Metamath Proof Explorer


Theorem cycpmconjslem2

Description: Lemma for cycpmconjs . (Contributed by Thierry Arnoux, 14-Oct-2023)

Ref Expression
Hypotheses cycpmconjs.c C=M.-1P
cycpmconjs.s S=SymGrpD
cycpmconjs.n N=D
cycpmconjs.m M=toCycD
cycpmconjs.b B=BaseS
cycpmconjs.a +˙=+S
cycpmconjs.l -˙=-S
cycpmconjs.p φP0N
cycpmconjs.d φDFin
cycpmconjs.q φQC
Assertion cycpmconjslem2 φqq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^N

Proof

Step Hyp Ref Expression
1 cycpmconjs.c C=M.-1P
2 cycpmconjs.s S=SymGrpD
3 cycpmconjs.n N=D
4 cycpmconjs.m M=toCycD
5 cycpmconjs.b B=BaseS
6 cycpmconjs.a +˙=+S
7 cycpmconjs.l -˙=-S
8 cycpmconjs.p φP0N
9 cycpmconjs.d φDFin
10 cycpmconjs.q φQC
11 fzofi 0..^NFin
12 diffi 0..^NFin0..^NdomuFin
13 11 12 mp1i φuwWordD|w:domw1-1D.-1PMu=Q0..^NdomuFin
14 diffi DFinDranuFin
15 9 14 syl φDranuFin
16 15 ad2antrr φuwWordD|w:domw1-1D.-1PMu=QDranuFin
17 hashcl DFinD0
18 9 17 syl φD0
19 3 18 eqeltrid φN0
20 hashfzo0 N00..^N=N
21 19 20 syl φ0..^N=N
22 21 3 eqtrdi φ0..^N=D
23 22 ad2antrr φuwWordD|w:domw1-1D.-1PMu=Q0..^N=D
24 simplr φuwWordD|w:domw1-1D.-1PMu=QuwWordD|w:domw1-1D.-1P
25 24 elin1d φuwWordD|w:domw1-1D.-1PMu=QuwWordD|w:domw1-1D
26 elrabi uwWordD|w:domw1-1DuWordD
27 wrdfin uWordDuFin
28 25 26 27 3syl φuwWordD|w:domw1-1D.-1PMu=QuFin
29 id w=uw=u
30 dmeq w=udomw=domu
31 eqidd w=uD=D
32 29 30 31 f1eq123d w=uw:domw1-1Du:domu1-1D
33 32 elrab uwWordD|w:domw1-1DuWordDu:domu1-1D
34 33 simprbi uwWordD|w:domw1-1Du:domu1-1D
35 25 34 syl φuwWordD|w:domw1-1D.-1PMu=Qu:domu1-1D
36 f1fun u:domu1-1DFunu
37 35 36 syl φuwWordD|w:domw1-1D.-1PMu=QFunu
38 hashfun uFinFunuu=domu
39 38 biimpa uFinFunuu=domu
40 28 37 39 syl2anc φuwWordD|w:domw1-1D.-1PMu=Qu=domu
41 24 dmexd φuwWordD|w:domw1-1D.-1PMu=QdomuV
42 hashf1rn domuVu:domu1-1Du=ranu
43 41 35 42 syl2anc φuwWordD|w:domw1-1D.-1PMu=Qu=ranu
44 40 43 eqtr3d φuwWordD|w:domw1-1D.-1PMu=Qdomu=ranu
45 23 44 oveq12d φuwWordD|w:domw1-1D.-1PMu=Q0..^Ndomu=Dranu
46 11 a1i φuwWordD|w:domw1-1D.-1PMu=Q0..^NFin
47 wrddm uWordDdomu=0..^u
48 25 26 47 3syl φuwWordD|w:domw1-1D.-1PMu=Qdomu=0..^u
49 hashcl uFinu0
50 25 26 27 49 4syl φuwWordD|w:domw1-1D.-1PMu=Qu0
51 50 nn0zd φuwWordD|w:domw1-1D.-1PMu=Qu
52 18 nn0zd φD
53 3 52 eqeltrid φN
54 53 ad2antrr φuwWordD|w:domw1-1D.-1PMu=QN
55 9 ad2antrr φuwWordD|w:domw1-1D.-1PMu=QDFin
56 wrdf uWordDu:0..^uD
57 56 frnd uWordDranuD
58 25 26 57 3syl φuwWordD|w:domw1-1D.-1PMu=QranuD
59 hashss DFinranuDranuD
60 55 58 59 syl2anc φuwWordD|w:domw1-1D.-1PMu=QranuD
61 3 a1i φuwWordD|w:domw1-1D.-1PMu=QN=D
62 60 43 61 3brtr4d φuwWordD|w:domw1-1D.-1PMu=QuN
63 eluz1 uNuNuN
64 63 biimpar uNuNNu
65 51 54 62 64 syl12anc φuwWordD|w:domw1-1D.-1PMu=QNu
66 fzoss2 Nu0..^u0..^N
67 65 66 syl φuwWordD|w:domw1-1D.-1PMu=Q0..^u0..^N
68 48 67 eqsstrd φuwWordD|w:domw1-1D.-1PMu=Qdomu0..^N
69 hashssdif 0..^NFindomu0..^N0..^Ndomu=0..^Ndomu
70 46 68 69 syl2anc φuwWordD|w:domw1-1D.-1PMu=Q0..^Ndomu=0..^Ndomu
71 hashssdif DFinranuDDranu=Dranu
72 55 58 71 syl2anc φuwWordD|w:domw1-1D.-1PMu=QDranu=Dranu
73 45 70 72 3eqtr4d φuwWordD|w:domw1-1D.-1PMu=Q0..^Ndomu=Dranu
74 hasheqf1o 0..^NdomuFinDranuFin0..^Ndomu=Dranuff:0..^Ndomu1-1 ontoDranu
75 74 biimpa 0..^NdomuFinDranuFin0..^Ndomu=Dranuff:0..^Ndomu1-1 ontoDranu
