Metamath Proof Explorer


Theorem fldextrspunlsplem

Description: Lemma for fldextrspunlsp : First direction. Part of the proof of Proposition 5, Chapter 5, of BourbakiAlg2 p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses fldextrspunfld.k K = L 𝑠 F
fldextrspunfld.i I = L 𝑠 G
fldextrspunfld.j J = L 𝑠 H
fldextrspunfld.2 φ L Field
fldextrspunfld.3 φ F SubDRing I
fldextrspunfld.4 φ F SubDRing J
fldextrspunfld.5 φ G SubDRing L
fldextrspunfld.6 φ H SubDRing L
fldextrspunlsp.n N = RingSpan L
fldextrspunlsp.c C = N G H
fldextrspunlsp.e E = L 𝑠 C
fldextrspunlsp.1 φ B LBasis subringAlg J F
fldextrspunlsp.2 φ B Fin
fldextrspunlsplem.2 φ P : H G
fldextrspunlsplem.3 φ finSupp 0 L P
fldextrspunlsplem.4 φ X = L f H P f L f
Assertion fldextrspunlsplem φ a G B finSupp 0 L a X = L b B a b L b

Proof

Step Hyp Ref Expression
1 fldextrspunfld.k K = L 𝑠 F
2 fldextrspunfld.i I = L 𝑠 G
3 fldextrspunfld.j J = L 𝑠 H
4 fldextrspunfld.2 φ L Field
5 fldextrspunfld.3 φ F SubDRing I
6 fldextrspunfld.4 φ F SubDRing J
7 fldextrspunfld.5 φ G SubDRing L
8 fldextrspunfld.6 φ H SubDRing L
9 fldextrspunlsp.n N = RingSpan L
10 fldextrspunlsp.c C = N G H
11 fldextrspunlsp.e E = L 𝑠 C
12 fldextrspunlsp.1 φ B LBasis subringAlg J F
13 fldextrspunlsp.2 φ B Fin
14 fldextrspunlsplem.2 φ P : H G
15 fldextrspunlsplem.3 φ finSupp 0 L P
16 fldextrspunlsplem.4 φ X = L f H P f L f
17 7 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b G SubDRing L
18 12 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b B LBasis subringAlg J F
19 eqid 0 L = 0 L
20 4 flddrngd φ L DivRing
21 20 drngringd φ L Ring
22 21 ringcmnd φ L CMnd
23 22 ad3antrrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B L CMnd
24 8 ad3antrrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B H SubDRing L
25 sdrgsubrg G SubDRing L G SubRing L
26 7 25 syl φ G SubRing L
27 subrgsubg G SubRing L G SubGrp L
28 subgsubm G SubGrp L G SubMnd L
29 26 27 28 3syl φ G SubMnd L
30 29 ad3antrrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B G SubMnd L
31 eqid L = L
32 26 ad3antrrr φ u F B H c B f H G SubRing L
33 14 ad3antrrr φ u F B H c B f H P : H G
34 simpr φ u F B H c B f H f H
35 33 34 ffvelcdmd φ u F B H c B f H P f G
36 eqid Base I = Base I
37 36 sdrgss F SubDRing I F Base I
38 5 37 syl φ F Base I
39 eqid Base L = Base L
40 39 sdrgss G SubDRing L G Base L
41 7 40 syl φ G Base L
42 2 39 ressbas2 G Base L G = Base I
43 41 42 syl φ G = Base I
44 38 43 sseqtrrd φ F G
45 44 ad3antrrr φ u F B H c B f H F G
46 12 ad3antrrr φ u F B H c B f H B LBasis subringAlg J F
47 5 ad3antrrr φ u F B H c B f H F SubDRing I
48 8 ad3antrrr φ u F B H c B f H H SubDRing L
49 ovexd φ u F B H c B f H F B V
50 simpllr φ u F B H c B f H u F B H
51 48 49 50 elmaprd φ u F B H c B f H u : H F B
52 51 34 ffvelcdmd φ u F B H c B f H u f F B
53 46 47 52 elmaprd φ u F B H c B f H u f : B F
54 simplr φ u F B H c B f H c B
55 53 54 ffvelcdmd φ u F B H c B f H u f c F
56 45 55 sseldd φ u F B H c B f H u f c G
57 31 32 35 56 subrgmcld φ u F B H c B f H P f L u f c G
58 57 fmpttd φ u F B H c B f H P f L u f c : H G
59 58 adantlr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B f H P f L u f c : H G
60 fveq2 f = h P f = P h
61 fveq2 f = h u f = u h
62 61 fveq1d f = h u f c = u h c
63 60 62 oveq12d f = h P f L u f c = P h L u h c
64 63 cbvmptv f H P f L u f c = h H P h L u h c
65 fvexd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B 0 L V
66 ssidd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B H H
67 eqid Base J = Base J
68 67 sdrgss F SubDRing J F Base J
69 6 68 syl φ F Base J
70 39 sdrgss H SubDRing L H Base L
71 8 70 syl φ H Base L
72 3 39 ressbas2 H Base L H = Base J
