Metamath Proof Explorer


Theorem dchrmusum2

Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by n , is bounded, provided that T =/= 0 . Lemma 9.4.2 of Shapiro, p. 380. (Contributed by Mario Carneiro, 4-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.g G=DChrN
rpvmasum.d D=BaseG
rpvmasum.1 1˙=0G
dchrisum.b φXD
dchrisum.n1 φX1˙
dchrisumn0.f F=aXLaa
dchrisumn0.c φC0+∞
dchrisumn0.t φseq1+FT
dchrisumn0.1 φy1+∞seq1+FyTCy
Assertion dchrmusum2 φx+d=1xXLdμddT𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.g G=DChrN
5 rpvmasum.d D=BaseG
6 rpvmasum.1 1˙=0G
7 dchrisum.b φXD
8 dchrisum.n1 φX1˙
9 dchrisumn0.f F=aXLaa
10 dchrisumn0.c φC0+∞
11 dchrisumn0.t φseq1+FT
12 dchrisumn0.1 φy1+∞seq1+FyTCy
13 rpssre +
14 ax-1cn 1
15 o1const +1x+1𝑂1
16 13 14 15 mp2an x+1𝑂1
17 16 a1i φx+1𝑂1
18 14 a1i φx+1
19 fzfid φx+1xFin
20 7 ad2antrr φx+d1xXD
21 elfzelz d1xd
22 21 adantl φx+d1xd
23 4 1 5 2 20 22 dchrzrhcl φx+d1xXLd
24 elfznn d1xd
25 24 adantl φx+d1xd
26 mucl dμd
27 26 zred dμd
28 nndivre μddμdd
29 27 28 mpancom dμdd
30 25 29 syl φx+d1xμdd
31 30 recnd φx+d1xμdd
32 23 31 mulcld φx+d1xXLdμdd
33 19 32 fsumcl φx+d=1xXLdμdd
34 climcl seq1+FTT
35 11 34 syl φT
36 35 adantr φx+T
37 33 36 mulcld φx+d=1xXLdμddT
38 13 a1i φ+
39 subcl 1d=1xXLdμddT1d=1xXLdμddT
40 14 37 39 sylancr φx+1d=1xXLdμddT
41 1red φ1
42 elrege0 C0+∞C0C
43 10 42 sylib φC0C
44 43 simpld φC
45 fzfid φx+1x1xFin
46 32 adantlrr φx+1xd1xXLdμdd
47 nnuz =1
48 1zzd φ1
49 7 adantr φmXD
50 nnz mm
51 50 adantl φmm
52 4 1 5 2 49 51 dchrzrhcl φmXLm
53 nncn mm
54 53 adantl φmm
55 nnne0 mm0
56 55 adantl φmm0
57 52 54 56 divcld φmXLmm
58 2fveq3 a=mXLa=XLm
59 id a=ma=m
60 58 59 oveq12d a=mXLaa=XLmm
61 60 cbvmptv aXLaa=mXLmm
62 9 61 eqtri F=mXLmm
63 57 62 fmptd φF:
64 63 ffvelcdmda φmFm
65 47 48 64 serf φseq1+F:
66 65 ad2antrr φx+1xd1xseq1+F:
67 simprl φx+1xx+
68 67 rpred φx+1xx
69 nndivre xdxd
70 68 24 69 syl2an φx+1xd1xxd
71 24 adantl φx+1xd1xd
72 71 nncnd φx+1xd1xd
73 72 mullidd φx+1xd1x1d=d
74 fznnfl xd1xddx
75 68 74 syl φx+1xd1xddx
76 75 simplbda φx+1xd1xdx
77 73 76 eqbrtrd φx+1xd1x1dx
78 1red φx+1xd1x1
79 68 adantr φx+1xd1xx
80 71 nnrpd φx+1xd1xd+
81 78 79 80 lemuldivd φx+1xd1x1dx1xd
82 77 81 mpbid φx+1xd1x1xd
83 flge1nn xd1xdxd
84 70 82 83 syl2anc φx+1xd1xxd
85 66 84 ffvelcdmd φx+1xd1xseq1+Fxd
