Metamath Proof Explorer


Theorem cycpmconjslem2

Description: Lemma for cycpmconjs . (Contributed by Thierry Arnoux, 14-Oct-2023)

Ref Expression
Hypotheses cycpmconjs.c C = M . -1 P
cycpmconjs.s S = SymGrp D
cycpmconjs.n N = D
cycpmconjs.m M = toCyc D
cycpmconjs.b B = Base S
cycpmconjs.a + ˙ = + S
cycpmconjs.l - ˙ = - S
cycpmconjs.p φ P 0 N
cycpmconjs.d φ D Fin
cycpmconjs.q φ Q C
Assertion cycpmconjslem2 φ q q : 0 ..^ N 1-1 onto D q -1 Q q = I 0 ..^ P cyclShift 1 I P ..^ N

Proof

Step Hyp Ref Expression
1 cycpmconjs.c C = M . -1 P
2 cycpmconjs.s S = SymGrp D
3 cycpmconjs.n N = D
4 cycpmconjs.m M = toCyc D
5 cycpmconjs.b B = Base S
6 cycpmconjs.a + ˙ = + S
7 cycpmconjs.l - ˙ = - S
8 cycpmconjs.p φ P 0 N
9 cycpmconjs.d φ D Fin
10 cycpmconjs.q φ Q C
11 fzofi 0 ..^ N Fin
12 diffi 0 ..^ N Fin 0 ..^ N dom u Fin
13 11 12 mp1i φ u w Word D | w : dom w 1-1 D . -1 P M u = Q 0 ..^ N dom u Fin
14 diffi D Fin D ran u Fin
15 9 14 syl φ D ran u Fin
16 15 ad2antrr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q D ran u Fin
17 hashcl D Fin D 0
18 9 17 syl φ D 0
19 3 18 eqeltrid φ N 0
20 hashfzo0 N 0 0 ..^ N = N
21 19 20 syl φ 0 ..^ N = N
22 21 3 eqtrdi φ 0 ..^ N = D
23 22 ad2antrr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q 0 ..^ N = D
24 simplr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u w Word D | w : dom w 1-1 D . -1 P
25 24 elin1d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u w Word D | w : dom w 1-1 D
26 elrabi u w Word D | w : dom w 1-1 D u Word D
27 wrdfin u Word D u Fin
28 25 26 27 3syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u Fin
29 id w = u w = u
30 dmeq w = u dom w = dom u
31 eqidd w = u D = D
32 29 30 31 f1eq123d w = u w : dom w 1-1 D u : dom u 1-1 D
33 32 elrab u w Word D | w : dom w 1-1 D u Word D u : dom u 1-1 D
34 33 simprbi u w Word D | w : dom w 1-1 D u : dom u 1-1 D
35 25 34 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u : dom u 1-1 D
36 f1fun u : dom u 1-1 D Fun u
37 35 36 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q Fun u
38 hashfun u Fin Fun u u = dom u
39 38 biimpa u Fin Fun u u = dom u
40 28 37 39 syl2anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u = dom u
41 24 dmexd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q dom u V
42 hashf1rn dom u V u : dom u 1-1 D u = ran u
43 41 35 42 syl2anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u = ran u
44 40 43 eqtr3d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q dom u = ran u
45 23 44 oveq12d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q 0 ..^ N dom u = D ran u
46 11 a1i φ u w Word D | w : dom w 1-1 D . -1 P M u = Q 0 ..^ N Fin
47 wrddm u Word D dom u = 0 ..^ u
48 25 26 47 3syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q dom u = 0 ..^ u
49 hashcl u Fin u 0
50 25 26 27 49 4syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u 0
51 50 nn0zd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u
52 18 nn0zd φ D
53 3 52 eqeltrid φ N
54 53 ad2antrr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q N
55 9 ad2antrr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q D Fin
56 wrdf u Word D u : 0 ..^ u D
57 56 frnd u Word D ran u D
58 25 26 57 3syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q ran u D
59 hashss D Fin ran u D ran u D
60 55 58 59 syl2anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q ran u D
61 3 a1i φ u w Word D | w : dom w 1-1 D . -1 P M u = Q N = D
62 60 43 61 3brtr4d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u N
63 eluz1 u N u N u N
64 63 biimpar u N u N N u
65 51 54 62 64 syl12anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q N u
66 fzoss2 N u 0 ..^ u 0 ..^ N
67 65 66 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q 0 ..^ u 0 ..^ N
68 48 67 eqsstrd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q dom u 0 ..^ N
69 hashssdif 0 ..^ N Fin dom u 0 ..^ N 0 ..^ N dom u = 0 ..^ N dom u