73 71 72 syl φ H = Base J
74 69 73 sseqtrrd φ F H
75 74 71 sstrd φ F Base L
76 75 ad4antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H F Base L
77 12 ad4antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H B LBasis subringAlg J F
78 6 ad4antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H F SubDRing J
79 ovexd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B F B V
80 simpllr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B u F B H
81 24 79 80 elmaprd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B u : H F B
82 81 ffvelcdmda φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H u h F B
83 77 78 82 elmaprd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H u h : B F
84 simplr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H c B
85 83 84 ffvelcdmd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H u h c F
86 76 85 sseldd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H u h c Base L
87 14 ad3antrrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B P : H G
88 15 ad3antrrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B finSupp 0 L P
89 21 ad4antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B y Base L L Ring
90 simpr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B y Base L y Base L
91 39 31 19 89 90 ringlzd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B y Base L 0 L L y = 0 L
92 65 65 24 66 86 87 88 91 fisuppov1 φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B finSupp 0 L h H P h L u h c
93 64 92 eqbrtrid φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B finSupp 0 L f H P f L u f c
94 19 23 24 30 59 93 gsumsubmcl φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B L f H P f L u f c G
95 94 fmpttd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B L f H P f L u f c : B G
96 17 18 95 elmapdd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B L f H P f L u f c G B
97 breq1 a = c B L f H P f L u f c finSupp 0 L a finSupp 0 L c B L f H P f L u f c
98 97 adantl φ u F B H a = c B L f H P f L u f c finSupp 0 L a finSupp 0 L c B L f H P f L u f c
99 simplr φ u F B H a = c B L f H P f L u f c b B a = c B L f H P f L u f c
100 99 fveq1d φ u F B H a = c B L f H P f L u f c b B a b = c B L f H P f L u f c b
101 eqid c B L f H P f L u f c = c B L f H P f L u f c
102 fveq2 c = b u f c = u f b
103 102 oveq2d c = b P f L u f c = P f L u f b
104 103 mpteq2dv c = b f H P f L u f c = f H P f L u f b
105 104 oveq2d c = b L f H P f L u f c = L f H P f L u f b
106 simpr φ u F B H b B b B
107 ovexd φ u F B H b B L f H P f L u f b V
108 101 105 106 107 fvmptd3 φ u F B H b B c B L f H P f L u f c b = L f H P f L u f b
109 108 adantlr φ u F B H a = c B L f H P f L u f c b B c B L f H P f L u f c b = L f H P f L u f b
110 100 109 eqtrd φ u F B H a = c B L f H P f L u f c b B a b = L f H P f L u f b
111 110 oveq1d φ u F B H a = c B L f H P f L u f c b B a b L b = L f H P f L u f b L b
112 111 mpteq2dva φ u F B H a = c B L f H P f L u f c b B a b L b = b B L f H P f L u f b L b
113 112 oveq2d φ u F B H a = c B L f H P f L u f c L b B a b L b = L b B L f H P f L u f b L b
114 113 eqeq2d φ u F B H a = c B L f H P f L u f c X = L b B a b L b X = L b B L f H P f L u f b L b
115 98 114 anbi12d φ u F B H a = c B L f H P f L u f c finSupp 0 L a X = L b B a b L b finSupp 0 L c B L f H P f L u f c X = L b B L f H P f L u f b L b
116 115 adantlr φ u F B H f H finSupp 0 L u f f = L b B u f b L b a = c B L f H P f L u f c finSupp 0 L a X = L b B a b L b finSupp 0 L c B L f H P f L u f c X = L b B L f H P f L u f b L b
117 13 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b B Fin
118 ovexd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B L f H P f L u f c V