86 46 85 mulcld φx+1xd1xXLdμddseq1+Fxd
87 35 ad2antrr φx+1xd1xT
88 46 87 mulcld φx+1xd1xXLdμddT
89 45 86 88 fsumsub φx+1xd=1xXLdμddseq1+FxdXLdμddT=d=1xXLdμddseq1+Fxdd=1xXLdμddT
90 46 85 87 subdid φx+1xd1xXLdμddseq1+FxdT=XLdμddseq1+FxdXLdμddT
91 90 sumeq2dv φx+1xd=1xXLdμddseq1+FxdT=d=1xXLdμddseq1+FxdXLdμddT
92 7 ad3antrrr φx+1xd1xm1xdXD
93 21 ad2antlr φx+1xd1xm1xdd
94 elfzelz m1xdm
95 94 adantl φx+1xd1xm1xdm
96 4 1 5 2 92 93 95 dchrzrhmul φx+1xd1xm1xdXLdm=XLdXLm
97 96 oveq1d φx+1xd1xm1xdXLdmdm=XLdXLmdm
98 23 adantlrr φx+1xd1xXLd
99 98 adantr φx+1xd1xm1xdXLd
100 72 adantr φx+1xd1xm1xdd
101 4 1 5 2 92 95 dchrzrhcl φx+1xd1xm1xdXLm
102 elfznn m1xdm
103 102 adantl φx+1xd1xm1xdm
104 103 nncnd φx+1xd1xm1xdm
105 71 nnne0d φx+1xd1xd0
106 105 adantr φx+1xd1xm1xdd0
107 103 nnne0d φx+1xd1xm1xdm0
108 99 100 101 104 106 107 divmuldivd φx+1xd1xm1xdXLddXLmm=XLdXLmdm
109 97 108 eqtr4d φx+1xd1xm1xdXLdmdm=XLddXLmm
110 109 oveq2d φx+1xd1xm1xdμdXLdmdm=μdXLddXLmm
111 71 26 syl φx+1xd1xμd
112 111 zcnd φx+1xd1xμd
113 112 adantr φx+1xd1xm1xdμd
114 99 100 106 divcld φx+1xd1xm1xdXLdd
115 101 104 107 divcld φx+1xd1xm1xdXLmm
116 113 114 115 mulassd φx+1xd1xm1xdμdXLddXLmm=μdXLddXLmm
117 113 99 100 106 div12d φx+1xd1xm1xdμdXLdd=XLdμdd
118 117 oveq1d φx+1xd1xm1xdμdXLddXLmm=XLdμddXLmm
119 110 116 118 3eqtr2d φx+1xd1xm1xdμdXLdmdm=XLdμddXLmm
120 119 sumeq2dv φx+1xd1xm=1xdμdXLdmdm=m=1xdXLdμddXLmm
121 fzfid φx+1xd1x1xdFin
122 simpll φx+1xd1xφ
123 122 102 57 syl2an φx+1xd1xm1xdXLmm
124 121 46 123 fsummulc2 φx+1xd1xXLdμddm=1xdXLmm=m=1xdXLdμddXLmm
125 ovex XLmmV
126 60 9 125 fvmpt mFm=XLmm
127 103 126 syl φx+1xd1xm1xdFm=XLmm
128 84 47 eleqtrdi φx+1xd1xxd1
129 127 128 123 fsumser φx+1xd1xm=1xdXLmm=seq1+Fxd
130 129 oveq2d φx+1xd1xXLdμddm=1xdXLmm=XLdμddseq1+Fxd
131 120 124 130 3eqtr2rd φx+1xd1xXLdμddseq1+Fxd=m=1xdμdXLdmdm
132 131 sumeq2dv φx+1xd=1xXLdμddseq1+Fxd=d=1xm=1xdμdXLdmdm
133 2fveq3 n=dmXLn=XLdm
134 id n=dmn=dm
135 133 134 oveq12d n=dmXLnn=XLdmdm
136 135 oveq2d n=dmμdXLnn=μdXLdmdm
137 elrabi dy|ynd
138 137 ad2antll φx+1xn1xdy|ynd
139 138 26 syl φx+1xn1xdy|ynμd
140 139 zcnd φx+1xn1xdy|ynμd
141 7 ad2antrr φx+1xn1xXD
142 elfzelz n1xn
143 142 adantl φx+1xn1xn
144 4 1 5 2 141 143 dchrzrhcl φx+1xn1xXLn
145 fz1ssnn 1x
146 145 a1i φx+1x1x
147 146 sselda φx+1xn1xn