70 46 68 69 syl2anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q 0 ..^ N dom u = 0 ..^ N dom u
71 hashssdif D Fin ran u D D ran u = D ran u
72 55 58 71 syl2anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q D ran u = D ran u
73 45 70 72 3eqtr4d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q 0 ..^ N dom u = D ran u
74 hasheqf1o 0 ..^ N dom u Fin D ran u Fin 0 ..^ N dom u = D ran u f f : 0 ..^ N dom u 1-1 onto D ran u
75 74 biimpa 0 ..^ N dom u Fin D ran u Fin 0 ..^ N dom u = D ran u f f : 0 ..^ N dom u 1-1 onto D ran u
76 13 16 73 75 syl21anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f f : 0 ..^ N dom u 1-1 onto D ran u
77 35 adantr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u : dom u 1-1 D
78 f1f1orn u : dom u 1-1 D u : dom u 1-1 onto ran u
79 77 78 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u : dom u 1-1 onto ran u
80 simpr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u f : 0 ..^ N dom u 1-1 onto D ran u
81 disjdif dom u 0 ..^ N dom u =
82 81 a1i φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u dom u 0 ..^ N dom u =
83 disjdif ran u D ran u =
84 83 a1i φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u ran u D ran u =
85 f1oun u : dom u 1-1 onto ran u f : 0 ..^ N dom u 1-1 onto D ran u dom u 0 ..^ N dom u = ran u D ran u = u f : dom u 0 ..^ N dom u 1-1 onto ran u D ran u
86 79 80 82 84 85 syl22anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f : dom u 0 ..^ N dom u 1-1 onto ran u D ran u
87 eqidd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f = u f
88 68 adantr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u dom u 0 ..^ N
89 undif dom u 0 ..^ N dom u 0 ..^ N dom u = 0 ..^ N
90 88 89 sylib φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u dom u 0 ..^ N dom u = 0 ..^ N
91 undif ran u D ran u D ran u = D
92 58 91 sylib φ u w Word D | w : dom w 1-1 D . -1 P M u = Q ran u D ran u = D
93 92 adantr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u ran u D ran u = D
94 87 90 93 f1oeq123d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f : dom u 0 ..^ N dom u 1-1 onto ran u D ran u u f : 0 ..^ N 1-1 onto D
95 86 94 mpbid φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f : 0 ..^ N 1-1 onto D
96 f1ocnv u f : 0 ..^ N 1-1 onto D u f -1 : D 1-1 onto 0 ..^ N
97 95 96 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 : D 1-1 onto 0 ..^ N
98 1 2 3 4 5 cycpmgcl D Fin P 0 N C B
99 9 8 98 syl2anc φ C B
100 99 10 sseldd φ Q B
101 2 5 symgbasf1o Q B Q : D 1-1 onto D
102 100 101 syl φ Q : D 1-1 onto D
103 102 ad3antrrr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u Q : D 1-1 onto D
104 f1oco u f -1 : D 1-1 onto 0 ..^ N Q : D 1-1 onto D u f -1 Q : D 1-1 onto 0 ..^ N
105 97 103 104 syl2anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q : D 1-1 onto 0 ..^ N
106 f1oco u f -1 Q : D 1-1 onto 0 ..^ N u f : 0 ..^ N 1-1 onto D u f -1 Q u f : 0 ..^ N 1-1 onto 0 ..^ N
107 105 95 106 syl2anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q u f : 0 ..^ N 1-1 onto 0 ..^ N
108 f1ofun u f -1 Q u f : 0 ..^ N 1-1 onto 0 ..^ N Fun u f -1 Q u f
109 funrel Fun u f -1 Q u f Rel u f -1 Q u f
110 107 108 109 3syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u Rel u f -1 Q u f
111 f1odm u f -1 Q u f : 0 ..^ N 1-1 onto 0 ..^ N dom u f -1 Q u f = 0 ..^ N
112 107 111 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u dom u f -1 Q u f = 0 ..^ N
113 fzosplit P 0 N 0 ..^ N = 0 ..^ P P ..^ N
114 8 113 syl φ 0 ..^ N = 0 ..^ P P ..^ N
115 114 ad3antrrr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u 0 ..^ N = 0 ..^ P P ..^ N
116 112 115 eqtrd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u dom u f -1 Q u f = 0 ..^ P P ..^ N
117 fzodisj 0 ..^ P P ..^ N =
118 reldisjun Rel u f -1 Q u f dom u f -1 Q u f = 0 ..^ P P ..^ N 0 ..^ P P ..^ N = u f -1 Q u f = u f -1 Q u f 0 ..^ P u f -1 Q u f P ..^ N
119 117 118 mp3an3 Rel u f -1 Q u f dom u f -1 Q u f = 0 ..^ P P ..^ N u f -1 Q u f = u f -1 Q u f 0 ..^ P u f -1 Q u f P ..^ N