119 fvexd φ u F B H f H finSupp 0 L u f f = L b B u f b L b 0 L V
120 101 117 118 119 fsuppmptdm φ u F B H f H finSupp 0 L u f f = L b B u f b L b finSupp 0 L c B L f H P f L u f c
121 16 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b X = L f H P f L f
122 21 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b L Ring
123 122 adantr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H L Ring
124 12 ad3antrrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H B LBasis subringAlg J F
125 41 ad3antrrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H G Base L
126 14 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b P : H G
127 126 ffvelcdmda φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H P h G
128 125 127 sseldd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H P h Base L
129 123 adantr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B L Ring
130 75 ad4antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B F Base L
131 12 ad4antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B B LBasis subringAlg J F
132 6 ad4antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B F SubDRing J
133 8 ad4antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B H SubDRing L
134 ovexd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B F B V
135 simp-4r φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B u F B H
136 133 134 135 elmaprd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B u : H F B
137 simplr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B h H
138 136 137 ffvelcdmd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B u h F B
139 131 132 138 elmaprd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B u h : B F
140 simpr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B c B
141 139 140 ffvelcdmd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B u h c F
142 130 141 sseldd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B u h c Base L
143 eqid Base subringAlg J F = Base subringAlg J F
144 eqid LBasis subringAlg J F = LBasis subringAlg J F
145 143 144 lbsss B LBasis subringAlg J F B Base subringAlg J F
146 12 145 syl φ B Base subringAlg J F
147 eqidd φ subringAlg J F = subringAlg J F
148 147 69 srabase φ Base J = Base subringAlg J F
149 73 148 eqtr2d φ Base subringAlg J F = H
150 146 149 sseqtrd φ B H
151 150 71 sstrd φ B Base L
152 151 ad3antrrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H B Base L
153 152 sselda φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B c Base L
154 39 31 129 142 153 ringcld φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B u h c L c Base L
155 fvexd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H 0 L V
156 ssidd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H B B
157 6 ad3antrrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H F SubDRing J
158 8 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b H SubDRing L
159 ovexd φ u F B H f H finSupp 0 L u f f = L b B u f b L b F B V
160 simplr φ u F B H f H finSupp 0 L u f f = L b B u f b L b u F B H
161 158 159 160 elmaprd φ u F B H f H finSupp 0 L u f f = L b B u f b L b u : H F B
162 161 ffvelcdmda φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H u h F B
163 124 157 162 elmaprd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H u h : B F
164 61 breq1d f = h finSupp 0 L u f finSupp 0 L u h
165 id f = h f = h
166 61 fveq1d f = h u f b = u h b
167 166 oveq1d f = h u f b L b = u h b L b
168 167 mpteq2dv f = h b B u f b L b = b B u h b L b
169 168 oveq2d f = h L b B u f b L b = L b B u h b L b
170 165 169 eqeq12d f = h f = L b B u f b L b h = L b B u h b L b