148 147 nncnd φx+1xn1xn
149 147 nnne0d φx+1xn1xn0
150 144 148 149 divcld φx+1xn1xXLnn
151 150 adantrr φx+1xn1xdy|ynXLnn
152 140 151 mulcld φx+1xn1xdy|ynμdXLnn
153 136 68 152 dvdsflsumcom φx+1xn=1xdy|ynμdXLnn=d=1xm=1xdμdXLdmdm
154 2fveq3 n=1XLn=XL1
155 id n=1n=1
156 154 155 oveq12d n=1XLnn=XL11
157 simprr φx+1x1x
158 flge1nn x1xx
159 68 157 158 syl2anc φx+1xx
160 159 47 eleqtrdi φx+1xx1
161 eluzfz1 x111x
162 160 161 syl φx+1x11x
163 156 45 146 162 150 musumsum φx+1xn=1xdy|ynμdXLnn=XL11
164 132 153 163 3eqtr2d φx+1xd=1xXLdμddseq1+Fxd=XL11
165 4 1 5 2 7 dchrzrh1 φXL1=1
166 165 adantr φx+1xXL1=1
167 166 oveq1d φx+1xXL11=11
168 1div1e1 11=1
169 167 168 eqtrdi φx+1xXL11=1
170 164 169 eqtr2d φx+1x1=d=1xXLdμddseq1+Fxd
171 35 adantr φx+1xT
172 45 171 46 fsummulc1 φx+1xd=1xXLdμddT=d=1xXLdμddT
173 170 172 oveq12d φx+1x1d=1xXLdμddT=d=1xXLdμddseq1+Fxdd=1xXLdμddT
174 89 91 173 3eqtr4rd φx+1x1d=1xXLdμddT=d=1xXLdμddseq1+FxdT
175 174 fveq2d φx+1x1d=1xXLdμddT=d=1xXLdμddseq1+FxdT
176 85 87 subcld φx+1xd1xseq1+FxdT
177 46 176 mulcld φx+1xd1xXLdμddseq1+FxdT
178 45 177 fsumcl φx+1xd=1xXLdμddseq1+FxdT
179 178 abscld φx+1xd=1xXLdμddseq1+FxdT
180 177 abscld φx+1xd1xXLdμddseq1+FxdT
181 45 180 fsumrecl φx+1xd=1xXLdμddseq1+FxdT
182 44 adantr φx+1xC
183 45 177 fsumabs φx+1xd=1xXLdμddseq1+FxdTd=1xXLdμddseq1+FxdT
184 reflcl xx
185 68 184 syl φx+1xx
186 185 182 remulcld φx+1xxC
187 186 67 rerpdivcld φx+1xxCx
188 182 67 rerpdivcld φx+1xCx
189 188 adantr φx+1xd1xCx
190 46 abscld φx+1xd1xXLdμdd
191 71 nnrecred φx+1xd1x1d
192 176 abscld φx+1xd1xseq1+FxdT
193 80 rpred φx+1xd1xd
194 189 193 remulcld φx+1xd1xCxd
195 46 absge0d φx+1xd1x0XLdμdd
196 176 absge0d φx+1xd1x0seq1+FxdT
197 98 abscld φx+1xd1xXLd
198 31 adantlrr φx+1xd1xμdd
199 198 abscld φx+1xd1xμdd
200 98 absge0d φx+1xd1x0XLd
201 198 absge0d φx+1xd1x0μdd
202 eqid BaseZ=BaseZ
203 7 ad2antrr φx+1xd1xXD
204 3 nnnn0d φN0
205 1 202 2 znzrhfo N0L:ontoBaseZ
206 fof L:ontoBaseZL:BaseZ
207 204 205 206 3syl φL:BaseZ
208 207 adantr φx+1xL:BaseZ
209 ffvelcdm L:BaseZdLdBaseZ
210 208 21 209 syl2an φx+1xd1xLdBaseZ
211 4 5 1 202 203 210 dchrabs2 φx+1xd1xXLd1
212 112 72 105 absdivd φx+1xd1xμdd=μdd
213 80 rprege0d φx+1xd1xd0d
214 absid d0dd=d
215 213 214 syl φx+1xd1xd=d
216 215 oveq2d φx+1xd1xμdd=μdd
217 212 216 eqtrd φx+1xd1xμdd=μdd
