Metamath Proof Explorer


Theorem dchrisum0lem1

Description: Lemma for dchrisum0 . (Contributed by Mario Carneiro, 12-May-2016) (Revised by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
rpvmasum2.w W=yD1˙|myLmm=0
dchrisum0.b φXW
dchrisum0lem1.f F=aXLaa
dchrisum0.c φC0+∞
dchrisum0.s φseq1+FS
dchrisum0.1 φy1+∞seq1+FySCy
Assertion dchrisum0lem1 φx+m=x+1x2d=1x2mXLmmd𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 rpvmasum2.w W=yD1˙|myLmm=0
8 dchrisum0.b φXW
9 dchrisum0lem1.f F=aXLaa
10 dchrisum0.c φC0+∞
11 dchrisum0.s φseq1+FS
12 dchrisum0.1 φy1+∞seq1+FySCy
13 fzfid φx+1xFin
14 fzfid φx+x+1x2Fin
15 fzfid φx+d1xx+1x2dFin
16 elfznn d1xd
17 elfzuz mx+1x2dmx+1
18 16 17 anim12i d1xmx+1x2ddmx+1
19 18 a1i φx+d1xmx+1x2ddmx+1
20 elfzuz mx+1x2mx+1
21 elfznn d1x2md
22 20 21 anim12ci mx+1x2d1x2mdmx+1
23 22 a1i φx+mx+1x2d1x2mdmx+1
24 eluzelz mx+1m
25 24 ad2antll φx+dmx+1m
26 25 zred φx+dmx+1m
27 simpr φx+x+
28 2z 2
29 rpexpcl x+2x2+
30 27 28 29 sylancl φx+x2+
31 30 rpred φx+x2
32 31 adantr φx+dmx+1x2
33 simprl φx+dmx+1d
34 33 nnrpd φx+dmx+1d+
35 26 32 34 lemuldivd φx+dmx+1mdx2mx2d
36 33 nnred φx+dmx+1d
37 27 rprege0d φx+x0x
38 flge0nn0 x0xx0
39 nn0p1nn x0x+1
40 37 38 39 3syl φx+x+1
41 40 adantr φx+dmx+1x+1
42 simprr φx+dmx+1mx+1
43 eluznn x+1mx+1m
44 41 42 43 syl2anc φx+dmx+1m
45 44 nnrpd φx+dmx+1m+
46 36 32 45 lemuldiv2d φx+dmx+1mdx2dx2m
47 35 46 bitr3d φx+dmx+1mx2ddx2m
48 rpcn x+x
49 48 adantl φx+x
50 49 sqvald φx+x2=xx
51 50 adantr φx+dmx+1x2=xx
52 simplr φx+dmx+1x+
53 52 rpred φx+dmx+1x
54 reflcl xx
55 peano2re xx+1
56 53 54 55 3syl φx+dmx+1x+1
57 fllep1 xxx+1
58 53 57 syl φx+dmx+1xx+1
59 eluzle mx+1x+1m
60 59 ad2antll φx+dmx+1x+1m
61 53 56 26 58 60 letrd φx+dmx+1xm
62 53 26 52 lemul1d φx+dmx+1xmxxmx
63 61 62 mpbid φx+dmx+1xxmx
64 51 63 eqbrtrd φx+dmx+1x2mx
65 32 53 45 ledivmuld φx+dmx+1x2mxx2mx
66 64 65 mpbird φx+dmx+1x2mx
67 nnre dd
68 67 ad2antrl φx+dmx+1d
69 32 44 nndivred φx+dmx+1x2m
70 letr dx2mxdx2mx2mxdx
71 68 69 53 70 syl3anc φx+dmx+1dx2mx2mxdx
72 66 71 mpan2d φx+dmx+1dx2mdx
73 47 72 sylbid φx+dmx+1mx2ddx
74 73 pm4.71rd φx+dmx+1mx2ddxmx2d
75 nnge1 d1d
76 75 ad2antrl φx+dmx+11d
77 1re 1
78 0lt1 0<1
79 77 78 pm3.2i 10<1
80 34 rpregt0d φx+dmx+1d0<d
81 30 adantr φx+dmx+1x2+
82 81 rpregt0d φx+dmx+1x20<x2
83 lediv2 10<1d0<dx20<x21dx2dx21
84 79 80 82 83 mp3an2i φx+dmx+11dx2dx21
85 76 84 mpbid φx+dmx+1x2dx21
86 32 recnd φx+dmx+1x2
87 86 div1d φx+dmx+1x21=x2
88 85 87 breqtrd φx+dmx+1x2dx2
89 simpl dmx+1d
90 nndivre x2dx2d
91 31 89 90 syl2an φx+dmx+1x2d
92 letr mx2dx2mx2dx2dx2mx2
93 26 91 32 92 syl3anc φx+dmx+1mx2dx2dx2mx2
94 88 93 mpan2d φx+dmx+1mx2dmx2
95 47 94 sylbird φx+dmx+1dx2mmx2