171 164 170 anbi12d f = h finSupp 0 L u f f = L b B u f b L b finSupp 0 L u h h = L b B u h b L b
172 simplr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H f H finSupp 0 L u f f = L b B u f b L b
173 simpr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H h H
174 171 172 173 rspcdva φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H finSupp 0 L u h h = L b B u h b L b
175 174 simpld φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H finSupp 0 L u h
176 123 adantr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H y Base L L Ring
177 simpr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H y Base L y Base L
178 39 31 19 176 177 ringlzd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H y Base L 0 L L y = 0 L
179 155 155 124 156 153 163 175 178 fisuppov1 φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H finSupp 0 L c B u h c L c
180 39 19 31 123 124 128 154 179 gsummulc2 φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H L c B P h L u h c L c = P h L L c B u h c L c
181 128 adantr φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B P h Base L
182 39 31 129 181 142 153 ringassd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B P h L u h c L c = P h L u h c L c
183 182 mpteq2dva φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H c B P h L u h c L c = c B P h L u h c L c
184 183 oveq2d φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H L c B P h L u h c L c = L c B P h L u h c L c
185 174 simprd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H h = L b B u h b L b
186 fveq2 b = c u h b = u h c
187 id b = c b = c
188 186 187 oveq12d b = c u h b L b = u h c L c
189 188 cbvmptv b B u h b L b = c B u h c L c
190 189 oveq2i L b B u h b L b = L c B u h c L c
191 185 190 eqtrdi φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H h = L c B u h c L c
192 191 oveq2d φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H P h L h = P h L L c B u h c L c
193 180 184 192 3eqtr4rd φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H P h L h = L c B P h L u h c L c
194 193 mpteq2dva φ u F B H f H finSupp 0 L u f f = L b B u f b L b h H P h L h = h H L c B P h L u h c L c
195 194 oveq2d φ u F B H f H finSupp 0 L u f f = L b B u f b L b L h H P h L h = L h H L c B P h L u h c L c
196 60 165 oveq12d f = h P f L f = P h L h
197 196 cbvmptv f H P f L f = h H P h L h
198 197 oveq2i L f H P f L f = L h H P h L h
199 198 a1i φ u F B H f H finSupp 0 L u f f = L b B u f b L b L f H P f L f = L h H P h L h
200 22 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b L CMnd
201 21 ad4antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H L Ring
202 41 ad4antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H G Base L
203 87 ffvelcdmda φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H P h G
204 202 203 sseldd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H P h Base L
205 39 31 201 204 86 ringcld φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H P h L u h c Base L
206 151 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b B Base L
207 206 sselda φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B c Base L
208 207 adantr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H c Base L
209 39 31 201 205 208 ringcld φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H P h L u h c L c Base L
210 209 anasss φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H P h L u h c L c Base L
211 15 fsuppimpd φ P supp 0 L Fin
212 211 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b P supp 0 L Fin
213 suppssdm P supp 0 L dom P
214 213 14 fssdm φ P supp 0 L H
215 214 sseld φ f supp 0 L P f H
216 215 adantr φ u F B H f supp 0 L P f H
