Metamath Proof Explorer


Theorem aks4d1p1p5

Description: Show inequality for existence of a non-divisor. (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses aks4d1p1p5.1 φN
aks4d1p1p5.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p1p5.3 B=log2N5
aks4d1p1p5.4 φ4N
aks4d1p1p5.5 C=log2log2N5+1
aks4d1p1p5.6 D=log2N2
aks4d1p1p5.7 E=log2N4
Assertion aks4d1p1p5 φA<2B

Proof

Step Hyp Ref Expression
1 aks4d1p1p5.1 φN
2 aks4d1p1p5.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p1p5.3 B=log2N5
4 aks4d1p1p5.4 φ4N
5 aks4d1p1p5.5 C=log2log2N5+1
6 aks4d1p1p5.6 D=log2N2
7 aks4d1p1p5.7 E=log2N4
8 3re 3
9 8 a1i φ3
10 4re 4
11 10 a1i φ4
12 1 nnred φN
13 9 lep1d φ33+1
14 3p1e4 3+1=4
15 13 14 breqtrdi φ34
16 9 11 12 15 4 letrd φ3N
17 2re 2
18 17 a1i φx4N2
19 2pos 0<2
20 19 a1i φx4N0<2
21 elicc2 4Nx4Nx4xxN
22 11 12 21 syl2anc φx4Nx4xxN
23 22 biimpd φx4Nx4xxN
24 23 imp φx4Nx4xxN
25 24 simp1d φx4Nx
26 0red φ0
27 26 adantr φx4N0
28 10 a1i φx4N4
29 4pos 0<4
30 29 a1i φx4N0<4
31 24 simp2d φx4N4x
32 27 28 25 30 31 ltletrd φx4N0<x
33 1red φ1
34 1lt2 1<2
35 34 a1i φ1<2
36 33 35 ltned φ12
37 36 necomd φ21
38 37 adantr φx4N21
39 18 20 25 32 38 relogbcld φx4Nlog2x
40 5nn0 50
41 40 a1i φx4N50
42 39 41 reexpcld φx4Nlog2x5
43 1red φx4N1
44 42 43 readdcld φx4Nlog2x5+1
45 27 43 readdcld φx4N0+1
46 27 ltp1d φx4N0<0+1
47 41 nn0zd φx4N5
48 ax-resscn
49 48 18 sselid φx4N2
50 27 20 gtned φx4N20
51 logb1 22021log21=0
52 49 50 38 51 syl3anc φx4Nlog21=0
53 1lt4 1<4
54 53 a1i φx4N1<4
55 43 28 25 54 31 ltletrd φx4N1<x
56 2z 2
57 56 a1i φx4N2
58 57 uzidd φx4N22
59 1rp 1+
60 59 a1i φx4N1+
61 25 32 elrpd φx4Nx+
62 logblt 221+x+1<xlog21<log2x
63 58 60 61 62 syl3anc φx4N1<xlog21<log2x
64 55 63 mpbid φx4Nlog21<log2x
65 52 64 eqbrtrrd φx4N0<log2x
66 expgt0 log2x50<log2x0<log2x5
67 39 47 65 66 syl3anc φx4N0<log2x5
68 27 42 43 67 ltadd1dd φx4N0+1<log2x5+1
69 27 45 44 46 68 lttrd φx4N0<log2x5+1
70 18 20 44 69 38 relogbcld φx4Nlog2log2x5+1
71 18 70 remulcld φx4N2log2log2x5+1
72 0red φx4N0
73 simpr φx4Nx4N
74 11 12 jca φ4N
75 74 adantr φx4N4N
76 75 21 syl φx4Nx4Nx4xxN
77 73 76 mpbid φx4Nx4xxN
78 77 simp2d φx4N4x
79 72 28 25 30 78 ltletrd φx4N0<x
80 18 20 25 79 38 relogbcld φx4Nlog2x
81 80 resqcld φx4Nlog2x2
82 71 81 readdcld φx4N2log2log2x5+1+log2x2
83 82 fmpttd φx4N2log2log2x5+1+log2x2:4N
84 48 a1i φ
85 3lt4 3<4
86 85 a1i φ3<4
87 12 33 readdcld φN+1
88 12 ltp1d φN<N+1
89 11 12 87 4 88 lelttrd φ4<N+1
90 86 89 jca φ3<44<N+1
91 9 rexrd φ3*
92 87 rexrd φN+1*
93 11 rexrd φ4*
94 elioo5 3*N+1*4*43N+13<44<N+1
95 91 92 93 94 syl3anc φ43N+13<44<N+1
96 90 95 mpbird φ43N+1
97 9 11 12 86 4 ltletrd φ3<N
98 97 88 jca φ3<NN<N+1
99 12 rexrd φN*
