Metamath Proof Explorer


Theorem evlslem1

Description: Lemma for evlseu , give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015) (Proof shortened by AV, 26-Jul-2019) (Revised by AV, 11-Apr-2024)

Ref Expression
Hypotheses evlslem1.p P=ImPolyR
evlslem1.b B=BaseP
evlslem1.c C=BaseS
evlslem1.d D=h0I|h-1Fin
evlslem1.t T=mulGrpS
evlslem1.x ×˙=T
evlslem1.m ·˙=S
evlslem1.v V=ImVarR
evlslem1.e E=pBSbDFpb·˙Tb×˙fG
evlslem1.i φIW
evlslem1.r φRCRing
evlslem1.s φSCRing
evlslem1.f φFRRingHomS
evlslem1.g φG:IC
evlslem1.a A=algScP
Assertion evlslem1 φEPRingHomSEA=FEV=G

Proof

Step Hyp Ref Expression
1 evlslem1.p P=ImPolyR
2 evlslem1.b B=BaseP
3 evlslem1.c C=BaseS
4 evlslem1.d D=h0I|h-1Fin
5 evlslem1.t T=mulGrpS
6 evlslem1.x ×˙=T
7 evlslem1.m ·˙=S
8 evlslem1.v V=ImVarR
9 evlslem1.e E=pBSbDFpb·˙Tb×˙fG
10 evlslem1.i φIW
11 evlslem1.r φRCRing
12 evlslem1.s φSCRing
13 evlslem1.f φFRRingHomS
14 evlslem1.g φG:IC
15 evlslem1.a A=algScP
16 eqid 1P=1P
17 eqid 1S=1S
18 eqid P=P
19 11 crngringd φRRing
20 1 mplring IWRRingPRing
21 10 19 20 syl2anc φPRing
22 12 crngringd φSRing
23 2fveq3 x=1REAx=EA1R
24 fveq2 x=1RFx=F1R
25 23 24 eqeq12d x=1REAx=FxEA1R=F1R
26 eqid 0R=0R
27 eqid BaseR=BaseR
28 10 adantr φxBaseRIW
29 19 adantr φxBaseRRRing
30 simpr φxBaseRxBaseR
31 1 4 26 27 15 28 29 30 mplascl φxBaseRAx=yDify=I×0x0R
32 31 fveq2d φxBaseREAx=EyDify=I×0x0R
33 11 adantr φxBaseRRCRing
34 12 adantr φxBaseRSCRing
35 13 adantr φxBaseRFRRingHomS
36 14 adantr φxBaseRG:IC
37 4 psrbag0 IWI×0D
38 10 37 syl φI×0D
39 38 adantr φxBaseRI×0D
40 1 2 3 27 4 5 6 7 8 9 28 33 34 35 36 26 39 30 evlslem3 φxBaseREyDify=I×0x0R=Fx·˙TI×0×˙fG
41 0zd φxI0
42 fvexd φxIGxV
43 fconstmpt I×0=xI0
44 43 a1i φI×0=xI0
45 14 feqmptd φG=xIGx
46 10 41 42 44 45 offval2 φI×0×˙fG=xI0×˙Gx
47 14 ffvelcdmda φxIGxC
48 5 3 mgpbas C=BaseT
49 5 17 ringidval 1S=0T
50 48 49 6 mulg0 GxC0×˙Gx=1S
51 47 50 syl φxI0×˙Gx=1S
52 51 mpteq2dva φxI0×˙Gx=xI1S
53 46 52 eqtrd φI×0×˙fG=xI1S
54 53 oveq2d φTI×0×˙fG=TxI1S
55 5 crngmgp SCRingTCMnd
56 12 55 syl φTCMnd
57 56 cmnmndd φTMnd
58 49 gsumz TMndIWTxI1S=1S
59 57 10 58 syl2anc φTxI1S=1S
60 54 59 eqtrd φTI×0×˙fG=1S
61 60 adantr φxBaseRTI×0×˙fG=1S
62 61 oveq2d φxBaseRFx·˙TI×0×˙fG=Fx·˙1S
63 27 3 rhmf FRRingHomSF:BaseRC
64 13 63 syl φF:BaseRC
