| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsxms.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdsxms.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
| 3 |
|
prdsxms.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 4 |
|
prdsxms.d |
⊢ 𝐷 = ( dist ‘ 𝑌 ) |
| 5 |
|
prdsxms.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 6 |
|
prdsxms.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ ∞MetSp ) |
| 7 |
|
prdsxms.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑌 ) |
| 8 |
|
prdsxms.v |
⊢ 𝑉 = ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) |
| 9 |
|
prdsxms.e |
⊢ 𝐸 = ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ↾ ( 𝑉 × 𝑉 ) ) |
| 10 |
|
prdsxms.k |
⊢ 𝐾 = ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) |
| 11 |
|
prdsxms.c |
⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) } |
| 12 |
|
topnfn |
⊢ TopOpen Fn V |
| 13 |
6
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 14 |
|
dffn2 |
⊢ ( 𝑅 Fn 𝐼 ↔ 𝑅 : 𝐼 ⟶ V ) |
| 15 |
13 14
|
sylib |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ V ) |
| 16 |
|
fnfco |
⊢ ( ( TopOpen Fn V ∧ 𝑅 : 𝐼 ⟶ V ) → ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) |
| 17 |
12 15 16
|
sylancr |
⊢ ( 𝜑 → ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) |
| 18 |
11
|
ptval |
⊢ ( ( 𝐼 ∈ Fin ∧ ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ 𝐶 ) ) |
| 19 |
3 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ 𝐶 ) ) |
| 20 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ↔ ( 𝑥 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑥 ≠ ∅ ) ) |
| 21 |
1 2 3 4 5 6
|
prdsxmslem1 |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 22 |
|
blrn |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) → ( 𝑥 ∈ ran ( ball ‘ 𝐷 ) ↔ ∃ 𝑝 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ball ‘ 𝐷 ) ↔ ∃ 𝑝 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 24 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 25 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → 𝑝 ∈ 𝐵 ) |
| 26 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → 𝑟 ∈ ℝ* ) |
| 27 |
|
xbln0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ ↔ 0 < 𝑟 ) ) |
| 28 |
24 25 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ ↔ 0 < 𝑟 ) ) |
| 29 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝐼 ∈ Fin ) |
| 30 |
29
|
mptexd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ∈ V ) |
| 31 |
|
ovex |
⊢ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ∈ V |
| 32 |
31
|
rgenw |
⊢ ∀ 𝑛 ∈ 𝐼 ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ∈ V |
| 33 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) |
| 34 |
33
|
fnmpt |
⊢ ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ∈ V → ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ) |
| 35 |
32 34
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ) |
| 36 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑅 : 𝐼 ⟶ ∞MetSp ) |
| 37 |
36
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp ) |
| 38 |
8 9
|
xmsxmet |
⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 40 |
|
eqid |
⊢ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) = ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) |
| 41 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 42 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑆 ∈ 𝑊 ) |
| 43 |
37
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ∀ 𝑘 ∈ 𝐼 ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp ) |
| 44 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑝 ∈ 𝐵 ) |
| 45 |
36
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑅 = ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑆 Xs 𝑅 ) = ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 47 |
1 46
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑌 = ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 48 |
47
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 49 |
5 48
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 50 |
44 49
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑝 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) ) ) |
| 51 |
40 41 42 29 43 8 50
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ∀ 𝑘 ∈ 𝐼 ( 𝑝 ‘ 𝑘 ) ∈ 𝑉 ) |
| 52 |
51
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑝 ‘ 𝑘 ) ∈ 𝑉 ) |
| 53 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑟 ∈ ℝ* ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → 𝑟 ∈ ℝ* ) |
| 55 |
|
eqid |
⊢ ( MetOpen ‘ 𝐸 ) = ( MetOpen ‘ 𝐸 ) |
| 56 |
55
|
blopn |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ ( MetOpen ‘ 𝐸 ) ) |
| 57 |
39 52 54 56
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ ( MetOpen ‘ 𝐸 ) ) |