76 13 16 73 75 syl21anc φuwWordD|w:domw1-1D.-1PMu=Qff:0..^Ndomu1-1 ontoDranu
77 35 adantr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu:domu1-1D
78 f1f1orn u:domu1-1Du:domu1-1 ontoranu
79 77 78 syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu:domu1-1 ontoranu
80 simpr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuf:0..^Ndomu1-1 ontoDranu
81 disjdif domu0..^Ndomu=
82 81 a1i φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranudomu0..^Ndomu=
83 disjdif ranuDranu=
84 83 a1i φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuranuDranu=
85 f1oun u:domu1-1 ontoranuf:0..^Ndomu1-1 ontoDranudomu0..^Ndomu=ranuDranu=uf:domu0..^Ndomu1-1 ontoranuDranu
86 79 80 82 84 85 syl22anc φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf:domu0..^Ndomu1-1 ontoranuDranu
87 eqidd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf=uf
88 68 adantr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranudomu0..^N
89 undif domu0..^Ndomu0..^Ndomu=0..^N
90 88 89 sylib φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranudomu0..^Ndomu=0..^N
91 undif ranuDranuDranu=D
92 58 91 sylib φuwWordD|w:domw1-1D.-1PMu=QranuDranu=D
93 92 adantr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuranuDranu=D
94 87 90 93 f1oeq123d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf:domu0..^Ndomu1-1 ontoranuDranuuf:0..^N1-1 ontoD
95 86 94 mpbid φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf:0..^N1-1 ontoD
96 f1ocnv uf:0..^N1-1 ontoDuf-1:D1-1 onto0..^N
97 95 96 syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1:D1-1 onto0..^N
98 1 2 3 4 5 cycpmgcl DFinP0NCB
99 9 8 98 syl2anc φCB
100 99 10 sseldd φQB
101 2 5 symgbasf1o QBQ:D1-1 ontoD
102 100 101 syl φQ:D1-1 ontoD
103 102 ad3antrrr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuQ:D1-1 ontoD
104 f1oco uf-1:D1-1 onto0..^NQ:D1-1 ontoDuf-1Q:D1-1 onto0..^N
105 97 103 104 syl2anc φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Q:D1-1 onto0..^N
106 f1oco uf-1Q:D1-1 onto0..^Nuf:0..^N1-1 ontoDuf-1Quf:0..^N1-1 onto0..^N
107 105 95 106 syl2anc φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Quf:0..^N1-1 onto0..^N
108 f1ofun uf-1Quf:0..^N1-1 onto0..^NFunuf-1Quf
109 funrel Funuf-1QufReluf-1Quf
110 107 108 109 3syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuReluf-1Quf
111 f1odm uf-1Quf:0..^N1-1 onto0..^Ndomuf-1Quf=0..^N
112 107 111 syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranudomuf-1Quf=0..^N
113 fzosplit P0N0..^N=0..^PP..^N
114 8 113 syl φ0..^N=0..^PP..^N
115 114 ad3antrrr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranu0..^N=0..^PP..^N
116 112 115 eqtrd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranudomuf-1Quf=0..^PP..^N
117 fzodisj 0..^PP..^N=
118 reldisjun Reluf-1Qufdomuf-1Quf=0..^PP..^N0..^PP..^N=uf-1Quf=uf-1Quf0..^Puf-1QufP..^N
119 117 118 mp3an3 Reluf-1Qufdomuf-1Quf=0..^PP..^Nuf-1Quf=uf-1Quf0..^Puf-1QufP..^N
120 110 116 119 syl2anc φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Quf=uf-1Quf0..^Puf-1QufP..^N
121 resco uf-1Quf0..^P=uf-1Quf0..^P
122 121 a1i φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Quf0..^P=uf-1Quf0..^P
123 25 26 syl φuwWordD|w:domw1-1D.-1PMu=QuWordD
