Metamath Proof Explorer


Theorem areacirclem1

Description: Antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 28-Aug-2017) (Revised by Brendan Leahy, 11-Jul-2018)

Ref Expression
Assertion areacirclem1 R+dtRRR2arcsintR+tR1tR2dt=tRR2R2t2

Proof

Step Hyp Ref Expression
1 reelprrecn
2 1 a1i R+
3 elioore tRRt
4 3 recnd tRRt
5 4 adantl R+tRRt
6 rpcn R+R
7 6 adantr R+tRRR
8 rpne0 R+R0
9 8 adantr R+tRRR0
10 5 7 9 divcld R+tRRtR
11 asincl tRarcsintR
12 10 11 syl R+tRRarcsintR
13 1cnd R+tRR1
14 10 sqcld R+tRRtR2
15 13 14 subcld R+tRR1tR2
16 15 sqrtcld R+tRR1tR2
17 10 16 mulcld R+tRRtR1tR2
18 12 17 addcld R+tRRarcsintR+tR1tR2
19 ovexd R+tRR21tR21RV
20 rpre R+R
21 20 renegcld R+R
22 21 rexrd R+R*
23 rpxr R+R*
24 elioo2 R*R*tRRtR<tt<R
25 22 23 24 syl2anc R+tRRtR<tt<R
26 simpr R+tt
27 20 adantr R+tR
28 8 adantr R+tR0
29 26 27 28 redivcld R+ttR
30 29 a1d R+tR<tt<RtR
31 6 mulm1d R+-1R=R
32 31 adantr R+t-1R=R
33 32 breq1d R+t-1R<tR<t
34 neg1rr 1
35 34 a1i R+t1
36 simpl R+tR+
37 35 26 36 ltmuldivd R+t-1R<t1<tR
38 33 37 bitr3d R+tR<t1<tR
39 38 biimpd R+tR<t1<tR
40 39 adantrd R+tR<tt<R1<tR
41 1red R+t1
42 26 41 36 ltdivmuld R+ttR<1t<R1
43 6 mulridd R+R1=R
44 43 adantr R+tR1=R
45 44 breq2d R+tt<R1t<R
46 42 45 bitr2d R+tt<RtR<1
47 46 biimpd R+tt<RtR<1
48 47 adantld R+tR<tt<RtR<1
49 30 40 48 3jcad R+tR<tt<RtR1<tRtR<1
50 49 exp4b R+tR<tt<RtR1<tRtR<1
51 50 3impd R+tR<tt<RtR1<tRtR<1
52 25 51 sylbid R+tRRtR1<tRtR<1
53 52 imp R+tRRtR1<tRtR<1
54 34 rexri 1*
55 1xr 1*
56 elioo2 1*1*tR11tR1<tRtR<1
57 54 55 56 mp2an tR11tR1<tRtR<1
58 53 57 sylibr R+tRRtR11
59 ovexd R+tRR1RV
60 elioore u11u
61 60 recnd u11u
62 asincl uarcsinu
63 id uu
64 1cnd u1
65 sqcl uu2
66 64 65 subcld u1u2
67 66 sqrtcld u1u2
68 63 67 mulcld uu1u2
69 62 68 addcld uarcsinu+u1u2
70 61 69 syl u11arcsinu+u1u2
71 70 adantl R+u11arcsinu+u1u2
72 ovexd R+u1121u2V
73 recn tt
74 73 adantl R+tt
75 1cnd R+t1
76 2 dvmptid R+dttdt=t1
77 ioossre RR
78 77 a1i R+RR
79 eqid TopOpenfld=TopOpenfld
80 79 tgioo2 topGenran.=TopOpenfld𝑡
81 iooretop RRtopGenran.
82 81 a1i R+RRtopGenran.