100 elioo5 3*N+1*N*N3N+13<NN<N+1
101 91 92 99 100 syl3anc φN3N+13<NN<N+1
102 98 101 mpbird φN3N+1
103 iccssioo2 43N+1N3N+14N3N+1
104 96 102 103 syl2anc φ4N3N+1
105 104 resmptd φx3N+12log2log2x5+1+log2x24N=x4N2log2log2x5+1+log2x2
106 2cnd φx3N+12
107 17 a1i φx3N+12
108 19 a1i φx3N+10<2
109 elioore x3N+1x
110 109 adantl φx3N+1x
111 0red φx3N+10
112 8 a1i φx3N+13
113 3pos 0<3
114 113 a1i φx3N+10<3
115 eliooord x3N+13<xx<N+1
116 simpl 3<xx<N+13<x
117 115 116 syl x3N+13<x
118 117 adantl φx3N+13<x
119 111 112 110 114 118 lttrd φx3N+10<x
120 37 adantr φx3N+121
121 107 108 110 119 120 relogbcld φx3N+1log2x
122 40 a1i φx3N+150
123 121 122 reexpcld φx3N+1log2x5
124 1red φx3N+11
125 123 124 readdcld φx3N+1log2x5+1
126 111 124 readdcld φx3N+10+1
127 111 ltp1d φx3N+10<0+1
128 122 nn0zd φx3N+15
129 34 a1i φx3N+11<2
130 2lt3 2<3
131 130 a1i φx3N+12<3
132 124 107 112 129 131 lttrd φx3N+11<3
133 124 112 110 132 118 lttrd φx3N+11<x
134 110 119 elrpd φx3N+1x+
135 2rp 2+
136 135 a1i φx3N+12+
137 134 136 129 jca32 φx3N+1x+2+1<2
138 logbgt0b x+2+1<20<log2x1<x
139 137 138 syl φx3N+10<log2x1<x
140 133 139 mpbird φx3N+10<log2x
141 121 128 140 66 syl3anc φx3N+10<log2x5
142 111 123 124 141 ltadd1dd φx3N+10+1<log2x5+1
143 111 126 125 127 142 lttrd φx3N+10<log2x5+1
144 124 129 ltned φx3N+112
145 144 necomd φx3N+121
146 107 108 125 143 145 relogbcld φx3N+1log2log2x5+1
147 146 recnd φx3N+1log2log2x5+1
148 106 147 mulcld φx3N+12log2log2x5+1
149 48 121 sselid φx3N+1log2x
150 149 sqcld φx3N+1log2x2
151 148 150 addcld φx3N+12log2log2x5+1+log2x2
152 151 fmpttd φx3N+12log2log2x5+1+log2x2:3N+1
153 ioossre 3N+1
154 153 a1i φ3N+1
155 84 152 154 3jca φx3N+12log2log2x5+1+log2x2:3N+13N+1
156 136 relogcld φx3N+1log2
157 125 156 remulcld φx3N+1log2x5+1log2
158 48 123 sselid φx3N+1log2x5
159 1cnd φx3N+11
160 158 159 addcld φx3N+1log2x5+1
161 111 108 gtned φx3N+120
162 106 161 logcld φx3N+1log2
163 111 143 gtned φx3N+1log2x5+10
164 loggt0b 2+0<log21<2
165 135 164 ax-mp 0<log21<2
166 35 165 sylibr φ0<log2
167 26 166 ltned φ0log2
168 167 necomd φlog20
169 168 adantr φx3N+1log20
170 160 162 163 169 mulne0d φx3N+1log2x5+1log20
171 124 157 170 redivcld φx3N+11log2x5+1log2
172 5re 5
173 172 a1i φx3N+15
174 4nn0 40
175 174 a1i φx3N+140
176 121 175 reexpcld φx3N+1log2x4
177 173 176 remulcld φx3N+15log2x4
178 110 156 remulcld φx3N+1xlog2
179 48 110 sselid φx3N+1x
180 111 119 gtned φx3N+1x0
181 179 162 180 169 mulne0d φx3N+1xlog20
182 124 178 181 redivcld φx3N+11xlog2
183 177 182 remulcld φx3N+15log2x41xlog2
184 183 111 readdcld φx3N+15log2x41xlog2+0
185 171 184 remulcld φx3N+11log2x5+1log25log2x41xlog2+0
186 107 185 remulcld φx3N+121log2x5+1log25log2x41xlog2+0