217 simpr φ u F B H finSupp 0 L u f finSupp 0 L u f
218 217 fsuppimpd φ u F B H finSupp 0 L u f u f supp 0 L Fin
219 218 ex φ u F B H finSupp 0 L u f u f supp 0 L Fin
220 219 adantrd φ u F B H finSupp 0 L u f f = L b B u f b L b u f supp 0 L Fin
221 216 220 imim12d φ u F B H f H finSupp 0 L u f f = L b B u f b L b f supp 0 L P u f supp 0 L Fin
222 221 ralimdv2 φ u F B H f H finSupp 0 L u f f = L b B u f b L b f supp 0 L P u f supp 0 L Fin
223 222 imp φ u F B H f H finSupp 0 L u f f = L b B u f b L b f supp 0 L P u f supp 0 L Fin
224 fveq2 f = i u f = u i
225 224 oveq1d f = i u f supp 0 L = u i supp 0 L
226 225 eleq1d f = i u f supp 0 L Fin u i supp 0 L Fin
227 226 cbvralvw f supp 0 L P u f supp 0 L Fin i supp 0 L P u i supp 0 L Fin
228 223 227 sylib φ u F B H f H finSupp 0 L u f f = L b B u f b L b i supp 0 L P u i supp 0 L Fin
229 iunfi P supp 0 L Fin i supp 0 L P u i supp 0 L Fin i P supp 0 L supp 0 L u i Fin
230 212 228 229 syl2anc φ u F B H f H finSupp 0 L u f f = L b B u f b L b i P supp 0 L supp 0 L u i Fin
231 xpfi i P supp 0 L supp 0 L u i Fin P supp 0 L Fin i P supp 0 L supp 0 L u i × supp 0 L P Fin
232 230 212 231 syl2anc φ u F B H f H finSupp 0 L u f f = L b B u f b L b i P supp 0 L supp 0 L u i × supp 0 L P Fin
233 snssi i supp 0 L P i P supp 0 L
234 233 adantl φ i supp 0 L P i P supp 0 L
235 234 iunxpssiun1 φ i P supp 0 L supp 0 L u i × i i P supp 0 L supp 0 L u i × supp 0 L P
236 235 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b i P supp 0 L supp 0 L u i × i i P supp 0 L supp 0 L u i × supp 0 L P
237 232 236 ssfid φ u F B H f H finSupp 0 L u f f = L b B u f b L b i P supp 0 L supp 0 L u i × i Fin
238 14 ffnd φ P Fn H
239 238 ad6antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P P Fn H
240 8 ad6antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P H SubDRing L
241 fvexd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P 0 L V
242 simpllr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P h H
243 simpr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P ¬ h supp 0 L P
244 242 243 eldifd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P h H supp 0 L P
245 239 240 241 244 fvdifsupp φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P P h = 0 L
246 245 oveq1d φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P P h L u h c = 0 L L u h c
247 21 ad6antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P L Ring
248 75 ad6antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P F Base L
249 12 ad6antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P B LBasis subringAlg J F
250 6 ad6antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P F SubDRing J
251 ovexd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P F B V
252 simp-6r φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P u F B H
253 240 251 252 elmaprd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P u : H F B
254 253 242 ffvelcdmd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P u h F B
255 249 250 254 elmaprd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P u h : B F
256 simp-4r φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P c B
257 255 256 ffvelcdmd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P u h c F
258 248 257 sseldd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P u h c Base L
259 39 31 19 247 258 ringlzd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P 0 L L u h c = 0 L
260 246 259 eqtrd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P P h L u h c = 0 L
261 12 ad6antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h B LBasis subringAlg J F
262 6 ad6antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h F SubDRing J