| 58 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) = ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 59 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 60 |
59 8
|
eqtr4di |
⊢ ( 𝑛 = 𝑘 → ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) = 𝑉 ) |
| 61 |
60
|
sqxpeqd |
⊢ ( 𝑛 = 𝑘 → ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) = ( 𝑉 × 𝑉 ) ) |
| 62 |
58 61
|
reseq12d |
⊢ ( 𝑛 = 𝑘 → ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) = ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ↾ ( 𝑉 × 𝑉 ) ) ) |
| 63 |
62 9
|
eqtr4di |
⊢ ( 𝑛 = 𝑘 → ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) = 𝐸 ) |
| 64 |
63
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) = ( ball ‘ 𝐸 ) ) |
| 65 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑝 ‘ 𝑛 ) = ( 𝑝 ‘ 𝑘 ) ) |
| 66 |
|
eqidd |
⊢ ( 𝑛 = 𝑘 → 𝑟 = 𝑟 ) |
| 67 |
64 65 66
|
oveq123d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) = ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 68 |
|
ovex |
⊢ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ V |
| 69 |
67 33 68
|
fvmpt |
⊢ ( 𝑘 ∈ 𝐼 → ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) = ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 70 |
69
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) = ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 71 |
|
fvco3 |
⊢ ( ( 𝑅 : 𝐼 ⟶ ∞MetSp ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 72 |
71 10
|
eqtr4di |
⊢ ( ( 𝑅 : 𝐼 ⟶ ∞MetSp ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = 𝐾 ) |
| 73 |
36 72
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = 𝐾 ) |
| 74 |
10 8 9
|
xmstopn |
⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp → 𝐾 = ( MetOpen ‘ 𝐸 ) ) |
| 75 |
37 74
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → 𝐾 = ( MetOpen ‘ 𝐸 ) ) |
| 76 |
73 75
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ( MetOpen ‘ 𝐸 ) ) |
| 77 |
57 70 76
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 78 |
77
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 79 |
36
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑅 = ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) |
| 80 |
79
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑆 Xs 𝑅 ) = ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) |
| 81 |
1 80
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑌 = ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) |
| 82 |
81
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( dist ‘ 𝑌 ) = ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) |
| 83 |
4 82
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝐷 = ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) |
| 84 |
83
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( ball ‘ 𝐷 ) = ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) ) |
| 85 |
84
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑝 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) |
| 86 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑅 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑘 ) ) |
| 87 |
86
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) = ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) |
| 88 |
87
|
oveq2i |
⊢ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) = ( 𝑆 Xs ( 𝑘 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑘 ) ) ) |
| 89 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) |
| 90 |
|
eqid |
⊢ ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) |
| 91 |
81
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) |
| 92 |
5 91
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) |
| 93 |
44 92
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 𝑝 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) |
| 94 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → 0 < 𝑟 ) |
| 95 |
88 89 8 9 90 42 29 37 39 93 53 94
|
prdsbl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑝 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑛 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 96 |
85 95
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 97 |
|
fneq1 |
⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( 𝑔 Fn 𝐼 ↔ ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ) ) |
| 98 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( 𝑔 ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ) |
| 99 |
98
|
eleq1d |
⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ↔ ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 100 |
99
|
ralbidv |
⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 101 |
97 100
|
anbi12d |
⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
| 102 |
98 69
|