83 2 74 75 76 78 80 79 82 dvmptres R+dtRRtdt=tRR1
84 2 5 13 83 6 8 dvmptdivc R+dtRRtRdt=tRR1R
85 61 62 syl u11arcsinu
86 85 adantl R+u11arcsinu
87 ovexd R+u1111u2V
88 asinf arcsin:
89 88 a1i R+arcsin:
90 ioossre 11
91 ax-resscn
92 90 91 sstri 11
93 92 a1i R+11
94 89 93 feqresmpt R+arcsin11=u11arcsinu
95 94 oveq2d R+Darcsin11=du11arcsinudu
96 dvreasin Darcsin11=u1111u2
97 95 96 eqtr3di R+du11arcsinudu=u1111u2
98 61 68 syl u11u1u2
99 98 adantl R+u11u1u2
100 ovexd R+u1111u2+u1u2uV
101 61 adantl R+u11u
102 1cnd R+u111
103 recn uu
104 103 adantl R+uu
105 1cnd R+u1
106 2 dvmptid R+duudu=u1
107 90 a1i R+11
108 iooretop 11topGenran.
109 108 a1i R+11topGenran.
110 2 104 105 106 107 80 79 109 dvmptres R+du11udu=u111
111 61 67 syl u111u2
112 111 adantl R+u111u2
113 ovexd R+u11u1u2V
114 1red u111
115 60 resqcld u11u2
116 114 115 resubcld u111u2
117 elioo2 1*1*u11u1<uu<1
118 54 55 117 mp2an u11u1<uu<1
119 id uu
120 1red u1
121 119 120 absltd uu<11<uu<1
122 103 abscld uu
123 103 absge0d u0u
124 0le1 01
125 124 a1i u01
126 122 120 123 125 lt2sqd uu<1u2<12
127 absresq uu2=u2
128 sq1 12=1
129 128 a1i u12=1
130 127 129 breq12d uu2<12u2<1
131 resqcl uu2
132 131 120 posdifd uu2<10<1u2
133 126 130 132 3bitrd uu<10<1u2
134 121 133 bitr3d u1<uu<10<1u2
135 134 biimpd u1<uu<10<1u2
136 135 3impib u1<uu<10<1u2
137 118 136 sylbi u110<1u2
138 116 137 elrpd u111u2+
139 138 adantl R+u111u2+
140 negex 2uV
141 140 a1i R+u112uV
142 rpcn v+v
143 142 sqrtcld v+v
144 143 adantl R+v+v
145 ovexd R+v+12vV
146 1cnd u1
147 103 sqcld uu2
148 146 147 subcld u1u2
149 148 adantl R+u1u2
150 140 a1i R+u2uV
151 0red R+u0
152 1cnd R+1
153 2 152 dvmptc R+du1du=u0
154 147 adantl R+uu2
155 ovexd R+u2uV
156 79 cnfldtopon TopOpenfldTopOn
157 toponmax TopOpenfldTopOnTopOpenfld
158 156 157 mp1i R+TopOpenfld
159 df-ss =
160 91 159 mpbi =
161 160 a1i R+=
162 65 adantl R+uu2
163 ovexd R+u2uV
164 2nn 2
165 dvexp 2duu2du=u2u21
166 164 165 ax-mp duu2du=u2u21
167 2m1e1 21=1
168 167 oveq2i u21=u1
169 exp1 uu1=u
170 168 169 eqtrid uu21=u
171 170 oveq2d u2u21=2u
172 171 mpteq2ia u2u21=u2u
173 166 172 eqtri duu2du=u2u
174 173 a1i R+duu2du=u2u
175 79 2 158 161 162 163 174 dvmptres3 R+duu2du=u2u
176 2 105 151 153 154 155 175 dvmptsub R+du1u2du=u02u
177 df-neg 2u=02u
178 177 mpteq2i u2u=u02u
179 176 178 eqtr4di R+du1u2du=u2u
180 2 149 150 179 107 80 79 109 dvmptres R+du111u2du=u112u
181 dvsqrt dv+vdv=v+12v
182 181 a1i R+dv+vdv=v+12v
183 fveq2 v=1u2v=1u2
184 183 oveq2d v=1u22v=21u2
185 184 oveq2d v=1u212v=121u2
186 2 2 139 141 144 145 180 182 183 185 dvmptco R+du111u2du=u11121u22u