120 110 116 119 syl2anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q u f = u f -1 Q u f 0 ..^ P u f -1 Q u f P ..^ N
121 resco u f -1 Q u f 0 ..^ P = u f -1 Q u f 0 ..^ P
122 121 a1i φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q u f 0 ..^ P = u f -1 Q u f 0 ..^ P
123 25 26 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u Word D
124 wrdfn u Word D u Fn 0 ..^ u
125 123 124 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u Fn 0 ..^ u
126 24 elin2d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u . -1 P
127 hashf . : V 0 +∞
128 ffn . : V 0 +∞ . Fn V
129 fniniseg . Fn V u . -1 P u V u = P
130 127 128 129 mp2b u . -1 P u V u = P
131 130 simprbi u . -1 P u = P
132 126 131 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u = P
133 132 oveq2d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q 0 ..^ u = 0 ..^ P
134 133 fneq2d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u Fn 0 ..^ u u Fn 0 ..^ P
135 125 134 mpbid φ u w Word D | w : dom w 1-1 D . -1 P M u = Q u Fn 0 ..^ P
136 135 adantr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u Fn 0 ..^ P
137 f1ofn f : 0 ..^ N dom u 1-1 onto D ran u f Fn 0 ..^ N dom u
138 80 137 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u f Fn 0 ..^ N dom u
139 48 133 eqtrd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q dom u = 0 ..^ P
140 139 ineq1d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q dom u 0 ..^ N dom u = 0 ..^ P 0 ..^ N dom u
141 81 a1i φ u w Word D | w : dom w 1-1 D . -1 P M u = Q dom u 0 ..^ N dom u =
142 140 141 eqtr3d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q 0 ..^ P 0 ..^ N dom u =
143 142 adantr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u 0 ..^ P 0 ..^ N dom u =
144 fnunres1 u Fn 0 ..^ P f Fn 0 ..^ N dom u 0 ..^ P 0 ..^ N dom u = u f 0 ..^ P = u
145 136 138 143 144 syl3anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f 0 ..^ P = u
146 145 coeq2d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q u f 0 ..^ P = u f -1 Q u
147 resco u f -1 Q ran u = u f -1 Q ran u
148 resco u -1 M u ran u = u -1 M u ran u
149 148 a1i φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u -1 M u ran u = u -1 M u ran u
150 cnvun u f -1 = u -1 f -1
151 150 reseq1i u f -1 ran u = u -1 f -1 ran u
152 f1ocnv u : dom u 1-1 onto ran u u -1 : ran u 1-1 onto dom u
153 f1ofn u -1 : ran u 1-1 onto dom u u -1 Fn ran u
154 79 152 153 3syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u -1 Fn ran u
155 f1ocnv f : 0 ..^ N dom u 1-1 onto D ran u f -1 : D ran u 1-1 onto 0 ..^ N dom u
156 f1ofn f -1 : D ran u 1-1 onto 0 ..^ N dom u f -1 Fn D ran u
157 80 155 156 3syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u f -1 Fn D ran u
158 fnunres1 u -1 Fn ran u f -1 Fn D ran u ran u D ran u = u -1 f -1 ran u = u -1
159 154 157 84 158 syl3anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u -1 f -1 ran u = u -1
160 151 159 eqtr2id φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u -1 = u f -1 ran u
161 simplr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u M u = Q
162 161 reseq1d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u M u ran u = Q ran u
163 160 162 coeq12d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u -1 M u ran u = u f -1 ran u Q ran u
164 55 adantr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u D Fin
165 123 adantr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u Word D
166 4 164 165 77 tocycfvres1 φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u M u ran u = u cyclShift 1 u -1
167 162 166 eqtr3d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u Q ran u = u cyclShift 1 u -1
168 167 rneqd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u ran Q ran u = ran u cyclShift 1 u -1
169 1zzd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u 1
170 cshf1o u Word D u : dom u 1-1 D 1 u cyclShift 1 : dom u 1-1 onto ran u