sylan9eq |
⊢ ( ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑘 ) = ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 103 |
102
|
ixpeq2dva |
⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 104 |
103
|
eqeq2d |
⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ↔ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
| 105 |
101 104
|
anbi12d |
⊢ ( 𝑔 = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ↔ ( ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
| 106 |
105
|
spcegv |
⊢ ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ∈ V → ( ( ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 107 |
106
|
3impib |
⊢ ( ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ∈ V ∧ ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑝 ‘ 𝑛 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑛 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑛 ) ) ) ) ) 𝑟 ) ) ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) |
| 108 |
30 35 78 96 107
|
syl121anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ∧ 0 < 𝑟 ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) |
| 109 |
108
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( 0 < 𝑟 → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 110 |
28 109
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 111 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 112 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 113 |
112
|
neeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( 𝑥 ≠ ∅ ↔ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ ) ) |
| 114 |
|
df-3an |
⊢ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 115 |
|
ral0 |
⊢ ∀ 𝑘 ∈ ∅ ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) |
| 116 |
|
difeq2 |
⊢ ( 𝑧 = 𝐼 → ( 𝐼 ∖ 𝑧 ) = ( 𝐼 ∖ 𝐼 ) ) |
| 117 |
|
difid |
⊢ ( 𝐼 ∖ 𝐼 ) = ∅ |
| 118 |
116 117
|
eqtrdi |
⊢ ( 𝑧 = 𝐼 → ( 𝐼 ∖ 𝑧 ) = ∅ ) |
| 119 |
118
|
raleqdv |
⊢ ( 𝑧 = 𝐼 → ( ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ ∅ ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 120 |
119
|
rspcev |
⊢ ( ( 𝐼 ∈ Fin ∧ ∀ 𝑘 ∈ ∅ ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) → ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 121 |
3 115 120
|
sylancl |
⊢ ( 𝜑 → ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 123 |
122
|
biantrud |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
| 124 |
114 123
|
bitr4id |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
| 125 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ↔ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) |
| 126 |
124 125
|
bi2anan9 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 127 |
126
|
exbidv |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 128 |
111 113 127
|
3imtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) ∧ 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( 𝑥 ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 129 |
128
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) ) → ( 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑥 ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 130 |
129
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑥 ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 131 |
23 130
|
sylbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ball ‘ 𝐷 ) → ( 𝑥 ≠ ∅ → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 132 |
131
|
impd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 133 |
20 132
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 134 |
133
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 135 |
|
ssab |
⊢ ( ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ⊆ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) } ↔ ∀ 𝑥 ( 𝑥 ∈ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) → ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 136 |
134 135
|
sylibr |
⊢ ( 𝜑 → ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ⊆ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) } ) |
| 137 |
136 11
|
sseqtrrdi |
⊢ ( 𝜑 → ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ⊆ 𝐶 ) |
| 138 |
|
ssv |
⊢ ∞MetSp ⊆ V |
| 139 |
|
fnssres |
⊢ ( ( TopOpen Fn V ∧ ∞MetSp ⊆ V ) → ( TopOpen ↾ ∞MetSp ) Fn ∞MetSp ) |
| 140 |
12 138 139
|
mp2an |
⊢ ( TopOpen ↾ ∞MetSp ) Fn ∞MetSp |
| 141 |
|
fvres |
⊢ ( 𝑥 ∈ ∞MetSp → ( ( TopOpen ↾ ∞MetSp ) ‘ 𝑥 ) = ( TopOpen ‘ 𝑥 ) ) |
| 142 |
|
xmstps |
⊢ ( 𝑥 ∈ ∞MetSp → 𝑥 ∈ TopSp ) |
| 143 |
|
eqid |
⊢ ( TopOpen ‘ 𝑥 ) = ( TopOpen ‘ 𝑥 ) |
| 144 |
143
|
tpstop |
⊢ ( 𝑥 ∈ TopSp → ( TopOpen ‘ 𝑥 ) ∈ Top ) |
| 145 |
142 144
|
syl |
⊢ ( 𝑥 ∈ ∞MetSp → ( TopOpen ‘ 𝑥 ) ∈ Top ) |
| 146 |
141 145
|
eqeltrd |
⊢ ( 𝑥 ∈ ∞MetSp → ( ( TopOpen ↾ ∞MetSp ) ‘ 𝑥 ) ∈ Top ) |
| 147 |
146