263 8 ad6antr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h H SubDRing L
264 ovexd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h F B V
265 simp-6r φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h u F B H
266 263 264 265 elmaprd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h u : H F B
267 simpllr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h h H
268 266 267 ffvelcdmd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h u h F B
269 261 262 268 elmaprd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h u h : B F
270 269 ffnd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h u h Fn B
271 fvexd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h 0 L V
272 simp-4r φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h c B
273 simpr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h ¬ c supp 0 L u h
274 272 273 eldifd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h c B supp 0 L u h
275 270 261 271 274 fvdifsupp φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h u h c = 0 L
276 275 oveq2d φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h P h L u h c = P h L 0 L
277 201 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h L Ring
278 204 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h P h Base L
279 39 31 19 277 278 ringrzd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h P h L 0 L = 0 L
280 276 279 eqtrd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ c supp 0 L u h P h L u h c = 0 L
281 df-br c i P supp 0 L supp 0 L u i × i h c h i P supp 0 L supp 0 L u i × i
282 fveq2 h = i u h = u i
283 282 oveq1d h = i u h supp 0 L = u i supp 0 L
284 sneq h = i h = i
285 283 284 xpeq12d h = i supp 0 L u h × h = supp 0 L u i × i
286 285 cbviunv h P supp 0 L supp 0 L u h × h = i P supp 0 L supp 0 L u i × i
287 286 eleq2i c h h P supp 0 L supp 0 L u h × h c h i P supp 0 L supp 0 L u i × i
288 opeliun2xp c h h P supp 0 L supp 0 L u h × h h supp 0 L P c supp 0 L u h
289 281 287 288 3bitr2i c i P supp 0 L supp 0 L u i × i h h supp 0 L P c supp 0 L u h
290 289 notbii ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P c supp 0 L u h
291 ianor ¬ h supp 0 L P c supp 0 L u h ¬ h supp 0 L P ¬ c supp 0 L u h
292 290 291 sylbb ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P ¬ c supp 0 L u h
293 292 adantl φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h ¬ h supp 0 L P ¬ c supp 0 L u h
294 260 280 293 mpjaodan φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h P h L u h c = 0 L
295 294 oveq1d φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h P h L u h c L c = 0 L L c
296 122 ad3antrrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h L Ring
297 207 ad2antrr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h c Base L
298 39 31 19 296 297 ringlzd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h 0 L L c = 0 L
299 295 298 eqtrd φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h P h L u h c L c = 0 L
300 299 an42ds φ u F B H f H finSupp 0 L u f f = L b B u f b L b ¬ c i P supp 0 L supp 0 L u i × i h h H c B P h L u h c L c = 0 L
301 300 an32s φ u F B H f H finSupp 0 L u f f = L b B u f b L b ¬ c i P supp 0 L supp 0 L u i × i h c B h H P h L u h c L c = 0 L
302 301 anasss φ u F B H f H finSupp 0 L u f f = L b B u f b L b ¬ c i P supp 0 L supp 0 L u i × i h c B h H P h L u h c L c = 0 L
303 302 an32s φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h P h L u h c L c = 0 L
304 303 anasss φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B h H ¬ c i P supp 0 L supp 0 L u i × i h P h L u h c L c = 0 L
305 39 19 200 18 158 210 237 304 gsumcom3 φ u F B H f H finSupp 0 L u f f = L b B u f b L b L c B L h H P h L u h c L c = L h H L c B P h L u h c L c
