Metamath Proof Explorer


Theorem gsumhashmul

Description: Express a group sum by grouping by nonzero values. (Contributed by Thierry Arnoux, 22-Jun-2024)

Ref Expression
Hypotheses gsumhashmul.b B=BaseG
gsumhashmul.z 0˙=0G
gsumhashmul.x ·˙=G
gsumhashmul.g φGCMnd
gsumhashmul.f φF:AB
gsumhashmul.1 φfinSupp0˙F
Assertion gsumhashmul φGF=GxranF0˙F-1x·˙x

Proof

Step Hyp Ref Expression
1 gsumhashmul.b B=BaseG
2 gsumhashmul.z 0˙=0G
3 gsumhashmul.x ·˙=G
4 gsumhashmul.g φGCMnd
5 gsumhashmul.f φF:AB
6 gsumhashmul.1 φfinSupp0˙F
7 suppssdm Fsupp0˙domF
8 7 5 fssdm φFsupp0˙A
9 5 8 feqresmpt φFsupp0˙F=xsupp0˙FFx
10 9 oveq2d φGFsupp0˙F=GxFsupp0˙Fx
11 relfsupp RelfinSupp
12 11 brrelex1i finSupp0˙FFV
13 6 12 syl φFV
14 5 ffnd φFFnA
15 13 14 fndmexd φAV
16 ssidd φFsupp0˙Fsupp0˙
17 1 2 4 15 5 16 6 gsumres φGFsupp0˙F=GF
18 nfcv _xF1stz
19 fveq2 x=1stzFx=F1stz
20 6 fsuppimpd φFsupp0˙Fin
21 ssidd φBB
22 5 adantr φxsupp0˙FF:AB
23 8 sselda φxsupp0˙FxA
24 22 23 ffvelcdmd φxsupp0˙FFxB
25 5 ffund φFunF
26 funrel FunFRelF
27 reldif RelFRelFV×0˙
28 25 26 27 3syl φRelFV×0˙
29 1stdm RelFV×0˙zFV×0˙1stzdomFV×0˙
30 28 29 sylan φzFV×0˙1stzdomFV×0˙
31 2 fvexi 0˙V
32 31 a1i φ0˙V
33 fressupp FunFFV0˙VFsupp0˙F=FV×0˙
34 25 13 32 33 syl3anc φFsupp0˙F=FV×0˙
35 34 dmeqd φdomFsupp0˙F=domFV×0˙
36 7 a1i φFsupp0˙domF
37 ssdmres Fsupp0˙domFdomFsupp0˙F=Fsupp0˙
38 36 37 sylib φdomFsupp0˙F=Fsupp0˙
39 35 38 eqtr3d φdomFV×0˙=Fsupp0˙
40 39 adantr φzFV×0˙domFV×0˙=Fsupp0˙
41 30 40 eleqtrd φzFV×0˙1stzsupp0˙F
42 25 funresd φFunFsupp0˙F
43 42 adantr φxsupp0˙FFunFsupp0˙F
44 38 eleq2d φxdomFsupp0˙Fxsupp0˙F
45 44 biimpar φxsupp0˙FxdomFsupp0˙F
46 simpr φxsupp0˙Fxsupp0˙F
47 46 fvresd φxsupp0˙FFsupp0˙Fx=Fx
48 funopfvb FunFsupp0˙FxdomFsupp0˙FFsupp0˙Fx=FxxFxFsupp0˙F
49 48 biimpa FunFsupp0˙FxdomFsupp0˙FFsupp0˙Fx=FxxFxFsupp0˙F
50 43 45 47 49 syl21anc φxsupp0˙FxFxFsupp0˙F
51 34 adantr φxsupp0˙FFsupp0˙F=FV×0˙
52 50 51 eleqtrd φxsupp0˙FxFxFV×0˙
53 eqeq2 v=xFxz=vz=xFx
54 53 bibi2d v=xFxx=1stzz=vx=1stzz=xFx
55 54 ralbidv v=xFxzFV×0˙x=1stzz=vzFV×0˙x=1stzz=xFx
56 55 adantl φxsupp0˙Fv=xFxzFV×0˙x=1stzz=vzFV×0˙x=1stzz=xFx
57 fvexd φxsupp0˙FzFV×0˙x=1stz2ndzV
58 28 ad3antrrr φxsupp0˙FzFV×0˙x=1stzRelFV×0˙
59 simplr φxsupp0˙FzFV×0˙x=1stzzFV×0˙
60 1st2nd RelFV×0˙zFV×0˙z=1stz2ndz
61 58 59 60 syl2anc φxsupp0˙FzFV×0˙x=1stzz=1stz2ndz
62 opeq1 x=1stzx2ndz=1stz2ndz