124 wrdfn uWordDuFn0..^u
125 123 124 syl φuwWordD|w:domw1-1D.-1PMu=QuFn0..^u
126 24 elin2d φuwWordD|w:domw1-1D.-1PMu=Qu.-1P
127 hashf .:V0+∞
128 ffn .:V0+∞.FnV
129 fniniseg .FnVu.-1PuVu=P
130 127 128 129 mp2b u.-1PuVu=P
131 130 simprbi u.-1Pu=P
132 126 131 syl φuwWordD|w:domw1-1D.-1PMu=Qu=P
133 132 oveq2d φuwWordD|w:domw1-1D.-1PMu=Q0..^u=0..^P
134 133 fneq2d φuwWordD|w:domw1-1D.-1PMu=QuFn0..^uuFn0..^P
135 125 134 mpbid φuwWordD|w:domw1-1D.-1PMu=QuFn0..^P
136 135 adantr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuFn0..^P
137 f1ofn f:0..^Ndomu1-1 ontoDranufFn0..^Ndomu
138 80 137 syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranufFn0..^Ndomu
139 48 133 eqtrd φuwWordD|w:domw1-1D.-1PMu=Qdomu=0..^P
140 139 ineq1d φuwWordD|w:domw1-1D.-1PMu=Qdomu0..^Ndomu=0..^P0..^Ndomu
141 81 a1i φuwWordD|w:domw1-1D.-1PMu=Qdomu0..^Ndomu=
142 140 141 eqtr3d φuwWordD|w:domw1-1D.-1PMu=Q0..^P0..^Ndomu=
143 142 adantr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranu0..^P0..^Ndomu=
144 fnunres1 uFn0..^PfFn0..^Ndomu0..^P0..^Ndomu=uf0..^P=u
145 136 138 143 144 syl3anc φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf0..^P=u
146 145 coeq2d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Quf0..^P=uf-1Qu
147 resco uf-1Qranu=uf-1Qranu
148 resco u-1Muranu=u-1Muranu
149 148 a1i φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu-1Muranu=u-1Muranu
150 cnvun uf-1=u-1f-1
151 150 reseq1i uf-1ranu=u-1f-1ranu
152 f1ocnv u:domu1-1 ontoranuu-1:ranu1-1 ontodomu
153 f1ofn u-1:ranu1-1 ontodomuu-1Fnranu
154 79 152 153 3syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu-1Fnranu
155 f1ocnv f:0..^Ndomu1-1 ontoDranuf-1:Dranu1-1 onto0..^Ndomu
156 f1ofn f-1:Dranu1-1 onto0..^Ndomuf-1FnDranu
157 80 155 156 3syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuf-1FnDranu
158 fnunres1 u-1Fnranuf-1FnDranuranuDranu=u-1f-1ranu=u-1
159 154 157 84 158 syl3anc φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu-1f-1ranu=u-1
160 151 159 eqtr2id φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu-1=uf-1ranu
161 simplr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuMu=Q
162 161 reseq1d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuMuranu=Qranu
163 160 162 coeq12d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu-1Muranu=uf-1ranuQranu
164 55 adantr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuDFin
165 123 adantr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuWordD
166 4 164 165 77 tocycfvres1 φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuMuranu=ucyclShift1u-1
167 162 166 eqtr3d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuQranu=ucyclShift1u-1
168 167 rneqd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuranQranu=ranucyclShift1u-1
169 1zzd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranu1
170 cshf1o uWordDu:domu1-1D1ucyclShift1:domu1-1 ontoranu
171 165 77 169 170 syl3anc φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuucyclShift1:domu1-1 ontoranu
172 79 152 syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu-1:ranu1-1 ontodomu
173 f1oco ucyclShift1:domu1-1 ontoranuu-1:ranu1-1 ontodomuucyclShift1u-1:ranu1-1 ontoranu