171 165 77 169 170 syl3anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u cyclShift 1 : dom u 1-1 onto ran u
172 79 152 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u -1 : ran u 1-1 onto dom u
173 f1oco u cyclShift 1 : dom u 1-1 onto ran u u -1 : ran u 1-1 onto dom u u cyclShift 1 u -1 : ran u 1-1 onto ran u
174 171 172 173 syl2anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u cyclShift 1 u -1 : ran u 1-1 onto ran u
175 f1ofo u cyclShift 1 u -1 : ran u 1-1 onto ran u u cyclShift 1 u -1 : ran u onto ran u
176 forn u cyclShift 1 u -1 : ran u onto ran u ran u cyclShift 1 u -1 = ran u
177 174 175 176 3syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u ran u cyclShift 1 u -1 = ran u
178 168 177 eqtrd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u ran Q ran u = ran u
179 ssid ran u ran u
180 178 179 eqsstrdi φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u ran Q ran u ran u
181 cores ran Q ran u ran u u f -1 ran u Q ran u = u f -1 Q ran u
182 180 181 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 ran u Q ran u = u f -1 Q ran u
183 149 163 182 3eqtrrd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q ran u = u -1 M u ran u
184 147 183 syl5eq φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q ran u = u -1 M u ran u
185 184 coeq1d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q ran u u = u -1 M u ran u u
186 cores ran u ran u u -1 M u ran u u = u -1 M u u
187 179 186 mp1i φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u -1 M u ran u u = u -1 M u u
188 185 187 eqtrd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q ran u u = u -1 M u u
189 cores ran u ran u u f -1 Q ran u u = u f -1 Q u
190 179 189 mp1i φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q ran u u = u f -1 Q u
191 132 adantr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u = P
192 1 2 3 4 164 165 77 191 cycpmconjslem1 φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u -1 M u u = I 0 ..^ P cyclShift 1
193 188 190 192 3eqtr3d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q u = I 0 ..^ P cyclShift 1
194 122 146 193 3eqtrd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q u f 0 ..^ P = I 0 ..^ P cyclShift 1
195 resco u f -1 Q u f P ..^ N = u f -1 Q u f P ..^ N
196 139 adantr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u dom u = 0 ..^ P
197 196 difeq2d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u 0 ..^ N dom u = 0 ..^ N 0 ..^ P
198 fzodif1 P 0 N 0 ..^ N 0 ..^ P = P ..^ N
199 8 198 syl φ 0 ..^ N 0 ..^ P = P ..^ N
200 199 ad3antrrr φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u 0 ..^ N 0 ..^ P = P ..^ N
201 197 200 eqtrd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u 0 ..^ N dom u = P ..^ N
202 201 reseq2d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f 0 ..^ N dom u = u f P ..^ N
203 fnunres2 u Fn 0 ..^ P f Fn 0 ..^ N dom u 0 ..^ P 0 ..^ N dom u = u f 0 ..^ N dom u = f
204 136 138 143 203 syl3anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f 0 ..^ N dom u = f
205 202 204 eqtr3d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f P ..^ N = f
206 205 coeq2d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q u f P ..^ N = u f -1 Q f
207 195 206 syl5eq φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q u f P ..^ N = u f -1 Q f
208 150 reseq1i u f -1 D ran u = u -1 f -1 D ran u
209 fnunres2 u -1 Fn ran u f -1 Fn D ran u ran u D ran u = u -1 f -1 D ran u = f -1
210 154 157 84 209 syl3anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u -1 f -1 D ran u = f -1
211 208 210 syl5eq φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 D ran u = f -1
212 161 reseq1d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u M u D ran u = Q D ran u
213 4 164 165 77 tocycfvres2 φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u M u D ran u = I D ran u
214 212 213 eqtr3d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u Q D ran u = I D ran u