63 62 adantl φxsupp0˙FzFV×0˙x=1stzx2ndz=1stz2ndz
64 61 63 eqtr4d φxsupp0˙FzFV×0˙x=1stzz=x2ndz
65 difssd φxsupp0˙FFV×0˙F
66 65 sselda φxsupp0˙FzFV×0˙zF
67 66 adantr φxsupp0˙FzFV×0˙x=1stzzF
68 64 67 eqeltrrd φxsupp0˙FzFV×0˙x=1stzx2ndzF
69 64 68 jca φxsupp0˙FzFV×0˙x=1stzz=x2ndzx2ndzF
70 opeq2 y=2ndzxy=x2ndz
71 70 eqeq2d y=2ndzz=xyz=x2ndz
72 70 eleq1d y=2ndzxyFx2ndzF
73 71 72 anbi12d y=2ndzz=xyxyFz=x2ndzx2ndzF
74 57 69 73 spcedv φxsupp0˙FzFV×0˙x=1stzyz=xyxyF
75 vex xV
76 75 elsnres zFxyz=xyxyF
77 74 76 sylibr φxsupp0˙FzFV×0˙x=1stzzFx
78 14 ad3antrrr φxsupp0˙FzFV×0˙x=1stzFFnA
79 23 ad2antrr φxsupp0˙FzFV×0˙x=1stzxA
80 fnressn FFnAxAFx=xFx
81 78 79 80 syl2anc φxsupp0˙FzFV×0˙x=1stzFx=xFx
82 77 81 eleqtrd φxsupp0˙FzFV×0˙x=1stzzxFx
83 elsni zxFxz=xFx
84 82 83 syl φxsupp0˙FzFV×0˙x=1stzz=xFx
85 simpr φxsupp0˙FzFV×0˙z=xFxz=xFx
86 85 fveq2d φxsupp0˙FzFV×0˙z=xFx1stz=1stxFx
87 fvex FxV
88 75 87 op1st 1stxFx=x
89 86 88 eqtr2di φxsupp0˙FzFV×0˙z=xFxx=1stz
90 84 89 impbida φxsupp0˙FzFV×0˙x=1stzz=xFx
91 90 ralrimiva φxsupp0˙FzFV×0˙x=1stzz=xFx
92 52 56 91 rspcedvd φxsupp0˙FvFV×0˙zFV×0˙x=1stzz=v
93 reu6 ∃!zFV×0˙x=1stzvFV×0˙zFV×0˙x=1stzz=v
94 92 93 sylibr φxsupp0˙F∃!zFV×0˙x=1stz
95 18 1 2 19 4 20 21 24 41 94 gsummptf1o φGxFsupp0˙Fx=GzFV×0˙F1stz
96 10 17 95 3eqtr3d φGF=GzFV×0˙F1stz
97 simpr φzFV×0˙zFV×0˙
98 97 eldifad φzFV×0˙zF
99 funfv1st2nd FunFzFF1stz=2ndz
100 25 98 99 syl2an2r φzFV×0˙F1stz=2ndz
101 100 mpteq2dva φzFV×0˙F1stz=zFV×0˙2ndz
102 101 oveq2d φGzFV×0˙F1stz=GzFV×0˙2ndz
103 96 102 eqtrd φGF=GzFV×0˙2ndz
104 nfcv _z1stt
105 fvex 2ndtV
106 fvex 1sttV
107 105 106 op2ndd z=2ndt1stt2ndz=1stt
108 resfnfinfin FFnAFsupp0˙FinFsupp0˙FFin
109 14 20 108 syl2anc φFsupp0˙FFin
110 34 109 eqeltrrd φFV×0˙Fin
111 34 rneqd φranFsupp0˙F=ranFV×0˙
112 rnresss ranFsupp0˙FranF
113 5 frnd φranFB
114 112 113 sstrid φranFsupp0˙FB
115 111 114 eqsstrrd φranFV×0˙B
116 2ndrn RelFV×0˙zFV×0˙2ndzranFV×0˙
117 28 116 sylan φzFV×0˙2ndzranFV×0˙
118 relcnv RelF-1
119 reldif RelF-1RelF-10˙×V
120 118 119 mp1i φRelF-10˙×V
121 1st2nd RelF-10˙×VtF-10˙×Vt=1stt2ndt
122 120 121 sylan φtF-10˙×Vt=1stt2ndt
123 cnvdif FV×0˙-1=F-1V×0˙-1
124 cnvxp V×0˙-1=0˙×V
125 124 difeq2i F-1V×0˙-1=F-10˙×V
126 123 125 eqtri FV×0˙-1=F-10˙×V
127 126 eqimss2i F-10˙×VFV×0˙-1
128 127 a1i φF-10˙×VFV×0˙-1
129 128 sselda φtF-10˙×VtFV×0˙-1
130 122 129 eqeltrrd φtF-10˙×V1stt2ndtFV×0˙-1