96 95 pm4.71rd φx+dmx+1dx2mmx2dx2m
97 47 74 96 3bitr3d φx+dmx+1dxmx2dmx2dx2m
98 fznnfl xd1xddx
99 98 baibd xdd1xdx
100 53 33 99 syl2anc φx+dmx+1d1xdx
101 91 flcld φx+dmx+1x2d
102 elfz5 mx+1x2dmx+1x2dmx2d
103 42 101 102 syl2anc φx+dmx+1mx+1x2dmx2d
104 flge x2dmmx2dmx2d
105 91 25 104 syl2anc φx+dmx+1mx2dmx2d
106 103 105 bitr4d φx+dmx+1mx+1x2dmx2d
107 100 106 anbi12d φx+dmx+1d1xmx+1x2ddxmx2d
108 32 flcld φx+dmx+1x2
109 elfz5 mx+1x2mx+1x2mx2
110 42 108 109 syl2anc φx+dmx+1mx+1x2mx2
111 flge x2mmx2mx2
112 32 25 111 syl2anc φx+dmx+1mx2mx2
113 110 112 bitr4d φx+dmx+1mx+1x2mx2
114 fznnfl x2md1x2mddx2m
115 114 baibd x2mdd1x2mdx2m
116 69 33 115 syl2anc φx+dmx+1d1x2mdx2m
117 113 116 anbi12d φx+dmx+1mx+1x2d1x2mmx2dx2m
118 97 107 117 3bitr4d φx+dmx+1d1xmx+1x2dmx+1x2d1x2m
119 118 ex φx+dmx+1d1xmx+1x2dmx+1x2d1x2m
120 19 23 119 pm5.21ndd φx+d1xmx+1x2dmx+1x2d1x2m
121 ssun2 x+1x2d1xx+1x2d
122 40 adantr φx+d1xx+1
123 nnuz =1
124 122 123 eleqtrdi φx+d1xx+11
125 dchrisum0lem1a φx+d1xxx2dx2dx
126 125 simprd φx+d1xx2dx
127 fzsplit2 x+11x2dx1x2d=1xx+1x2d
128 124 126 127 syl2anc φx+d1x1x2d=1xx+1x2d
129 121 128 sseqtrrid φx+d1xx+1x2d1x2d
130 129 sselda φx+d1xmx+1x2dm1x2d
131 7 ssrab3 WD1˙
132 131 8 sselid φXD1˙
133 132 eldifad φXD
134 133 ad3antrrr φx+d1xm1x2dXD
135 elfzelz m1x2dm
136 135 adantl φx+d1xm1x2dm
137 4 1 5 2 134 136 dchrzrhcl φx+d1xm1x2dXLm
138 elfznn m1x2dm
139 138 adantl φx+d1xm1x2dm
140 139 nnrpd φx+d1xm1x2dm+
141 140 rpsqrtcld φx+d1xm1x2dm+
142 141 rpcnd φx+d1xm1x2dm
143 141 rpne0d φx+d1xm1x2dm0
144 137 142 143 divcld φx+d1xm1x2dXLmm
145 16 adantl φx+d1xd
146 145 nnrpd φx+d1xd+
147 146 rpsqrtcld φx+d1xd+
148 147 rpcnne0d φx+d1xdd0
149 148 adantr φx+d1xm1x2ddd0
150 149 simpld φx+d1xm1x2dd
151 149 simprd φx+d1xm1x2dd0
152 144 150 151 divcld φx+d1xm1x2dXLmmd
153 130 152 syldan φx+d1xmx+1x2dXLmmd
154 153 anasss φx+d1xmx+1x2dXLmmd
155 13 14 15 120 154 fsumcom2 φx+d=1xm=x+1x2dXLmmd=m=x+1x2d=1x2mXLmmd
156 155 mpteq2dva φx+d=1xm=x+1x2dXLmmd=x+m=x+1x2d=1x2mXLmmd
157 77 a1i φ1
158 2cn 2
159 27 rpsqrtcld φx+x+
160 159 rpcnd φx+x
161 mulcl 2x2x
162 158 160 161 sylancr φx+2x
163 147 rprecred φx+d1x1d
164 13 163 fsumrecl φx+d=1x1d
165 164 recnd φx+d=1x1d
166 165 162 subcld φx+d=1x1d2x
167 2re 2
168 elrege0 C0+∞C0C
169 10 168 sylib φC0C
170 169 simpld φC
171 remulcl 2C2C
172 167 170 171 sylancr φ2C
173 172 adantr φx+2C
174 173 159 rerpdivcld φx+2Cx
175 174 recnd φx+2Cx
176 162 166 175 adddird φx+2x+d=1x1d-2x2Cx=2x2Cx+d=1x1d2x2Cx
177 162 165 pncan3d φx+2x+d=1x1d-2x=d=1x1d
178 177 oveq1d φx+2x+d=1x1d-2x2Cx=d=1x1d2Cx
179 2cnd φx+2
180 179 160 175 mulassd φx+2x2Cx=2x2Cx
181 173 recnd φx+2C
182 159 rpne0d φx+x0