187 2cnd u112
188 187 61 mulneg2d u112u=2u
189 188 oveq1d u112u21u2=2u21u2
190 61 negcld u11u
191 137 gt0ne0d u111u20
192 61 66 syl u111u2
193 192 adantr u111u2=01u2
194 simpr u111u2=01u2=0
195 193 194 sqr00d u111u2=01u2=0
196 195 ex u111u2=01u2=0
197 196 necon3d u111u201u20
198 191 197 mpd u111u20
199 2ne0 20
200 199 a1i u1120
201 190 111 187 198 200 divcan5d u112u21u2=u1u2
202 187 61 mulcld u112u
203 202 negcld u112u
204 187 111 mulcld u1121u2
205 187 111 200 198 mulne0d u1121u20
206 203 204 205 divrec2d u112u21u2=121u22u
207 189 201 206 3eqtr3rd u11121u22u=u1u2
208 207 mpteq2ia u11121u22u=u11u1u2
209 186 208 eqtrdi R+du111u2du=u11u1u2
210 2 101 102 110 112 113 209 dvmptmul R+du11u1u2du=u1111u2+u1u2u
211 2 86 87 97 99 100 210 dvmptadd R+du11arcsinu+u1u2du=u1111u2+11u2+u1u2u
212 111 mullidd u1111u2=1u2
213 190 111 198 divcld u11u1u2
214 213 61 mulcomd u11u1u2u=uu1u2
215 61 190 111 198 divassd u11uu1u2=uu1u2
216 61 61 mulneg2d u11uu=uu
217 61 sqvald u11u2=uu
218 217 negeqd u11u2=uu
219 216 218 eqtr4d u11uu=u2
220 219 oveq1d u11uu1u2=u21u2
221 214 215 220 3eqtr2d u11u1u2u=u21u2
222 212 221 oveq12d u1111u2+u1u2u=1u2+u21u2
223 61 sqcld u11u2
224 223 negcld u11u2
225 224 111 198 divcld u11u21u2
226 111 225 addcomd u111u2+u21u2=u21u2+1u2
227 222 226 eqtrd u1111u2+u1u2u=u21u2+1u2
228 227 oveq2d u1111u2+11u2+u1u2u=11u2+u21u2+1u2
229 111 2timesd u1121u2=1u2+1u2
230 64 65 negsubd u1+u2=1u2
231 66 sqsqrtd u1u22=1u2
232 67 sqvald u1u22=1u21u2
233 230 231 232 3eqtr2d u1+u2=1u21u2
234 61 233 syl u111+u2=1u21u2
235 234 oveq1d u111+u21u2=1u21u21u2
236 1cnd u111
237 236 224 111 198 divdird u111+u21u2=11u2+u21u2
238 111 111 198 divcan3d u111u21u21u2=1u2
239 235 237 238 3eqtr3rd u111u2=11u2+u21u2
240 239 oveq1d u111u2+1u2=11u2+u21u2+1u2
241 111 198 reccld u1111u2
242 241 225 111 addassd u1111u2+u21u2+1u2=11u2+u21u2+1u2
243 229 240 242 3eqtrrd u1111u2+u21u2+1u2=21u2
244 228 243 eqtrd u1111u2+11u2+u1u2u=21u2
245 244 mpteq2ia u1111u2+11u2+u1u2u=u1121u2
246 211 245 eqtrdi R+du11arcsinu+u1u2du=u1121u2
247 fveq2 u=tRarcsinu=arcsintR
248 id u=tRu=tR
249 oveq1 u=tRu2=tR2
250 249 oveq2d u=tR1u2=1tR2
251 250 fveq2d u=tR1u2=1tR2
252 248 251 oveq12d u=tRu1u2=tR1tR2
253 247 252 oveq12d u=tRarcsinu+u1u2=arcsintR+tR1tR2
254 251 oveq2d u=tR21u2=21tR2
255 2 2 58 59 71 72 84 246 253 254 dvmptco R+dtRRarcsintR+tR1tR2dt=tRR21tR21R
256 6 sqcld R+R2
257 2 18 19 255 256 dvmptcmul R+dtRRR2arcsintR+tR1tR2dt=tRRR221tR21R
258 2cnd R+tRR2
259 258 16 mulcld R+tRR21tR2
260 6 8 reccld R+1R
261 260 adantr R+tRR1R
