| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|
| 2 |
|
rpvmasum.l |
|
| 3 |
|
rpvmasum.a |
|
| 4 |
|
rpvmasum2.g |
|
| 5 |
|
rpvmasum2.d |
|
| 6 |
|
rpvmasum2.1 |
|
| 7 |
|
rpvmasum2.w |
|
| 8 |
|
dchrisum0.b |
|
| 9 |
|
dchrisum0lem1.f |
|
| 10 |
|
dchrisum0.c |
|
| 11 |
|
dchrisum0.s |
|
| 12 |
|
dchrisum0.1 |
|
| 13 |
|
fzfid |
|
| 14 |
|
fzfid |
|
| 15 |
|
fzfid |
|
| 16 |
|
elfznn |
|
| 17 |
|
elfzuz |
|
| 18 |
16 17
|
anim12i |
|
| 19 |
18
|
a1i |
|
| 20 |
|
elfzuz |
|
| 21 |
|
elfznn |
|
| 22 |
20 21
|
anim12ci |
|
| 23 |
22
|
a1i |
|
| 24 |
|
eluzelz |
|
| 25 |
24
|
ad2antll |
|
| 26 |
25
|
zred |
|
| 27 |
|
simpr |
|
| 28 |
|
2z |
|
| 29 |
|
rpexpcl |
|
| 30 |
27 28 29
|
sylancl |
|
| 31 |
30
|
rpred |
|
| 32 |
31
|
adantr |
|
| 33 |
|
simprl |
|
| 34 |
33
|
nnrpd |
|
| 35 |
26 32 34
|
lemuldivd |
|
| 36 |
33
|
nnred |
|
| 37 |
27
|
rprege0d |
|
| 38 |
|
flge0nn0 |
|
| 39 |
|
nn0p1nn |
|
| 40 |
37 38 39
|
3syl |
|
| 41 |
40
|
adantr |
|
| 42 |
|
simprr |
|
| 43 |
|
eluznn |
|
| 44 |
41 42 43
|
syl2anc |
|
| 45 |
44
|
nnrpd |
|
| 46 |
36 32 45
|
lemuldiv2d |
|
| 47 |
35 46
|
bitr3d |
|
| 48 |
|
rpcn |
|
| 49 |
48
|
adantl |
|
| 50 |
49
|
sqvald |
|
| 51 |
50
|
adantr |
|
| 52 |
|
simplr |
|
| 53 |
52
|
rpred |
|
| 54 |
|
reflcl |
|
| 55 |
|
peano2re |
|
| 56 |
53 54 55
|
3syl |
|
| 57 |
|
fllep1 |
|
| 58 |
53 57
|
syl |
|
| 59 |
|
eluzle |
|
| 60 |
59
|
ad2antll |
|
| 61 |
53 56 26 58 60
|
letrd |
|
| 62 |
53 26 52
|
lemul1d |
|
| 63 |
61 62
|
mpbid |
|
| 64 |
51 63
|
eqbrtrd |
|
| 65 |
32 53 45
|
ledivmuld |
|
| 66 |
64 65
|
mpbird |
|
| 67 |
|
nnre |
|
| 68 |
67
|
ad2antrl |
|
| 69 |
32 44
|
nndivred |
|
| 70 |
|
letr |
|
| 71 |
68 69 53 70
|
syl3anc |
|
| 72 |
66 71
|
mpan2d |
|
| 73 |
47 72
|
sylbid |
|
| 74 |
73
|
pm4.71rd |
|
| 75 |
|
nnge1 |
|
| 76 |
75
|
ad2antrl |
|
| 77 |
|
1re |
|
| 78 |
|
0lt1 |
|
| 79 |
77 78
|
pm3.2i |
|
| 80 |
34
|
rpregt0d |
|
| 81 |
30
|
adantr |
|
| 82 |
81
|
rpregt0d |
|
| 83 |
|
lediv2 |
|
| 84 |
79 80 82 83
|
mp3an2i |
|
| 85 |
76 84
|
mpbid |
|
| 86 |
32
|
recnd |
|
| 87 |
86
|
div1d |
|
| 88 |
85 87
|
breqtrd |
|
| 89 |
|
simpl |
|
| 90 |
|
nndivre |
|
| 91 |
31 89 90
|
syl2an |
|
| 92 |
|
letr |
|
| 93 |
26 91 32 92
|
syl3anc |
|
| 94 |