131 106 105 opelcnv 1stt2ndtFV×0˙-12ndt1sttFV×0˙
132 130 131 sylib φtF-10˙×V2ndt1sttFV×0˙
133 28 adantr φzFV×0˙RelFV×0˙
134 eqidd φzFV×0˙z-1=z-1
135 cnvf1olem RelFV×0˙zFV×0˙z-1=z-1z-1FV×0˙-1z=z-1-1
136 135 simpld RelFV×0˙zFV×0˙z-1=z-1z-1FV×0˙-1
137 133 97 134 136 syl12anc φzFV×0˙z-1FV×0˙-1
138 137 126 eleqtrdi φzFV×0˙z-1F-10˙×V
139 eqeq2 u=z-1t=ut=z-1
140 139 bibi2d u=z-1z=2ndt1sttt=uz=2ndt1sttt=z-1
141 140 ralbidv u=z-1tF-10˙×Vz=2ndt1sttt=utF-10˙×Vz=2ndt1sttt=z-1
142 141 adantl φzFV×0˙u=z-1tF-10˙×Vz=2ndt1sttt=utF-10˙×Vz=2ndt1sttt=z-1
143 118 119 mp1i φzFV×0˙tF-10˙×Vz=2ndt1sttRelF-10˙×V
144 simplr φzFV×0˙tF-10˙×Vz=2ndt1stttF-10˙×V
145 simpr φzFV×0˙tF-10˙×Vz=2ndt1sttz=2ndt1stt
146 df-rel RelF-10˙×VF-10˙×VV×V
147 120 146 sylib φF-10˙×VV×V
148 147 ad3antrrr φzFV×0˙tF-10˙×Vz=2ndt1sttF-10˙×VV×V
149 148 144 sseldd φzFV×0˙tF-10˙×Vz=2ndt1stttV×V
150 2nd1st tV×Vt-1=2ndt1stt
151 149 150 syl φzFV×0˙tF-10˙×Vz=2ndt1sttt-1=2ndt1stt
152 145 151 eqtr4d φzFV×0˙tF-10˙×Vz=2ndt1sttz=t-1
153 cnvf1olem RelF-10˙×VtF-10˙×Vz=t-1zF-10˙×V-1t=z-1
154 153 simprd RelF-10˙×VtF-10˙×Vz=t-1t=z-1
155 143 144 152 154 syl12anc φzFV×0˙tF-10˙×Vz=2ndt1sttt=z-1
156 28 ad3antrrr φzFV×0˙tF-10˙×Vt=z-1RelFV×0˙
157 97 ad2antrr φzFV×0˙tF-10˙×Vt=z-1zFV×0˙
158 simpr φzFV×0˙tF-10˙×Vt=z-1t=z-1
159 cnvf1olem RelFV×0˙zFV×0˙t=z-1tFV×0˙-1z=t-1
160 159 simprd RelFV×0˙zFV×0˙t=z-1z=t-1
161 156 157 158 160 syl12anc φzFV×0˙tF-10˙×Vt=z-1z=t-1
162 147 ad3antrrr φzFV×0˙tF-10˙×Vt=z-1F-10˙×VV×V
163 simplr φzFV×0˙tF-10˙×Vt=z-1tF-10˙×V
164 162 163 sseldd φzFV×0˙tF-10˙×Vt=z-1tV×V
165 164 150 syl φzFV×0˙tF-10˙×Vt=z-1t-1=2ndt1stt
166 161 165 eqtrd φzFV×0˙tF-10˙×Vt=z-1z=2ndt1stt
167 155 166 impbida φzFV×0˙tF-10˙×Vz=2ndt1sttt=z-1
168 167 ralrimiva φzFV×0˙tF-10˙×Vz=2ndt1sttt=z-1
169 138 142 168 rspcedvd φzFV×0˙uF-10˙×VtF-10˙×Vz=2ndt1sttt=u
170 reu6 ∃!tF-10˙×Vz=2ndt1sttuF-10˙×VtF-10˙×Vz=2ndt1sttt=u
171 169 170 sylibr φzFV×0˙∃!tF-10˙×Vz=2ndt1stt
172 104 1 2 107 4 110 115 117 132 171 gsummptf1o φGzFV×0˙2ndz=GtF-10˙×V1stt
173 fveq2 t=z1stt=1stz
174 173 cbvmptv tF-10˙×V1stt=zF-10˙×V1stz
175 34 cnveqd φFsupp0˙F-1=FV×0˙-1
176 175 126 eqtr2di φF-10˙×V=Fsupp0˙F-1
177 176 mpteq1d φzF-10˙×V1stz=zFsupp0˙F-11stz
178 174 177 eqtrid φtF-10˙×V1stt=zFsupp0˙F-11stz
179 178 oveq2d φGtF-10˙×V1stt=GzFsupp0˙F-11stz
180 103 172 179 3eqtrd φGF=GzFsupp0˙F-11stz