65 64 ffvelcdmda φxBaseRFxC
66 3 7 17 ringridm SRingFxCFx·˙1S=Fx
67 22 65 66 syl2an2r φxBaseRFx·˙1S=Fx
68 62 67 eqtrd φxBaseRFx·˙TI×0×˙fG=Fx
69 32 40 68 3eqtrd φxBaseREAx=Fx
70 69 ralrimiva φxBaseREAx=Fx
71 eqid 1R=1R
72 27 71 ringidcl RRing1RBaseR
73 19 72 syl φ1RBaseR
74 25 70 73 rspcdva φEA1R=F1R
75 1 mplassa IWRCRingPAssAlg
76 10 11 75 syl2anc φPAssAlg
77 eqid ScalarP=ScalarP
78 15 77 asclrhm PAssAlgAScalarPRingHomP
79 76 78 syl φAScalarPRingHomP
80 1 10 11 mplsca φR=ScalarP
81 80 oveq1d φRRingHomP=ScalarPRingHomP
82 79 81 eleqtrrd φARRingHomP
83 71 16 rhm1 ARRingHomPA1R=1P
84 82 83 syl φA1R=1P
85 84 fveq2d φEA1R=E1P
86 71 17 rhm1 FRRingHomSF1R=1S
87 13 86 syl φF1R=1S
88 74 85 87 3eqtr3d φE1P=1S
89 eqid +P=+P
90 eqid +S=+S
91 21 ringgrpd φPGrp
92 22 ringgrpd φSGrp
93 eqid 0S=0S
94 ringcmn SRingSCMnd
95 22 94 syl φSCMnd
96 95 adantr φpBSCMnd
97 ovex 0IV
98 4 97 rabex2 DV
99 98 a1i φpBDV
100 10 adantr φpBIW
101 11 adantr φpBRCRing
102 12 adantr φpBSCRing
103 13 adantr φpBFRRingHomS
104 14 adantr φpBG:IC
105 simpr φpBpB
106 1 2 3 4 5 6 7 8 9 100 101 102 103 104 105 evlslem6 φpBbDFpb·˙Tb×˙fG:DCfinSupp0SbDFpb·˙Tb×˙fG
107 106 simpld φpBbDFpb·˙Tb×˙fG:DC
108 106 simprd φpBfinSupp0SbDFpb·˙Tb×˙fG
109 3 93 96 99 107 108 gsumcl φpBSbDFpb·˙Tb×˙fGC
110 109 9 fmptd φE:BC
111 eqid +R=+R
112 simplrl φxByBbDxB
113 simplrr φxByBbDyB
114 1 2 111 89 112 113 mpladd φxByBbDx+Py=x+Rfy
115 114 fveq1d φxByBbDx+Pyb=x+Rfyb
116 simprl φxByBxB
117 1 27 2 4 116 mplelf φxByBx:DBaseR
118 117 ffnd φxByBxFnD
119 118 adantr φxByBbDxFnD
120 simprr φxByByB
121 1 27 2 4 120 mplelf φxByBy:DBaseR
122 121 ffnd φxByByFnD
123 122 adantr φxByBbDyFnD
124 98 a1i φxByBbDDV
125 simpr φxByBbDbD
126 fnfvof xFnDyFnDDVbDx+Rfyb=xb+Ryb
127 119 123 124 125 126 syl22anc φxByBbDx+Rfyb=xb+Ryb
128 115 127 eqtrd φxByBbDx+Pyb=xb+Ryb
129 128 fveq2d φxByBbDFx+Pyb=Fxb+Ryb
130 rhmghm FRRingHomSFRGrpHomS
131 13 130 syl φFRGrpHomS
132 131 ad2antrr φxByBbDFRGrpHomS
133 117 ffvelcdmda φxByBbDxbBaseR
134 121 ffvelcdmda φxByBbDybBaseR
135 27 111 90 ghmlin FRGrpHomSxbBaseRybBaseRFxb+Ryb=Fxb+SFyb
136 132 133 134 135 syl3anc φxByBbDFxb+Ryb=Fxb+SFyb
137 129 136 eqtrd φxByBbDFx+Pyb=Fxb+SFyb
138 137 oveq1d φxByBbDFx+Pyb·˙Tb×˙fG=Fxb+SFyb·˙Tb×˙fG
139 22 ad2antrr φxByBbDSRing