|
rgen |
⊢ ∀ 𝑥 ∈ ∞MetSp ( ( TopOpen ↾ ∞MetSp ) ‘ 𝑥 ) ∈ Top |
| 148 |
|
ffnfv |
⊢ ( ( TopOpen ↾ ∞MetSp ) : ∞MetSp ⟶ Top ↔ ( ( TopOpen ↾ ∞MetSp ) Fn ∞MetSp ∧ ∀ 𝑥 ∈ ∞MetSp ( ( TopOpen ↾ ∞MetSp ) ‘ 𝑥 ) ∈ Top ) ) |
| 149 |
140 147 148
|
mpbir2an |
⊢ ( TopOpen ↾ ∞MetSp ) : ∞MetSp ⟶ Top |
| 150 |
|
fco2 |
⊢ ( ( ( TopOpen ↾ ∞MetSp ) : ∞MetSp ⟶ Top ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ) |
| 151 |
149 6 150
|
sylancr |
⊢ ( 𝜑 → ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ) |
| 152 |
|
eqid |
⊢ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) = X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) |
| 153 |
11 152
|
ptbasfi |
⊢ ( ( 𝐼 ∈ Fin ∧ ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ) → 𝐶 = ( fi ‘ ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ) ) |
| 154 |
3 151 153
|
syl2anc |
⊢ ( 𝜑 → 𝐶 = ( fi ‘ ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ) ) |
| 155 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
| 156 |
155
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) → ( MetOpen ‘ 𝐷 ) ∈ Top ) |
| 157 |
21 156
|
syl |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) ∈ Top ) |
| 158 |
1 5 2 3 13
|
prdsbas2 |
⊢ ( 𝜑 → 𝐵 = X 𝑘 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 159 |
6 72
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = 𝐾 ) |
| 160 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp ) |
| 161 |
|
xmstps |
⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ ∞MetSp → ( 𝑅 ‘ 𝑘 ) ∈ TopSp ) |
| 162 |
160 161
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑘 ) ∈ TopSp ) |
| 163 |
8 10
|
istps |
⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ 𝑉 ) ) |
| 164 |
162 163
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐾 ∈ ( TopOn ‘ 𝑉 ) ) |
| 165 |
159 164
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∈ ( TopOn ‘ 𝑉 ) ) |
| 166 |
|
toponuni |
⊢ ( ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∈ ( TopOn ‘ 𝑉 ) → 𝑉 = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 167 |
165 166
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑉 = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 168 |
8 167
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 169 |
168
|
ixpeq2dva |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 170 |
158 169
|
eqtrd |
⊢ ( 𝜑 → 𝐵 = X 𝑘 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) |
| 171 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ) |
| 172 |
171
|
unieqd |
⊢ ( 𝑘 = 𝑛 → ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ) |
| 173 |
172
|
cbvixpv |
⊢ X 𝑘 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) |
| 174 |
170 173
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ) |
| 175 |
155
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) → ( MetOpen ‘ 𝐷 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 176 |
21 175
|
syl |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 177 |
|
toponmax |
⊢ ( ( MetOpen ‘ 𝐷 ) ∈ ( TopOn ‘ 𝐵 ) → 𝐵 ∈ ( MetOpen ‘ 𝐷 ) ) |
| 178 |
176 177
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( MetOpen ‘ 𝐷 ) ) |
| 179 |
174 178
|
eqeltrrd |
⊢ ( 𝜑 → X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 180 |
179
|
snssd |
⊢ ( 𝜑 → { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ⊆ ( MetOpen ‘ 𝐷 ) ) |
| 181 |
174
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 182 |
181
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 183 |
182
|
cnveqd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) = ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 184 |
183
|
imaeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 185 |
|
fveq1 |
⊢ ( 𝑤 = 𝑝 → ( 𝑤 ‘ 𝑘 ) = ( 𝑝 ‘ 𝑘 ) ) |
| 186 |
185
|
eleq1d |
⊢ ( 𝑤 = 𝑝 → ( ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 187 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) |
| 188 |
187
|
mptpreima |
⊢ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = { 𝑤 ∈ 𝐵 ∣ ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 } |
| 189 |
186 188
|
elrab2 |
⊢ ( 𝑝 ∈ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 190 |
160 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 191 |
190
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 192 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → 𝑢 ∈ 𝐾 ) |
| 193 |
160 74
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐾 = ( MetOpen ‘ 𝐸 ) ) |
| 194 |
193
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → 𝐾 = ( MetOpen ‘ 𝐸 ) ) |
| 195 |
192 194
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → 𝑢 ∈ ( MetOpen ‘ 𝐸 ) ) |
| 196 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) |
| 197 |
55
|