218 112 abscld φx+1xd1xμd
219 mule1 dμd1
220 71 219 syl φx+1xd1xμd1
221 218 78 80 220 lediv1dd φx+1xd1xμdd1d
222 217 221 eqbrtrd φx+1xd1xμdd1d
223 197 78 199 191 200 201 211 222 lemul12ad φx+1xd1xXLdμdd11d
224 98 198 absmuld φx+1xd1xXLdμdd=XLdμdd
225 191 recnd φx+1xd1x1d
226 225 mullidd φx+1xd1x11d=1d
227 226 eqcomd φx+1xd1x1d=11d
228 223 224 227 3brtr4d φx+1xd1xXLdμdd1d
229 2fveq3 y=xdseq1+Fy=seq1+Fxd
230 229 fvoveq1d y=xdseq1+FyT=seq1+FxdT
231 oveq2 y=xdCy=Cxd
232 230 231 breq12d y=xdseq1+FyTCyseq1+FxdTCxd
233 12 ad2antrr φx+1xd1xy1+∞seq1+FyTCy
234 1re 1
235 elicopnf 1xd1+∞xd1xd
236 234 235 ax-mp xd1+∞xd1xd
237 70 82 236 sylanbrc φx+1xd1xxd1+∞
238 232 233 237 rspcdva φx+1xd1xseq1+FxdTCxd
239 182 recnd φx+1xC
240 239 adantr φx+1xd1xC
241 rpcnne0 x+xx0
242 241 ad2antrl φx+1xxx0
243 242 adantr φx+1xd1xxx0
244 divdiv2 Cxx0dd0Cxd=Cdx
245 240 243 72 105 244 syl112anc φx+1xd1xCxd=Cdx
246 div23 Cdxx0Cdx=Cxd
247 240 72 243 246 syl3anc φx+1xd1xCdx=Cxd
248 245 247 eqtrd φx+1xd1xCxd=Cxd
249 238 248 breqtrd φx+1xd1xseq1+FxdTCxd
250 190 191 192 194 195 196 228 249 lemul12ad φx+1xd1xXLdμddseq1+FxdT1dCxd
251 46 176 absmuld φx+1xd1xXLdμddseq1+FxdT=XLdμddseq1+FxdT
252 188 recnd φx+1xCx
253 252 adantr φx+1xd1xCx
254 253 72 105 divcan4d φx+1xd1xCxdd=Cx
255 253 72 mulcld φx+1xd1xCxd
256 255 72 105 divrec2d φx+1xd1xCxdd=1dCxd
257 254 256 eqtr3d φx+1xd1xCx=1dCxd
258 250 251 257 3brtr4d φx+1xd1xXLdμddseq1+FxdTCx
259 45 180 189 258 fsumle φx+1xd=1xXLdμddseq1+FxdTd=1xCx
260 159 nnnn0d φx+1xx0
261 hashfz1 x01x=x
262 260 261 syl φx+1x1x=x
263 262 oveq1d φx+1x1xCx=xCx
264 fsumconst 1xFinCxd=1xCx=1xCx
265 45 252 264 syl2anc φx+1xd=1xCx=1xCx
266 159 nncnd φx+1xx
267 divass xCxx0xCx=xCx
268 266 239 242 267 syl3anc φx+1xxCx=xCx
269 263 265 268 3eqtr4d φx+1xd=1xCx=xCx
270 259 269 breqtrd φx+1xd=1xXLdμddseq1+FxdTxCx
271 43 adantr φx+1xC0C
272 flle xxx
273 68 272 syl φx+1xxx
274 lemul1a xxC0CxxxCxC
275 185 68 271 273 274 syl31anc φx+1xxCxC
276 186 182 67 ledivmuld φx+1xxCxCxCxC
277 275 276 mpbird φx+1xxCxC
278 181 187 182 270 277 letrd φx+1xd=1xXLdμddseq1+FxdTC
279 179 181 182 183 278 letrd φx+1xd=1xXLdμddseq1+FxdTC
280 175 279 eqbrtrd φx+1x1d=1xXLdμddTC
281 38 40 41 44 280 elo1d φx+1d=1xXLdμddT𝑂1
282 18 37 281 o1dif φx+1𝑂1x+d=1xXLdμddT𝑂1
283 17 282 mpbid φx+d=1xXLdμddT𝑂1