Nn0..^bLTb
348 61 adantr φb1Nn0..^bZ
349 337 recnd φb1Nn0..^bn
350 338 recnd φb1Nn0..^bb
351 349 350 npcand φb1Nn0..^bn-b+b=n
352 fzo0ssnn0 0..^b0
353 352 326 sselid φb1Nn0..^bn0
354 351 353 eqeltrd φb1Nn0..^bn-b+b0
355 348 354 expcld φb1Nn0..^bZn-b+b
356 347 355 mulcld φb1Nn0..^bLTbZn-b+b
357 356 mul02d φb1Nn0..^b0LTbZn-b+b=0
358 346 357 eqtrd φb1Nn0..^bd1NreprTnba0..^TLadaLTbZn-b+b=0
359 219 1 225 274 321 358 fsum2dsub φm=0T Nb=1Nd1NreprTma0..^TLadaLTbZm+b=n=0T N+Nb=1Nd1NreprTnba0..^TLadaLTbZn-b+b
360 nn0sscn 0
361 360 5 sselid φT
362 360 1 sselid φN
363 361 362 adddirp1d φT+1 N=T N+N
364 363 oveq2d φ0T+1 N=0T N+N
365 128 360 sstri 0T+1 N
366 simplr φn0T+1 Nb1Nn0T+1 N
367 365 366 sselid φn0T+1 Nb1Nn
368 45 360 sstri 1N
369 simpr φn0T+1 Nb1Nb1N
370 368 369 sselid φn0T+1 Nb1Nb
371 367 370 npcand φn0T+1 Nb1Nn-b+b=n
372 371 eqcomd φn0T+1 Nb1Nn=n-b+b
373 372 oveq2d φn0T+1 Nb1NZn=Zn-b+b
374 373 oveq2d φn0T+1 Nb1NLTbZn=LTbZn-b+b
375 374 oveq2d φn0T+1 Nb1Nd1NreprTnba0..^TLadaLTbZn=d1NreprTnba0..^TLadaLTbZn-b+b
376 375 sumeq2dv φn0T+1 Nb=1Nd1NreprTnba0..^TLadaLTbZn=b=1Nd1NreprTnba0..^TLadaLTbZn-b+b
377 364 376 sumeq12dv φn=0T+1 Nb=1Nd1NreprTnba0..^TLadaLTbZn=n=0T N+Nb=1Nd1NreprTnba0..^TLadaLTbZn-b+b
378 359 377 eqtr4d φm=0T Nb=1Nd1NreprTma0..^TLadaLTbZm+b=n=0T+1 Nb=1Nd1NreprTnba0..^TLadaLTbZn
379 105 adantlr φm0T Nb1Nd1NreprTma0..^TLada
380 110 adantlr φm0T Nb1Nd1NreprTmZm
381 77 adantlr φm0T Nb1NLTbZb
382 381 adantr φm0T Nb1Nd1NreprTmLTbZb
383 379 380 382 mulassd φm0T Nb1Nd1NreprTma0..^TLadaZmLTbZb=a0..^TLadaZmLTbZb
384 74 ad4ant13 φm0T Nb1Nd1NreprTmLTb
385 76 ad4ant13 φm0T Nb1Nd1NreprTmZb
386 380 384 385 mulassd φm0T Nb1Nd1NreprTmZmLTbZb=ZmLTbZb
387 384 380 385 mulassd φm0T Nb1Nd1NreprTmLTbZmZb=LTbZmZb
388 380 384 mulcomd φm0T Nb1Nd1NreprTmZmLTb=LTbZm
389 388 oveq1d φm0T Nb1Nd1NreprTmZmLTbZb=LTbZmZb
390 106 adantlr φm0T Nb1Nd1NreprTmZ
391 75 ad4ant13 φm0T Nb1Nd1NreprTmb0
392 109 adantlr φm0T Nb1Nd1NreprTmm0
393 390 391 392 expaddd φm0T Nb1Nd1NreprTmZm+b=ZmZb
394 393 oveq2d φm0T Nb1Nd1NreprTmLTbZm+b=LTbZmZb
395 387 389 394 3eqtr4d φm0T Nb1Nd1NreprTmZmLTbZb=LTbZm+b
396 386 395 eqtr3d φm0T Nb1Nd1NreprTmZmLTbZb=LTbZm+b
397 396 oveq2d φm0T Nb1Nd1NreprTma0..^TLadaZmLTbZb=a0..^TLadaLTbZm+b
398 383 397 eqtrd φm0T Nb1Nd1NreprTma0..^TLadaZmLTbZb=a0..^TLadaLTbZm+b
399 398 sumeq2dv φm0T Nb1Nd1NreprTma0..^TLadaZmLTbZb=d1NreprTma0..^TLadaLTbZm+b
400 87 adantr φm0T Nb1N1NreprTmFin
401 111 adantlr φm0T Nb1Nd1NreprTma0..^TLadaZm
402 400 381 401 fsummulc1 φm0T Nb1Nd1NreprTma0..^TLadaZmLTbZb=d1NreprTma0..^TLadaZmLTbZb
403 74 adantlr φm0T Nb1NLTb
404 61 adantlr φm0T Nb1NZ
405 108 adantr φm0T Nb1Nm0
406 75 adantlr φm0T Nb1Nb0
407 405 406 nn0addcld φm0T Nb1Nm+b0
408 404 407 expcld φm0T Nb1NZm+b
409 403 408 mulcld φm0T Nb1NLTbZm+b
410 400 409 379 fsummulc1 φm0T Nb1Nd1NreprTma0..^TLadaLTbZm+b=d1NreprTma0..^TLadaLTbZm+b
411 399 402 410 3eqtr4rd φm0T Nb1Nd1NreprTma0..^TLadaLTbZm+b=d1NreprTma0..^TLadaZmLTbZb
412 411 sumeq2dv φm0T Nb=1Nd1NreprTma0..^TLadaLTbZm+b=b=1Nd1NreprTma0..^TLadaZmLTbZb
413 412 sumeq2dv φm=0T Nb=1Nd1NreprTma0..^TLadaLTbZm+b=m=0T Nb=1Nd1NreprTma0..^TLadaZmLTbZb
414 218 378 413 3eqtr2rd φm=0T Nb=1Nd1NreprTma0..^TLadaZmLTbZb=m=0T+1 Nd1NreprT+1ma0..^T+1LadaZm
415 80 113 414 3eqtr2d φa0..^Tb=1NLabZbb=1NLTbZb=m=0T+1 Nd1NreprT+1ma0..^T+1LadaZm
416 12 79 415 3eqtrd φa0..^T+1b=1NLabZb=m=0T+1 Nd1NreprT+1ma0..^T+1LadaZm