88 93
|
mpan2d |
|
| 95 |
47 94
|
sylbird |
|
| 96 |
95
|
pm4.71rd |
|
| 97 |
47 74 96
|
3bitr3d |
|
| 98 |
|
fznnfl |
|
| 99 |
98
|
baibd |
|
| 100 |
53 33 99
|
syl2anc |
|
| 101 |
91
|
flcld |
|
| 102 |
|
elfz5 |
|
| 103 |
42 101 102
|
syl2anc |
|
| 104 |
|
flge |
|
| 105 |
91 25 104
|
syl2anc |
|
| 106 |
103 105
|
bitr4d |
|
| 107 |
100 106
|
anbi12d |
|
| 108 |
32
|
flcld |
|
| 109 |
|
elfz5 |
|
| 110 |
42 108 109
|
syl2anc |
|
| 111 |
|
flge |
|
| 112 |
32 25 111
|
syl2anc |
|
| 113 |
110 112
|
bitr4d |
|
| 114 |
|
fznnfl |
|
| 115 |
114
|
baibd |
|
| 116 |
69 33 115
|
syl2anc |
|
| 117 |
113 116
|
anbi12d |
|
| 118 |
97 107 117
|
3bitr4d |
|
| 119 |
118
|
ex |
|
| 120 |
19 23 119
|
pm5.21ndd |
|
| 121 |
|
ssun2 |
|
| 122 |
40
|
adantr |
|
| 123 |
|
nnuz |
|
| 124 |
122 123
|
eleqtrdi |
|
| 125 |
|
dchrisum0lem1a |
|
| 126 |
125
|
simprd |
|
| 127 |
|
fzsplit2 |
|
| 128 |
124 126 127
|
syl2anc |
|
| 129 |
121 128
|
sseqtrrid |
|
| 130 |
129
|
sselda |
|
| 131 |
7
|
ssrab3 |
|
| 132 |
131 8
|
sselid |
|
| 133 |
132
|
eldifad |
|
| 134 |
133
|
ad3antrrr |
|
| 135 |
|
elfzelz |
|
| 136 |
135
|
adantl |
|
| 137 |
4 1 5 2 134 136
|
dchrzrhcl |
|
| 138 |
|
elfznn |
|
| 139 |
138
|
adantl |
|
| 140 |
139
|
nnrpd |
|
| 141 |
140
|
rpsqrtcld |
|
| 142 |
141
|
rpcnd |
|
| 143 |
141
|
rpne0d |
|
| 144 |
137 142 143
|
divcld |
|
| 145 |
16
|
adantl |
|
| 146 |
145
|
nnrpd |
|
| 147 |
146
|
rpsqrtcld |
|
| 148 |
147
|
rpcnne0d |
|
| 149 |
148
|
adantr |
|
| 150 |
149
|
simpld |
|
| 151 |
149
|
simprd |
|
| 152 |
144 150 151
|
divcld |
|
| 153 |
130 152
|
syldan |
|
| 154 |
153
|
anasss |
|
| 155 |
13 14 15 120 154
|
fsumcom2 |
|
| 156 |
155
|
mpteq2dva |
|
| 157 |
77
|
a1i |
|
| 158 |
|
2cn |
|
| 159 |
27
|
rpsqrtcld |
|
| 160 |
159
|
rpcnd |
|
| 161 |
|
mulcl |
|
| 162 |
158 160 161
|
sylancr |
|
| 163 |
147
|
rprecred |
|
| 164 |
13 163
|
fsumrecl |
|
| 165 |
164
|
recnd |
|
| 166 |
165 162
|
subcld |
|
| 167 |
|
2re |
|
| 168 |
|
elrege0 |
|
| 169 |
10 168
|
sylib |
|
| 170 |
169
|
simpld |
|
| 171 |
|
remulcl |
|
| 172 |
167 170 171
|
sylancr |
|
| 173 |
172
|
adantr |
|
| 174 |
173 159
|
rerpdivcld |
|
| 175 |
174
|
recnd |
|
| 176 |
162 166 175
|
adddird |
|
| 177 |
162 165
|
pncan3d |
|
| 178 |