183 181 160 182 divcan2d φx+x2Cx=2C
184 183 oveq2d φx+2x2Cx=22C
185 180 184 eqtrd φx+2x2Cx=22C
186 185 oveq1d φx+2x2Cx+d=1x1d2x2Cx=22C+d=1x1d2x2Cx
187 176 178 186 3eqtr3d φx+d=1x1d2Cx=22C+d=1x1d2x2Cx
188 187 mpteq2dva φx+d=1x1d2Cx=x+22C+d=1x1d2x2Cx
189 remulcl 22C22C
190 167 172 189 sylancr φ22C
191 190 recnd φ22C
192 191 adantr φx+22C
193 166 175 mulcld φx+d=1x1d2x2Cx
194 rpssre +
195 o1const +22Cx+22C𝑂1
196 194 191 195 sylancr φx+22C𝑂1
197 eqid x+d=1x1d2x=x+d=1x1d2x
198 197 divsqrsum x+d=1x1d2xdom
199 rlimdmo1 x+d=1x1d2xdomx+d=1x1d2x𝑂1
200 198 199 mp1i φx+d=1x1d2x𝑂1
201 181 160 182 divrecd φx+2Cx=2C1x
202 201 mpteq2dva φx+2Cx=x+2C1x
203 159 rprecred φx+1x
204 172 recnd φ2C
205 rlimconst +2Cx+2C2C
206 194 204 205 sylancr φx+2C2C
207 sqrtlim x+1x0
208 207 a1i φx+1x0
209 173 203 206 208 rlimmul φx+2C1x2C0
210 202 209 eqbrtrd φx+2Cx2C0
211 rlimo1 x+2Cx2C0x+2Cx𝑂1
212 210 211 syl φx+2Cx𝑂1
213 166 175 200 212 o1mul2 φx+d=1x1d2x2Cx𝑂1
214 192 193 196 213 o1add2 φx+22C+d=1x1d2x2Cx𝑂1
215 188 214 eqeltrd φx+d=1x1d2Cx𝑂1
216 164 174 remulcld φx+d=1x1d2Cx
217 15 153 fsumcl φx+d1xm=x+1x2dXLmmd
218 13 217 fsumcl φx+d=1xm=x+1x2dXLmmd
219 218 abscld φx+d=1xm=x+1x2dXLmmd
220 216 recnd φx+d=1x1d2Cx
221 220 abscld φx+d=1x1d2Cx
222 217 abscld φx+d1xm=x+1x2dXLmmd
223 13 222 fsumrecl φx+d=1xm=x+1x2dXLmmd
224 13 217 fsumabs φx+d=1xm=x+1x2dXLmmdd=1xm=x+1x2dXLmmd
225 174 adantr φx+d1x2Cx
226 163 225 remulcld φx+d1x1d2Cx
227 130 144 syldan φx+d1xmx+1x2dXLmm
228 15 227 fsumcl φx+d1xm=x+1x2dXLmm
229 228 abscld φx+d1xm=x+1x2dXLmm
230 1 2 3 4 5 6 7 8 9 10 11 12 dchrisum0lem1b φx+d1xm=x+1x2dXLmm2Cx
231 229 225 147 230 lediv1dd φx+d1xm=x+1x2dXLmmd2Cxd
232 147 rpcnd φx+d1xd
233 147 rpne0d φx+d1xd0
234 228 232 233 absdivd φx+d1xm=x+1x2dXLmmd=m=x+1x2dXLmmd
235 15 232 227 233 fsumdivc φx+d1xm=x+1x2dXLmmd=m=x+1x2dXLmmd
236 235 fveq2d φx+d1xm=x+1x2dXLmmd=m=x+1x2dXLmmd
237 147 rprege0d φx+d1xd0d
238 absid d0dd=d
239 237 238 syl φx+d1xd=d
240 239 oveq2d φx+d1xm=x+1x2dXLmmd=m=x+1x2dXLmmd
241 234 236 240 3eqtr3rd φx+d1xm=x+1x2dXLmmd=m=x+1x2dXLmmd
242 175 adantr φx+d1x2Cx
243 242 232 233 divrec2d φx+d1x2Cxd=1d2Cx
244 231 241 243 3brtr3d φx+d1xm=x+1x2dXLmmd1d2Cx
245 13 222 226 244 fsumle φx+d=1xm=x+1x2dXLmmdd=1x1d2Cx
246 163 recnd φx+d1x1d
247 13 175 246 fsummulc1 φx+d=1x1d2Cx=d=1x1d2Cx
248 245 247 breqtrrd φx+d=1xm=x+1x2dXLmmdd=1x1d2Cx
249 219 223 216 224 248 letrd φx+d=1xm=x+1x2dXLmmdd=1x1d2Cx
250 216 leabsd φx+d=1x1d2Cxd=1x1d2Cx
251 219 216 221 249 250 letrd φx+d=1xm=x+1x2dXLmmdd=1x1d2Cx
252 251 adantrr φx+1xd=1xm=x+1x2dXLmmdd=1x1d2Cx
253 157 215 216 218 252 o1le φx+d=1xm=x+1x2dXLmmd𝑂1
254 156 253 eqeltrrd φx+m=x+1x2d=1x2mXLmmd𝑂1