174 171 172 173 syl2anc φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuucyclShift1u-1:ranu1-1 ontoranu
175 f1ofo ucyclShift1u-1:ranu1-1 ontoranuucyclShift1u-1:ranuontoranu
176 forn ucyclShift1u-1:ranuontoranuranucyclShift1u-1=ranu
177 174 175 176 3syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuranucyclShift1u-1=ranu
178 168 177 eqtrd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuranQranu=ranu
179 ssid ranuranu
180 178 179 eqsstrdi φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuranQranuranu
181 cores ranQranuranuuf-1ranuQranu=uf-1Qranu
182 180 181 syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1ranuQranu=uf-1Qranu
183 149 163 182 3eqtrrd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Qranu=u-1Muranu
184 147 183 eqtrid φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Qranu=u-1Muranu
185 184 coeq1d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Qranuu=u-1Muranuu
186 cores ranuranuu-1Muranuu=u-1Muu
187 179 186 mp1i φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu-1Muranuu=u-1Muu
188 185 187 eqtrd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Qranuu=u-1Muu
189 cores ranuranuuf-1Qranuu=uf-1Qu
190 179 189 mp1i φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Qranuu=uf-1Qu
191 132 adantr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu=P
192 1 2 3 4 164 165 77 191 cycpmconjslem1 φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu-1Muu=I0..^PcyclShift1
193 188 190 192 3eqtr3d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Qu=I0..^PcyclShift1
194 122 146 193 3eqtrd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Quf0..^P=I0..^PcyclShift1
195 resco uf-1QufP..^N=uf-1QufP..^N
196 139 adantr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranudomu=0..^P
197 196 difeq2d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranu0..^Ndomu=0..^N0..^P
198 fzodif1 P0N0..^N0..^P=P..^N
199 8 198 syl φ0..^N0..^P=P..^N
200 199 ad3antrrr φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranu0..^N0..^P=P..^N
201 197 200 eqtrd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranu0..^Ndomu=P..^N
202 201 reseq2d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf0..^Ndomu=ufP..^N
203 fnunres2 uFn0..^PfFn0..^Ndomu0..^P0..^Ndomu=uf0..^Ndomu=f
204 136 138 143 203 syl3anc φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf0..^Ndomu=f
205 202 204 eqtr3d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuufP..^N=f
206 205 coeq2d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1QufP..^N=uf-1Qf
207 195 206 eqtrid φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1QufP..^N=uf-1Qf
208 150 reseq1i uf-1Dranu=u-1f-1Dranu
209 fnunres2 u-1Fnranuf-1FnDranuranuDranu=u-1f-1Dranu=f-1
210 154 157 84 209 syl3anc φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuu-1f-1Dranu=f-1
211 208 210 eqtrid φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Dranu=f-1
212 161 reseq1d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuMuDranu=QDranu
213 4 164 165 77 tocycfvres2 φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuMuDranu=IDranu
214 212 213 eqtr3d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuQDranu=IDranu