215 211 214 coeq12d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 D ran u Q D ran u = f -1 I D ran u
216 214 rneqd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u ran Q D ran u = ran I D ran u
217 rnresi ran I D ran u = D ran u
218 217 eqimssi ran I D ran u D ran u
219 216 218 eqsstrdi φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u ran Q D ran u D ran u
220 cores ran Q D ran u D ran u u f -1 D ran u Q D ran u = u f -1 Q D ran u
221 219 220 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 D ran u Q D ran u = u f -1 Q D ran u
222 resco u f -1 Q D ran u = u f -1 Q D ran u
223 221 222 eqtr4di φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 D ran u Q D ran u = u f -1 Q D ran u
224 215 223 eqtr3d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u f -1 I D ran u = u f -1 Q D ran u
225 224 coeq1d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u f -1 I D ran u f = u f -1 Q D ran u f
226 f1of f -1 : D ran u 1-1 onto 0 ..^ N dom u f -1 : D ran u 0 ..^ N dom u
227 80 155 226 3syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u f -1 : D ran u 0 ..^ N dom u
228 fcoi1 f -1 : D ran u 0 ..^ N dom u f -1 I D ran u = f -1
229 227 228 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u f -1 I D ran u = f -1
230 229 coeq1d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u f -1 I D ran u f = f -1 f
231 f1ococnv1 f : 0 ..^ N dom u 1-1 onto D ran u f -1 f = I 0 ..^ N dom u
232 80 231 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u f -1 f = I 0 ..^ N dom u
233 201 reseq2d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u I 0 ..^ N dom u = I P ..^ N
234 230 232 233 3eqtrd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u f -1 I D ran u f = I P ..^ N
235 f1of f : 0 ..^ N dom u 1-1 onto D ran u f : 0 ..^ N dom u D ran u
236 frn f : 0 ..^ N dom u D ran u ran f D ran u
237 80 235 236 3syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u ran f D ran u
238 cores ran f D ran u u f -1 Q D ran u f = u f -1 Q f
239 237 238 syl φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q D ran u f = u f -1 Q f
240 225 234 239 3eqtr3rd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q f = I P ..^ N
241 207 240 eqtrd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q u f P ..^ N = I P ..^ N
242 194 241 uneq12d φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q u f 0 ..^ P u f -1 Q u f P ..^ N = I 0 ..^ P cyclShift 1 I P ..^ N
243 120 242 eqtrd φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u u f -1 Q u f = I 0 ..^ P cyclShift 1 I P ..^ N
244 vex u V
245 vex f V
246 244 245 unex u f V
247 f1oeq1 q = u f q : 0 ..^ N 1-1 onto D u f : 0 ..^ N 1-1 onto D
248 cnveq q = u f q -1 = u f -1
249 248 coeq1d q = u f q -1 Q = u f -1 Q
250 id q = u f q = u f
251 249 250 coeq12d q = u f q -1 Q q = u f -1 Q u f
252 251 eqeq1d q = u f q -1 Q q = I 0 ..^ P cyclShift 1 I P ..^ N u f -1 Q u f = I 0 ..^ P cyclShift 1 I P ..^ N
253 247 252 anbi12d q = u f q : 0 ..^ N 1-1 onto D q -1 Q q = I 0 ..^ P cyclShift 1 I P ..^ N u f : 0 ..^ N 1-1 onto D u f -1 Q u f = I 0 ..^ P cyclShift 1 I P ..^ N
254 246 253 spcev u f : 0 ..^ N 1-1 onto D u f -1 Q u f = I 0 ..^ P cyclShift 1 I P ..^ N q q : 0 ..^ N 1-1 onto D q -1 Q q = I 0 ..^ P cyclShift 1 I P ..^ N
255 95 243 254 syl2anc φ u w Word D | w : dom w 1-1 D . -1 P M u = Q f : 0 ..^ N dom u 1-1 onto D ran u q q : 0 ..^ N 1-1 onto D q -1 Q q = I 0 ..^ P cyclShift 1 I P ..^ N
256 76 255 exlimddv φ u w Word D | w : dom w 1-1 D . -1 P M u = Q q q : 0 ..^ N 1-1 onto D q -1 Q q = I 0 ..^ P cyclShift 1 I P ..^ N
257 nfcv _ u M
258 4 2 5 tocycf D Fin M : w Word D | w : dom w 1-1 D B
259 ffn M : w Word D | w : dom w 1-1 D B M Fn w Word D | w : dom w 1-1 D
260 9 258 259 3syl φ M Fn w Word D | w : dom w 1-1 D
261 10 1 eleqtrdi φ Q M . -1 P
262 257 260 261 fvelimad φ u w Word D | w : dom w 1-1 D . -1 P M u = Q
263 256 262 r19.29a φ q q : 0 ..^ N 1-1 onto D q -1 Q q = I 0 ..^ P cyclShift 1 I P ..^ N