mopni2 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑢 ∈ ( MetOpen ‘ 𝐸 ) ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) → ∃ 𝑟 ∈ ℝ+ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) |
| 198 |
191 195 196 197
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → ∃ 𝑟 ∈ ℝ+ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) |
| 199 |
21
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 200 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → 𝑝 ∈ 𝐵 ) |
| 201 |
200
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝑝 ∈ 𝐵 ) |
| 202 |
|
rpxr |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) |
| 203 |
202
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℝ* ) |
| 204 |
155
|
blopn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 205 |
199 201 203 204
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 206 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℝ+ ) |
| 207 |
|
blcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) → 𝑝 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 208 |
199 201 206 207
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝑝 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 209 |
|
blssm |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑝 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
| 210 |
199 201 203 209
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐵 ) |
| 211 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) |
| 212 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝜑 ) |
| 213 |
|
rpgt0 |
⊢ ( 𝑟 ∈ ℝ+ → 0 < 𝑟 ) |
| 214 |
213
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → 0 < 𝑟 ) |
| 215 |
212 201 203 214 96
|
syl121anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 216 |
215
|
eleq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ↔ 𝑤 ∈ X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
| 217 |
216
|
biimpa |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → 𝑤 ∈ X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 218 |
|
vex |
⊢ 𝑤 ∈ V |
| 219 |
218
|
elixp |
⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ↔ ( 𝑤 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
| 220 |
219
|
simprbi |
⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐼 ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) → ∀ 𝑘 ∈ 𝐼 ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 221 |
217 220
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 222 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → 𝑘 ∈ 𝐼 ) |
| 223 |
|
rsp |
⊢ ( ∀ 𝑘 ∈ 𝐼 ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( 𝑘 ∈ 𝐼 → ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
| 224 |
221 222 223
|
sylc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( 𝑤 ‘ 𝑘 ) ∈ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
| 225 |
211 224
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 ) |
| 226 |
210 225
|
ssrabdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ { 𝑤 ∈ 𝐵 ∣ ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 } ) |
| 227 |
226 188
|
sseqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 228 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑝 ∈ 𝑦 ↔ 𝑝 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 229 |
|
sseq1 |
⊢ ( 𝑦 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 230 |
228 229
|
anbi12d |
⊢ ( 𝑦 = ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) → ( ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ↔ ( 𝑝 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 231 |
230
|
rspcev |
⊢ ( ( ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ( MetOpen ‘ 𝐷 ) ∧ ( 𝑝 ∈ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ∧ ( 𝑝 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 232 |
205 208 227 231
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑝 ‘ 𝑘 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑢 ) ) → ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 233 |
198 232
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) ) ) → ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 234 |
233
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ‘ 𝑘 ) ∈ 𝑢 ) → ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 235 |
189 234
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( 𝑝 ∈ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 236 |
235
|
ralrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ∀ 𝑝 ∈ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 237 |
157
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( MetOpen ‘ 𝐷 ) ∈ Top ) |
| 238 |
|
eltop2 |
⊢ ( ( MetOpen ‘ 𝐷 ) ∈ Top → ( ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ∀ 𝑝 ∈ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 239 |
237 238