215 211 214 coeq12d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1DranuQDranu=f-1IDranu
216 214 rneqd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuranQDranu=ranIDranu
217 rnresi ranIDranu=Dranu
218 217 eqimssi ranIDranuDranu
219 216 218 eqsstrdi φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuranQDranuDranu
220 cores ranQDranuDranuuf-1DranuQDranu=uf-1QDranu
221 219 220 syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1DranuQDranu=uf-1QDranu
222 resco uf-1QDranu=uf-1QDranu
223 221 222 eqtr4di φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1DranuQDranu=uf-1QDranu
224 215 223 eqtr3d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuf-1IDranu=uf-1QDranu
225 224 coeq1d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuf-1IDranuf=uf-1QDranuf
226 f1of f-1:Dranu1-1 onto0..^Ndomuf-1:Dranu0..^Ndomu
227 80 155 226 3syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuf-1:Dranu0..^Ndomu
228 fcoi1 f-1:Dranu0..^Ndomuf-1IDranu=f-1
229 227 228 syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuf-1IDranu=f-1
230 229 coeq1d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuf-1IDranuf=f-1f
231 f1ococnv1 f:0..^Ndomu1-1 ontoDranuf-1f=I0..^Ndomu
232 80 231 syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuf-1f=I0..^Ndomu
233 201 reseq2d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuI0..^Ndomu=IP..^N
234 230 232 233 3eqtrd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuf-1IDranuf=IP..^N
235 f1of f:0..^Ndomu1-1 ontoDranuf:0..^NdomuDranu
236 frn f:0..^NdomuDranuranfDranu
237 80 235 236 3syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuranfDranu
238 cores ranfDranuuf-1QDranuf=uf-1Qf
239 237 238 syl φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1QDranuf=uf-1Qf
240 225 234 239 3eqtr3rd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Qf=IP..^N
241 207 240 eqtrd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1QufP..^N=IP..^N
242 194 241 uneq12d φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Quf0..^Puf-1QufP..^N=I0..^PcyclShift1IP..^N
243 120 242 eqtrd φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuuf-1Quf=I0..^PcyclShift1IP..^N
244 vex uV
245 vex fV
246 244 245 unex ufV
247 f1oeq1 q=ufq:0..^N1-1 ontoDuf:0..^N1-1 ontoD
248 cnveq q=ufq-1=uf-1
249 248 coeq1d q=ufq-1Q=uf-1Q
250 id q=ufq=uf
251 249 250 coeq12d q=ufq-1Qq=uf-1Quf
252 251 eqeq1d q=ufq-1Qq=I0..^PcyclShift1IP..^Nuf-1Quf=I0..^PcyclShift1IP..^N
253 247 252 anbi12d q=ufq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^Nuf:0..^N1-1 ontoDuf-1Quf=I0..^PcyclShift1IP..^N
254 246 253 spcev uf:0..^N1-1 ontoDuf-1Quf=I0..^PcyclShift1IP..^Nqq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^N
255 95 243 254 syl2anc φuwWordD|w:domw1-1D.-1PMu=Qf:0..^Ndomu1-1 ontoDranuqq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^N
256 76 255 exlimddv φuwWordD|w:domw1-1D.-1PMu=Qqq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^N
257 nfcv _uM
258 4 2 5 tocycf DFinM:wWordD|w:domw1-1DB
259 ffn M:wWordD|w:domw1-1DBMFnwWordD|w:domw1-1D
260 9 258 259 3syl φMFnwWordD|w:domw1-1D
261 10 1 eleqtrdi φQM.-1P
262 257 260 261 fvelimad φuwWordD|w:domw1-1D.-1PMu=Q
263 256 262 r19.29a φqq:0..^N1-1 ontoDq-1Qq=I0..^PcyclShift1IP..^N