306 195 199 305 3eqtr4d φ u F B H f H finSupp 0 L u f f = L b B u f b L b L f H P f L f = L c B L h H P h L u h c L c
307 122 adantr φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B L Ring
308 39 19 31 307 24 207 205 92 gsummulc1 φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B L h H P h L u h c L c = L h H P h L u h c L c
309 308 mpteq2dva φ u F B H f H finSupp 0 L u f f = L b B u f b L b c B L h H P h L u h c L c = c B L h H P h L u h c L c
310 309 oveq2d φ u F B H f H finSupp 0 L u f f = L b B u f b L b L c B L h H P h L u h c L c = L c B L h H P h L u h c L c
311 121 306 310 3eqtrd φ u F B H f H finSupp 0 L u f f = L b B u f b L b X = L c B L h H P h L u h c L c
312 60 166 oveq12d f = h P f L u f b = P h L u h b
313 312 cbvmptv f H P f L u f b = h H P h L u h b
314 186 oveq2d b = c P h L u h b = P h L u h c
315 314 mpteq2dv b = c h H P h L u h b = h H P h L u h c
316 313 315 eqtrid b = c f H P f L u f b = h H P h L u h c
317 316 oveq2d b = c L f H P f L u f b = L h H P h L u h c
318 317 187 oveq12d b = c L f H P f L u f b L b = L h H P h L u h c L c
319 318 cbvmptv b B L f H P f L u f b L b = c B L h H P h L u h c L c
320 319 oveq2i L b B L f H P f L u f b L b = L c B L h H P h L u h c L c
321 311 320 eqtr4di φ u F B H f H finSupp 0 L u f f = L b B u f b L b X = L b B L f H P f L u f b L b
322 120 321 jca φ u F B H f H finSupp 0 L u f f = L b B u f b L b finSupp 0 L c B L f H P f L u f c X = L b B L f H P f L u f b L b
323 96 116 322 rspcedvd φ u F B H f H finSupp 0 L u f f = L b B u f b L b a G B finSupp 0 L a X = L b B a b L b
324 breq1 e = u f finSupp 0 L e finSupp 0 L u f
325 fveq1 e = u f e b = u f b
326 325 oveq1d e = u f e b L b = u f b L b
327 326 mpteq2dv e = u f b B e b L b = b B u f b L b
328 327 oveq2d e = u f L b B e b L b = L b B u f b L b
329 328 eqeq2d e = u f f = L b B e b L b f = L b B u f b L b
330 324 329 anbi12d e = u f finSupp 0 L e f = L b B e b L b finSupp 0 L u f f = L b B u f b L b
331 ovexd φ F B V
332 eqid LSpan subringAlg J F = LSpan subringAlg J F
333 143 144 332 lbssp B LBasis subringAlg J F LSpan subringAlg J F B = Base subringAlg J F
334 12 333 syl φ LSpan subringAlg J F B = Base subringAlg J F
335 148 73 334 3eqtr4rd φ LSpan subringAlg J F B = H
336 335 eleq2d φ f LSpan subringAlg J F B f H
337 eqid Base Scalar subringAlg J F = Base Scalar subringAlg J F
338 eqid Scalar subringAlg J F = Scalar subringAlg J F
339 eqid 0 Scalar subringAlg J F = 0 Scalar subringAlg J F
340 eqid subringAlg J F = subringAlg J F
341 sdrgsubrg F SubDRing J F SubRing J
342 6 341 syl φ F SubRing J
343 eqid subringAlg J F = subringAlg J F
344 343 sralmod F SubRing J subringAlg J F LMod
345 342 344 syl φ subringAlg J F LMod
346 332 143 337 338 339 340 345 146 ellspds φ f LSpan subringAlg J F B e Base Scalar subringAlg J F B finSupp 0 Scalar subringAlg J F e f = subringAlg J F b B e b subringAlg J F b
347 336 346 bitr3d φ f H e Base Scalar subringAlg J F B finSupp 0 Scalar subringAlg J F e f = subringAlg J F b B e b subringAlg J F b
348 347 biimpa φ f H e Base Scalar subringAlg J F B finSupp 0 Scalar subringAlg J F e f = subringAlg J F b B e b subringAlg J F b
349 eqid J 𝑠 F = J 𝑠 F
350 349 67 ressbas2 F Base J F = Base J 𝑠 F
351 69 350 syl φ F = Base J 𝑠 F
352 147 69 srasca φ J 𝑠 F = Scalar subringAlg J F
353 352 fveq2d φ Base J 𝑠 F = Base Scalar subringAlg J F
354 351 353 eqtr2d φ Base Scalar subringAlg J F = F
355 354 oveq1d φ Base Scalar subringAlg J F B = F B
356 sdrgsubrg H SubDRing L H SubRing L
357 8 356 syl φ H SubRing L
358 subrgsubg H SubRing L H SubGrp L
359 3 19 subg0 H SubGrp L 0 L = 0 J
360 357 358 359 3syl φ 0 L = 0 J