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ∀ 𝑝 ∈ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∃ 𝑦 ∈ ( MetOpen ‘ 𝐷 ) ( 𝑝 ∈ 𝑦 ∧ 𝑦 ⊆ ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 240 |
236 239
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ ( 𝑤 ∈ 𝐵 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 241 |
184 240
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 242 |
241
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∀ 𝑢 ∈ 𝐾 ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 243 |
242 159
|
raleqtrrdv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 244 |
243
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐼 ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 245 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) = ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ) |
| 246 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑤 ‘ 𝑘 ) = ( 𝑤 ‘ 𝑚 ) ) |
| 247 |
246
|
mpteq2dv |
⊢ ( 𝑘 = 𝑚 → ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) ) |
| 248 |
247
|
cnveqd |
⊢ ( 𝑘 = 𝑚 → ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) ) |
| 249 |
248
|
imaeq1d |
⊢ ( 𝑘 = 𝑚 → ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) |
| 250 |
249
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) ) |
| 251 |
245 250
|
raleqbidv |
⊢ ( 𝑘 = 𝑚 → ( ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) ) |
| 252 |
251
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ 𝐼 ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ∀ 𝑚 ∈ 𝐼 ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 253 |
244 252
|
sylib |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝐼 ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ) |
| 254 |
|
eqid |
⊢ ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) = ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) |
| 255 |
254
|
fmpox |
⊢ ( ∀ 𝑚 ∈ 𝐼 ∀ 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ∈ ( MetOpen ‘ 𝐷 ) ↔ ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) : ∪ 𝑚 ∈ 𝐼 ( { 𝑚 } × ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ) ⟶ ( MetOpen ‘ 𝐷 ) ) |
| 256 |
253 255
|
sylib |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) : ∪ 𝑚 ∈ 𝐼 ( { 𝑚 } × ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ) ⟶ ( MetOpen ‘ 𝐷 ) ) |
| 257 |
256
|
frnd |
⊢ ( 𝜑 → ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ⊆ ( MetOpen ‘ 𝐷 ) ) |
| 258 |
180 257
|
unssd |
⊢ ( 𝜑 → ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ⊆ ( MetOpen ‘ 𝐷 ) ) |
| 259 |
|
fiss |
⊢ ( ( ( MetOpen ‘ 𝐷 ) ∈ Top ∧ ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ⊆ ( MetOpen ‘ 𝐷 ) ) → ( fi ‘ ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ) ⊆ ( fi ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 260 |
157 258 259
|
syl2anc |
⊢ ( 𝜑 → ( fi ‘ ( { X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) } ∪ ran ( 𝑚 ∈ 𝐼 , 𝑢 ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑚 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐼 ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑚 ) ) “ 𝑢 ) ) ) ) ⊆ ( fi ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 261 |
154 260
|
eqsstrd |
⊢ ( 𝜑 → 𝐶 ⊆ ( fi ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 262 |
|
fitop |
⊢ ( ( MetOpen ‘ 𝐷 ) ∈ Top → ( fi ‘ ( MetOpen ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 263 |
157 262
|
syl |
⊢ ( 𝜑 → ( fi ‘ ( MetOpen ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 264 |
155
|
mopnval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) → ( MetOpen ‘ 𝐷 ) = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
| 265 |
21 264
|
syl |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
| 266 |
|
tgdif0 |
⊢ ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) |
| 267 |
265 266
|
eqtr4di |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) ) |
| 268 |
263 267
|
eqtrd |
⊢ ( 𝜑 → ( fi ‘ ( MetOpen ‘ 𝐷 ) ) = ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) ) |
| 269 |
261 268
|
sseqtrd |
⊢ ( 𝜑 → 𝐶 ⊆ ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) ) |
| 270 |
|
2basgen |
⊢ ( ( ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ⊆ 𝐶 ∧ 𝐶 ⊆ ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) ) → ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) = ( topGen ‘ 𝐶 ) ) |
| 271 |
137 269 270
|
syl2anc |
⊢ ( 𝜑 → ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) = ( topGen ‘ 𝐶 ) ) |
| 272 |
19 271
|
eqtr4d |
⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ ( ran ( ball ‘ 𝐷 ) ∖ { ∅ } ) ) ) |
| 273 |
1 2 3 13 7
|
prdstopn |
⊢ ( 𝜑 → 𝐽 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 274 |
272 273 267
|
3eqtr4d |
⊢ ( 𝜑 → 𝐽 = ( MetOpen ‘ 𝐷 ) ) |