187 156 resqcld φx3N+1log22
188 56 a1i φx3N+12
189 162 169 188 expne0d φx3N+1log220
190 107 187 189 redivcld φx3N+12log22
191 134 relogcld φx3N+1logx
192 2m1e1 21=1
193 1nn0 10
194 192 193 eqeltri 210
195 194 a1i φx3N+1210
196 191 195 reexpcld φx3N+1logx21
197 196 110 180 redivcld φx3N+1logx21x
198 190 197 remulcld φx3N+12log22logx21x
199 186 198 readdcld φx3N+121log2x5+1log25log2x41xlog2+0+2log22logx21x
200 199 ralrimiva φx3N+121log2x5+1log25log2x41xlog2+0+2log22logx21x
201 nfcv _x3N+1
202 201 fnmptf x3N+121log2x5+1log25log2x41xlog2+0+2log22logx21xx3N+121log2x5+1log25log2x41xlog2+0+2log22logx21xFn3N+1
203 200 202 syl φx3N+121log2x5+1log25log2x41xlog2+0+2log22logx21xFn3N+1
204 9 leidd φ33
205 12 lep1d φNN+1
206 9 12 87 16 205 letrd φ3N+1
207 9 87 204 206 aks4d1p1p6 φdx3N+12log2log2x5+1+log2x2dx=x3N+121log2x5+1log25log2x41xlog2+0+2log22logx21x
208 207 fneq1d φdx3N+12log2log2x5+1+log2x2dxFn3N+1x3N+121log2x5+1log25log2x41xlog2+0+2log22logx21xFn3N+1
209 203 208 mpbird φdx3N+12log2log2x5+1+log2x2dxFn3N+1
210 209 fndmd φdomdx3N+12log2log2x5+1+log2x2dx=3N+1
211 dvcn x3N+12log2log2x5+1+log2x2:3N+13N+1domdx3N+12log2log2x5+1+log2x2dx=3N+1x3N+12log2log2x5+1+log2x2:3N+1cn
212 155 210 211 syl2anc φx3N+12log2log2x5+1+log2x2:3N+1cn
213 rescncf 4N3N+1x3N+12log2log2x5+1+log2x2:3N+1cnx3N+12log2log2x5+1+log2x24N:4Ncn
214 104 213 syl φx3N+12log2log2x5+1+log2x2:3N+1cnx3N+12log2log2x5+1+log2x24N:4Ncn
215 212 214 mpd φx3N+12log2log2x5+1+log2x24N:4Ncn
216 105 215 eqeltrrd φx4N2log2log2x5+1+log2x2:4Ncn
217 cncfcdm x4N2log2log2x5+1+log2x2:4Ncnx4N2log2log2x5+1+log2x2:4Ncnx4N2log2log2x5+1+log2x2:4N
218 84 216 217 syl2anc φx4N2log2log2x5+1+log2x2:4Ncnx4N2log2log2x5+1+log2x2:4N
219 83 218 mpbird φx4N2log2log2x5+1+log2x2:4Ncn
220 174 a1i φx4N40
221 39 220 reexpcld φx4Nlog2x4
222 221 fmpttd φx4Nlog2x4:4N
223 104 resmptd φx3N+1log2x44N=x4Nlog2x4
224 48 176 sselid φx3N+1log2x4
225 224 fmpttd φx3N+1log2x4:3N+1
226 84 225 154 3jca φx3N+1log2x4:3N+13N+1
227 10 a1i φx3N+14
228 156 175 reexpcld φx3N+1log24
229 4z 4
230 229 a1i φx3N+14
231 162 169 230 expne0d φx3N+1log240
232 227 228 231 redivcld φx3N+14log24
233 4m1e3 41=3
234 3nn0 30
235 233 234 eqeltri 410
236 235 a1i φx3N+1410
237 191 236 reexpcld φx3N+1logx41
238 237 110 180 redivcld φx3N+1logx41x
239 232 238 remulcld φx3N+14log24logx41x
240 239 ralrimiva φx3N+14log24logx41x
241 201 fnmptf x3N+14log24logx41xx3N+14log24logx41xFn3N+1
242 240 241 syl φx3N+14log24logx41xFn3N+1
243 113 a1i φ0<3
244 eqid x3N+1log2x4=x3N+1log2x4
245 eqid x3N+14log24logx41x=x3N+14log24logx41x
246 eqid 4log24=4log24
247 4nn 4
248 247 a1i φ4
249 9 87 243 206 244 245 246 248 dvrelogpow2b φdx3N+1log2x4dx=x3N+14log24logx41x