181 nfcv _y1stz
182 nfv xφ
183 vex yV
184 75 183 op1std z=xy1stz=x
185 relcnv RelFsupp0˙F-1
186 185 a1i φRelFsupp0˙F-1
187 cnvfi Fsupp0˙FFinFsupp0˙F-1Fin
188 109 187 syl φFsupp0˙F-1Fin
189 113 adantr φzFsupp0˙F-1ranFB
190 185 a1i φzFsupp0˙F-1RelFsupp0˙F-1
191 simpr φzFsupp0˙F-1zFsupp0˙F-1
192 1stdm RelFsupp0˙F-1zFsupp0˙F-11stzdomFsupp0˙F-1
193 190 191 192 syl2anc φzFsupp0˙F-11stzdomFsupp0˙F-1
194 df-rn ranFsupp0˙F=domFsupp0˙F-1
195 193 194 eleqtrrdi φzFsupp0˙F-11stzranFsupp0˙F
196 112 195 sselid φzFsupp0˙F-11stzranF
197 189 196 sseldd φzFsupp0˙F-11stzB
198 181 182 1 184 186 188 4 197 gsummpt2d φGzFsupp0˙F-11stz=GxdomFsupp0˙F-1GyFsupp0˙F-1xx
199 df-ima FFsupp0˙=ranFsupp0˙F
200 supppreima FunFFV0˙VFsupp0˙=F-1ranF0˙
201 25 13 32 200 syl3anc φFsupp0˙=F-1ranF0˙
202 201 imaeq2d φFFsupp0˙=FF-1ranF0˙
203 199 202 eqtr3id φranFsupp0˙F=FF-1ranF0˙
204 funimacnv FunFFF-1ranF0˙=ranF0˙ranF
205 25 204 syl φFF-1ranF0˙=ranF0˙ranF
206 difssd φranF0˙ranF
207 df-ss ranF0˙ranFranF0˙ranF=ranF0˙
208 206 207 sylib φranF0˙ranF=ranF0˙
209 203 205 208 3eqtrd φranFsupp0˙F=ranF0˙
210 194 209 eqtr3id φdomFsupp0˙F-1=ranF0˙
211 4 cmnmndd φGMnd
212 211 adantr φxdomFsupp0˙F-1GMnd
213 109 adantr φxdomFsupp0˙F-1Fsupp0˙FFin
214 imafi2 Fsupp0˙F-1FinFsupp0˙F-1xFin
215 213 187 214 3syl φxdomFsupp0˙F-1Fsupp0˙F-1xFin
216 194 114 eqsstrrid φdomFsupp0˙F-1B
217 216 sselda φxdomFsupp0˙F-1xB
218 1 3 gsumconst GMndFsupp0˙F-1xFinxBGyFsupp0˙F-1xx=Fsupp0˙F-1x·˙x
219 212 215 217 218 syl3anc φxdomFsupp0˙F-1GyFsupp0˙F-1xx=Fsupp0˙F-1x·˙x
220 cnvresima Fsupp0˙F-1x=F-1xsupp0˙F
221 210 eleq2d φxdomFsupp0˙F-1xranF0˙
222 221 biimpa φxdomFsupp0˙F-1xranF0˙
223 222 snssd φxdomFsupp0˙F-1xranF0˙
224 sspreima FunFxranF0˙F-1xF-1ranF0˙
225 25 223 224 syl2an2r φxdomFsupp0˙F-1F-1xF-1ranF0˙
226 201 adantr φxdomFsupp0˙F-1Fsupp0˙=F-1ranF0˙
227 225 226 sseqtrrd φxdomFsupp0˙F-1F-1xFsupp0˙
228 df-ss F-1xFsupp0˙F-1xsupp0˙F=F-1x
229 227 228 sylib φxdomFsupp0˙F-1F-1xsupp0˙F=F-1x
230 220 229 eqtr2id φxdomFsupp0˙F-1F-1x=Fsupp0˙F-1x
231 230 fveq2d φxdomFsupp0˙F-1F-1x=Fsupp0˙F-1x
232 231 oveq1d φxdomFsupp0˙F-1F-1x·˙x=Fsupp0˙F-1x·˙x
233 219 232 eqtr4d φxdomFsupp0˙F-1GyFsupp0˙F-1xx=F-1x·˙x
234 210 233 mpteq12dva φxdomFsupp0˙F-1GyFsupp0˙F-1xx=xranF0˙F-1x·˙x
235 234 oveq2d φGxdomFsupp0˙F-1GyFsupp0˙F-1xx=GxranF0˙F-1x·˙x
236 180 198 235 3eqtrd φGF=GxranF0˙F-1x·˙x