361 3 sdrgdrng H SubDRing L J DivRing
362 8 361 syl φ J DivRing
363 362 drngringd φ J Ring
364 363 ringcmnd φ J CMnd
365 364 cmnmndd φ J Mnd
366 subrgsubg F SubRing J F SubGrp J
367 eqid 0 J = 0 J
368 367 subg0cl F SubGrp J 0 J F
369 342 366 368 3syl φ 0 J F
370 349 67 367 ress0g J Mnd 0 J F F Base J 0 J = 0 J 𝑠 F
371 365 369 69 370 syl3anc φ 0 J = 0 J 𝑠 F
372 352 fveq2d φ 0 J 𝑠 F = 0 Scalar subringAlg J F
373 360 371 372 3eqtrrd φ 0 Scalar subringAlg J F = 0 L
374 373 breq2d φ finSupp 0 Scalar subringAlg J F e finSupp 0 L e
375 374 adantr φ e Base Scalar subringAlg J F B finSupp 0 Scalar subringAlg J F e finSupp 0 L e
376 12 adantr φ e Base Scalar subringAlg J F B B LBasis subringAlg J F
377 subgsubm H SubGrp L H SubMnd L
378 357 358 377 3syl φ H SubMnd L
379 378 adantr φ e Base Scalar subringAlg J F B H SubMnd L
380 3 31 ressmulr H SubDRing L L = J
381 8 380 syl φ L = J
382 147 69 sravsca φ J = subringAlg J F
383 381 382 eqtrd φ L = subringAlg J F
384 383 ad2antrr φ e Base Scalar subringAlg J F B b B L = subringAlg J F
385 384 oveqd φ e Base Scalar subringAlg J F B b B e b L b = e b subringAlg J F b
386 357 ad2antrr φ e Base Scalar subringAlg J F B b B H SubRing L
387 74 ad2antrr φ e Base Scalar subringAlg J F B b B F H
388 5 adantr φ e Base Scalar subringAlg J F B F SubDRing I
389 355 eleq2d φ e Base Scalar subringAlg J F B e F B
390 389 biimpa φ e Base Scalar subringAlg J F B e F B
391 376 388 390 elmaprd φ e Base Scalar subringAlg J F B e : B F
392 391 ffvelcdmda φ e Base Scalar subringAlg J F B b B e b F
393 387 392 sseldd φ e Base Scalar subringAlg J F B b B e b H
394 150 adantr φ e Base Scalar subringAlg J F B B H
395 394 sselda φ e Base Scalar subringAlg J F B b B b H
396 31 386 393 395 subrgmcld φ e Base Scalar subringAlg J F B b B e b L b H
397 385 396 eqeltrrd φ e Base Scalar subringAlg J F B b B e b subringAlg J F b H
398 397 fmpttd φ e Base Scalar subringAlg J F B b B e b subringAlg J F b : B H
399 376 379 398 3 gsumsubm φ e Base Scalar subringAlg J F B L b B e b subringAlg J F b = J b B e b subringAlg J F b
400 381 382 eqtr2d φ subringAlg J F = L
401 400 adantr φ e Base Scalar subringAlg J F B subringAlg J F = L
402 401 oveqd φ e Base Scalar subringAlg J F B e b subringAlg J F b = e b L b
403 402 mpteq2dv φ e Base Scalar subringAlg J F B b B e b subringAlg J F b = b B e b L b
404 403 oveq2d φ e Base Scalar subringAlg J F B L b B e b subringAlg J F b = L b B e b L b
405 12 mptexd φ b B e b subringAlg J F b V
406 fvexd φ subringAlg J F V
407 343 405 362 406 69 gsumsra φ J b B e b subringAlg J F b = subringAlg J F b B e b subringAlg J F b
408 407 adantr φ e Base Scalar subringAlg J F B J b B e b subringAlg J F b = subringAlg J F b B e b subringAlg J F b
409 399 404 408 3eqtr3rd φ e Base Scalar subringAlg J F B subringAlg J F b B e b subringAlg J F b = L b B e b L b
410 409 eqeq2d φ e Base Scalar subringAlg J F B f = subringAlg J F b B e b subringAlg J F b f = L b B e b L b
411 375 410 anbi12d φ e Base Scalar subringAlg J F B finSupp 0 Scalar subringAlg J F e f = subringAlg J F b B e b subringAlg J F b finSupp 0 L e f = L b B e b L b
412 355 411 rexeqbidva φ e Base Scalar subringAlg J F B finSupp 0 Scalar subringAlg J F e f = subringAlg J F b B e b subringAlg J F b e F B finSupp 0 L e f = L b B e b L b
413 412 adantr φ f H e Base Scalar subringAlg J F B finSupp 0 Scalar subringAlg J F e f = subringAlg J F b B e b subringAlg J F b e F B finSupp 0 L e f = L b B e b L b
414 348 413 mpbid φ f H e F B finSupp 0 L e f = L b B e b L b
415 330 8 331 414 ac6mapd φ u F B H f H finSupp 0 L u f f = L b B u f b L b
416 323 415 r19.29a φ a G B finSupp 0 L a X = L b B a b L b