250 249 fneq1d φdx3N+1log2x4dxFn3N+1x3N+14log24logx41xFn3N+1
251 242 250 mpbird φdx3N+1log2x4dxFn3N+1
252 251 fndmd φdomdx3N+1log2x4dx=3N+1
253 dvcn x3N+1log2x4:3N+13N+1domdx3N+1log2x4dx=3N+1x3N+1log2x4:3N+1cn
254 226 252 253 syl2anc φx3N+1log2x4:3N+1cn
255 rescncf 4N3N+1x3N+1log2x4:3N+1cnx3N+1log2x44N:4Ncn
256 104 255 syl φx3N+1log2x4:3N+1cnx3N+1log2x44N:4Ncn
257 254 256 mpd φx3N+1log2x44N:4Ncn
258 223 257 eqeltrrd φx4Nlog2x4:4Ncn
259 cncfcdm x4Nlog2x4:4Ncnx4Nlog2x4:4Ncnx4Nlog2x4:4N
260 84 258 259 syl2anc φx4Nlog2x4:4Ncnx4Nlog2x4:4N
261 222 260 mpbird φx4Nlog2x4:4Ncn
262 11 12 15 4 aks4d1p1p6 φdx4N2log2log2x5+1+log2x2dx=x4N21log2x5+1log25log2x41xlog2+0+2log22logx21x
263 29 a1i φ0<4
264 eqid x4Nlog2x4=x4Nlog2x4
265 eqid x4N4log24logx41x=x4N4log24logx41x
266 11 12 263 4 264 265 246 248 dvrelogpow2b φdx4Nlog2x4dx=x4N4log24logx41x
267 233 a1i φx4N41=3
268 267 oveq2d φx4Nlogx41=logx3
269 268 oveq1d φx4Nlogx41x=logx3x
270 269 oveq2d φx4N4log24logx41x=4log24logx3x
271 270 mpteq2dva φx4N4log24logx41x=x4N4log24logx3x
272 266 271 eqtrd φdx4Nlog2x4dx=x4N4log24logx3x
273 elioore x4Nx
274 273 adantl φx4Nx
275 10 a1i φx4N4
276 eliooord x4N4<xx<N
277 276 simpld x4N4<x
278 277 adantl φx4N4<x
279 275 274 278 ltled φx4N4x
280 274 279 aks4d1p1p7 φx4N21log2x5+1log25log2x41xlog2+0+2log22logx21x4log24logx3x
281 oveq2 x=4log2x=log24
282 281 oveq1d x=4log2x5=log245
283 282 oveq1d x=4log2x5+1=log245+1
284 283 oveq2d x=4log2log2x5+1=log2log245+1
285 284 oveq2d x=42log2log2x5+1=2log2log245+1
286 281 oveq1d x=4log2x2=log242
287 285 286 oveq12d x=42log2log2x5+1+log2x2=2log2log245+1+log242
288 281 oveq1d x=4log2x4=log244
289 oveq2 x=Nlog2x=log2N
290 289 oveq1d x=Nlog2x5=log2N5
291 290 oveq1d x=Nlog2x5+1=log2N5+1
292 291 oveq2d x=Nlog2log2x5+1=log2log2N5+1
293 292 oveq2d x=N2log2log2x5+1=2log2log2N5+1
294 5 a1i x=NC=log2log2N5+1
295 294 oveq2d x=N2C=2log2log2N5+1
296 295 eqcomd x=N2log2log2N5+1=2C
297 293 296 eqtrd x=N2log2log2x5+1=2C
298 289 oveq1d x=Nlog2x2=log2N2
299 6 a1i x=ND=log2N2
300 299 eqcomd x=Nlog2N2=D
301 298 300 eqtrd x=Nlog2x2=D
302 297 301 oveq12d x=N2log2log2x5+1+log2x2=2C+D
303 289 oveq1d x=Nlog2x4=log2N4
304 7 a1i x=NE=log2N4
305 304 eqcomd x=Nlog2N4=E
306 303 305 eqtrd x=Nlog2x4=E
307 sq2 22=4
308 307 oveq2i log222=log24
309 308 a1i φlog222=log24
310 309 eqcomd φlog24=log222
311 135 a1i φ2+
312 56 a1i φ2
313 relogbexp 2+212log222=2
314 311 37 312 313 syl3anc φlog222=2
315 310 314 eqtrd φlog24=2
316 315 oveq1d φlog245=25
317 316 oveq1d φlog245+1=25+1
318 317 oveq2d φlog2log245+1=log225+1
319 17 a1i φ2
320 319 leidd φ22
321 315 319 eqeltrd φlog24
322 40 a1i φ50
323 321 322 reexpcld φlog245