262 259 261 mulcomd R+tRR21tR21R=1R21tR2
263 262 oveq2d R+tRRR221tR21R=R21R21tR2
264 256 adantr R+tRRR2
265 264 261 259 mulassd R+tRRR21R21tR2=R21R21tR2
266 6 sqvald R+R2=RR
267 266 oveq1d R+R2R=RRR
268 256 6 8 divrecd R+R2R=R21R
269 6 6 8 divcan3d R+RRR=R
270 267 268 269 3eqtr3d R+R21R=R
271 270 adantr R+tRRR21R=R
272 271 oveq1d R+tRRR21R21tR2=R21tR2
273 7 258 16 mul12d R+tRRR21tR2=2R1tR2
274 20 resqcld R+R2
275 274 adantr R+tRRR2
276 20 sqge0d R+0R2
277 276 adantr R+tRR0R2
278 1red R+tRR1
279 3 adantl R+tRRt
280 20 adantr R+tRRR
281 279 280 9 redivcld R+tRRtR
282 281 resqcld R+tRRtR2
283 278 282 resubcld R+tRR1tR2
284 0red R+tRR0
285 26 27 absltd R+tt<RR<tt<R
286 73 abscld tt
287 286 adantl R+tt
288 73 absge0d t0t
289 288 adantl R+t0t
290 rpge0 R+0R
291 290 adantr R+t0R
292 287 27 289 291 lt2sqd R+tt<Rt2<R2
293 absresq tt2=t2
294 293 adantl R+tt2=t2
295 256 adantr R+tR2
296 295 mulridd R+tR21=R2
297 296 eqcomd R+tR2=R21
298 294 297 breq12d R+tt2<R2t2<R21
299 6 adantr R+tR
300 74 299 28 sqdivd R+ttR2=t2R2
301 300 breq1d R+ttR2<1t2R2<1
302 29 resqcld R+ttR2
303 302 41 posdifd R+ttR2<10<1tR2
304 resqcl tt2
305 304 adantl R+tt2
306 rpgt0 R+0<R
307 0red R+0
308 0le0 00
309 308 a1i R+00
310 307 20 309 290 lt2sqd R+0<R02<R2
311 sq0 02=0
312 311 a1i R+02=0
313 312 breq1d R+02<R20<R2
314 310 313 bitrd R+0<R0<R2
315 306 314 mpbid R+0<R2
316 274 315 elrpd R+R2+
317 316 adantr R+tR2+
318 305 41 317 ltdivmuld R+tt2R2<1t2<R21
319 301 303 318 3bitr3rd R+tt2<R210<1tR2
320 292 298 319 3bitrd R+tt<R0<1tR2
321 285 320 bitr3d R+tR<tt<R0<1tR2
322 321 biimpd R+tR<tt<R0<1tR2
323 322 exp4b R+tR<tt<R0<1tR2
324 323 3impd R+tR<tt<R0<1tR2
325 25 324 sylbid R+tRR0<1tR2
326 325 imp R+tRR0<1tR2
327 284 283 326 ltled R+tRR01tR2
328 275 277 283 327 sqrtmuld R+tRRR21tR2=R21tR2
329 264 13 14 subdid R+tRRR21tR2=R21R2tR2
330 264 mulridd R+tRRR21=R2
331 5 7 9 sqdivd R+tRRtR2=t2R2
332 331 oveq2d R+tRRR2tR2=R2t2R2
333 4 sqcld tRRt2
334 333 adantl R+tRRt2
335 sqne0 RR20R0
336 6 335 syl R+R20R0
337 8 336 mpbird R+R20
338 337 adantr R+tRRR20
339 334 264 338 divcan2d R+tRRR2t2R2=t2
340 332 339 eqtrd R+tRRR2tR2=t2
341 330 340 oveq12d R+tRRR21R2tR2=R2t2
342 329 341 eqtrd R+tRRR21tR2=R2t2
343 342 fveq2d R+tRRR21tR2=R2t2
344 20 290 sqrtsqd R+R2=R
345 344 adantr R+tRRR2=R
346 345 oveq1d R+tRRR21tR2=R1tR2
347 328 343 346 3eqtr3rd R+tRRR1tR2=R2t2
348 347 oveq2d R+tRR2R1tR2=2R2t2
349 272 273 348 3eqtrd R+tRRR21R21tR2=2R2t2
350 263 265 349 3eqtr2d R+tRRR221tR21R=2R2t2
351 350 mpteq2dva R+tRRR221tR21R=tRR2R2t2
352 257 351 eqtrd R+dtRRR2arcsintR+tR1tR2dt=tRR2R2t2