177
|
oveq1d |
|
| 179 |
|
2cnd |
|
| 180 |
179 160 175
|
mulassd |
|
| 181 |
173
|
recnd |
|
| 182 |
159
|
rpne0d |
|
| 183 |
181 160 182
|
divcan2d |
|
| 184 |
183
|
oveq2d |
|
| 185 |
180 184
|
eqtrd |
|
| 186 |
185
|
oveq1d |
|
| 187 |
176 178 186
|
3eqtr3d |
|
| 188 |
187
|
mpteq2dva |
|
| 189 |
|
remulcl |
|
| 190 |
167 172 189
|
sylancr |
|
| 191 |
190
|
recnd |
|
| 192 |
191
|
adantr |
|
| 193 |
166 175
|
mulcld |
|
| 194 |
|
rpssre |
|
| 195 |
|
o1const |
|
| 196 |
194 191 195
|
sylancr |
|
| 197 |
|
eqid |
|
| 198 |
197
|
divsqrsum |
|
| 199 |
|
rlimdmo1 |
|
| 200 |
198 199
|
mp1i |
|
| 201 |
181 160 182
|
divrecd |
|
| 202 |
201
|
mpteq2dva |
|
| 203 |
159
|
rprecred |
|
| 204 |
172
|
recnd |
|
| 205 |
|
rlimconst |
|
| 206 |
194 204 205
|
sylancr |
|
| 207 |
|
sqrtlim |
|
| 208 |
207
|
a1i |
|
| 209 |
173 203 206 208
|
rlimmul |
|
| 210 |
202 209
|
eqbrtrd |
|
| 211 |
|
rlimo1 |
|
| 212 |
210 211
|
syl |
|
| 213 |
166 175 200 212
|
o1mul2 |
|
| 214 |
192 193 196 213
|
o1add2 |
|
| 215 |
188 214
|
eqeltrd |
|
| 216 |
164 174
|
remulcld |
|
| 217 |
15 153
|
fsumcl |
|
| 218 |
13 217
|
fsumcl |
|
| 219 |
218
|
abscld |
|
| 220 |
216
|
recnd |
|
| 221 |
220
|
abscld |
|
| 222 |
217
|
abscld |
|
| 223 |
13 222
|
fsumrecl |
|
| 224 |
13 217
|
fsumabs |
|
| 225 |
174
|
adantr |
|
| 226 |
163 225
|
remulcld |
|
| 227 |
130 144
|
syldan |
|
| 228 |
15 227
|
fsumcl |
|
| 229 |
228
|
abscld |
|
| 230 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrisum0lem1b |
|
| 231 |
229 225 147 230
|
lediv1dd |
|
| 232 |
147
|
rpcnd |
|
| 233 |
147
|
rpne0d |
|
| 234 |
228 232 233
|
absdivd |
|
| 235 |
15 232 227 233
|
fsumdivc |
|
| 236 |
235
|
fveq2d |
|
| 237 |
147
|
rprege0d |
|
| 238 |
|
absid |
|
| 239 |
237 238
|
syl |
|
| 240 |
239
|
oveq2d |
|
| 241 |
234 236 240
|
3eqtr3rd |
|
| 242 |
175
|
adantr |
|
| 243 |
242 232 233
|
divrec2d |
|
| 244 |
231 241 243
|
3brtr3d |
|
| 245 |
13 222 226 244
|
fsumle |
|
| 246 |
163
|
recnd |
|
| 247 |
13 175 246
|
fsummulc1 |
|
| 248 |
245 247
|
breqtrrd |
|
| 249 |
219 223 216 224 248
|
letrd |
|
| 250 |
216
|
leabsd |
|
| 251 |
219 216 221 249 250
|
letrd |
|
| 252 |
251
|
adantrr |
|
| 253 |
157 215 216 218 252
|
o1le |
|
| 254 |
156 253
|
eqeltrrd |
|