324 316 323 eqeltrrd φ25
325 324 33 readdcld φ25+1
326 322 nn0zd φ5
327 19 a1i φ0<2
328 327 315 breqtrrd φ0<log24
329 321 326 328 3jca φlog2450<log24
330 expgt0 log2450<log240<log245
331 329 330 syl φ0<log245
332 331 316 breqtrd φ0<25
333 324 ltp1d φ25<25+1
334 26 324 325 332 333 lttrd φ0<25+1
335 6nn0 60
336 335 a1i φ60
337 319 336 reexpcld φ26
338 336 nn0zd φ6
339 expgt0 260<20<26
340 319 338 327 339 syl3anc φ0<26
341 324 324 readdcld φ25+25
342 33 319 35 ltled φ12
343 319 322 342 expge1d φ125
344 33 324 324 343 leadd2dd φ25+125+25
345 341 leidd φ25+2525+25
346 df-6 6=5+1
347 346 a1i φ6=5+1
348 347 oveq2d φ26=25+1
349 2cn 2
350 349 a1i φ2
351 193 a1i φ10
352 350 351 322 expaddd φ25+1=2521
353 348 352 eqtrd φ26=2521
354 350 exp1d φ21=2
355 354 oveq2d φ2521=252
356 353 355 eqtrd φ26=252
357 48 324 sselid φ25
358 357 times2d φ252=25+25
359 356 358 eqtrd φ26=25+25
360 359 eqcomd φ25+25=26
361 345 360 breqtrd φ25+2526
362 325 341 337 344 361 letrd φ25+126
363 312 320 325 334 337 340 362 logblebd φlog225+1log226
364 311 37 338 relogbexpd φlog226=6
365 363 364 breqtrd φlog225+16
366 318 365 eqbrtrd φlog2log245+16
367 6t2e12 62=12
368 6cn 6
369 368 a1i φ6
370 2nn 2
371 193 370 decnncl 12
372 371 a1i φ12
373 372 nnred φ12
374 373 recnd φ12
375 26 327 gtned φ20
376 369 350 374 375 ldiv φ62=126=122
377 367 376 mpbii φ6=122
378 366 377 breqtrd φlog2log245+1122
379 323 33 readdcld φlog245+1
380 26 33 readdcld φ0+1
381 26 ltp1d φ0<0+1
382 26 323 33 331 ltadd1dd φ0+1<log245+1
383 26 380 379 381 382 lttrd φ0<log245+1
384 319 327 379 383 37 relogbcld φlog2log245+1
385 384 373 311 lemuldiv2d φ2log2log245+112log2log245+1122
386 378 385 mpbird φ2log2log245+112
387 315 oveq1d φlog242=22
388 387 307 eqtrdi φlog242=4
389 388 oveq2d φ16log242=164
390 2nn0 20
391 eqid 12=12
392 4cn 4
393 4p2e6 4+2=6
394 392 349 393 addcomli 2+4=6
395 193 390 174 391 394 decaddi 12+4=16
396 392 a1i φ4
397 6nn 6
398 193 397 decnncl 16
399 398 a1i φ16
400 399 nnred φ16
401 48 400 sselid φ16
402 374 396 401 addlsub φ12+4=1612=164
403 395 402 mpbii φ12=164
404 389 403 eqtr4d φ16log242=12
405 404 eqcomd φ12=16log242
406 386 405 breqtrd φ2log2log245+116log242
407 319 384 remulcld φ2log2log245+1
408 321 resqcld φlog242
409 leaddsub 2log2log245+1log242162log2log245+1+log242162log2log245+116log242
410 407 408 400 409 syl3anc φ2log2log245+1+log242162log2log245+116log242
411 406 410 mpbird φ2log2log245+1+log24216
412 315 oveq1d φlog244=24
413 2exp4 24=16
414 412 413 eqtrdi φlog244=16
415 414 eqcomd φ16=log244
416 411 415 breqtrd φ2log2log245+1+log242log244
417 11 12 219 261 262 272 280 287 288 302 306 416 4 dvle2 φ2C+DE
418 1 2 3 16 5 6 7 417 aks4d1p1p4 φA<2B