140 64 ad2antrr φxByBbDF:BaseRC
141 140 133 ffvelcdmd φxByBbDFxbC
142 140 134 ffvelcdmd φxByBbDFybC
143 56 ad2antrr φxByBbDTCMnd
144 14 ad2antrr φxByBbDG:IC
145 4 48 6 143 125 144 psrbagev2 φxByBbDTb×˙fGC
146 3 90 7 ringdir SRingFxbCFybCTb×˙fGCFxb+SFyb·˙Tb×˙fG=Fxb·˙Tb×˙fG+SFyb·˙Tb×˙fG
147 139 141 142 145 146 syl13anc φxByBbDFxb+SFyb·˙Tb×˙fG=Fxb·˙Tb×˙fG+SFyb·˙Tb×˙fG
148 138 147 eqtrd φxByBbDFx+Pyb·˙Tb×˙fG=Fxb·˙Tb×˙fG+SFyb·˙Tb×˙fG
149 148 mpteq2dva φxByBbDFx+Pyb·˙Tb×˙fG=bDFxb·˙Tb×˙fG+SFyb·˙Tb×˙fG
150 98 a1i φxByBDV
151 ovexd φxByBbDFxb·˙Tb×˙fGV
152 ovexd φxByBbDFyb·˙Tb×˙fGV
153 eqidd φxByBbDFxb·˙Tb×˙fG=bDFxb·˙Tb×˙fG
154 eqidd φxByBbDFyb·˙Tb×˙fG=bDFyb·˙Tb×˙fG
155 150 151 152 153 154 offval2 φxByBbDFxb·˙Tb×˙fG+SfbDFyb·˙Tb×˙fG=bDFxb·˙Tb×˙fG+SFyb·˙Tb×˙fG
156 149 155 eqtr4d φxByBbDFx+Pyb·˙Tb×˙fG=bDFxb·˙Tb×˙fG+SfbDFyb·˙Tb×˙fG
157 156 oveq2d φxByBSbDFx+Pyb·˙Tb×˙fG=SbDFxb·˙Tb×˙fG+SfbDFyb·˙Tb×˙fG
158 95 adantr φxByBSCMnd
159 10 adantr φxByBIW
160 11 adantr φxByBRCRing
161 12 adantr φxByBSCRing
162 13 adantr φxByBFRRingHomS
163 14 adantr φxByBG:IC
164 1 2 3 4 5 6 7 8 9 159 160 161 162 163 116 evlslem6 φxByBbDFxb·˙Tb×˙fG:DCfinSupp0SbDFxb·˙Tb×˙fG
165 164 simpld φxByBbDFxb·˙Tb×˙fG:DC
166 1 2 3 4 5 6 7 8 9 159 160 161 162 163 120 evlslem6 φxByBbDFyb·˙Tb×˙fG:DCfinSupp0SbDFyb·˙Tb×˙fG
167 166 simpld φxByBbDFyb·˙Tb×˙fG:DC
168 164 simprd φxByBfinSupp0SbDFxb·˙Tb×˙fG
169 166 simprd φxByBfinSupp0SbDFyb·˙Tb×˙fG
170 3 93 90 158 150 165 167 168 169 gsumadd φxByBSbDFxb·˙Tb×˙fG+SfbDFyb·˙Tb×˙fG=SbDFxb·˙Tb×˙fG+SSbDFyb·˙Tb×˙fG
171 157 170 eqtrd φxByBSbDFx+Pyb·˙Tb×˙fG=SbDFxb·˙Tb×˙fG+SSbDFyb·˙Tb×˙fG
172 91 adantr φxByBPGrp
173 2 89 grpcl PGrpxByBx+PyB
174 172 116 120 173 syl3anc φxByBx+PyB
175 fveq1 p=x+Pypb=x+Pyb
176 175 fveq2d p=x+PyFpb=Fx+Pyb
177 176 oveq1d p=x+PyFpb·˙Tb×˙fG=Fx+Pyb·˙Tb×˙fG
178 177 mpteq2dv p=x+PybDFpb·˙Tb×˙fG=bDFx+Pyb·˙Tb×˙fG
179 178 oveq2d p=x+PySbDFpb·˙Tb×˙fG=SbDFx+Pyb·˙Tb×˙fG
180 ovex SbDFx+Pyb·˙Tb×˙fGV
181 179 9 180 fvmpt x+PyBEx+Py=SbDFx+Pyb·˙Tb×˙fG
182 174 181 syl φxByBEx+Py=SbDFx+Pyb·˙Tb×˙fG
183 fveq1 p=xpb=xb
184 183 fveq2d p=xFpb=Fxb
185 184 oveq1d p=xFpb·˙Tb×˙fG=Fxb·˙Tb×˙fG
186 185 mpteq2dv p=xbDFpb·˙Tb×˙fG=bDFxb·˙Tb×˙fG
187 186 oveq2d p=xSbDFpb·˙Tb×˙fG=SbDFxb·˙Tb×˙fG
188 ovex SbDFxb·˙Tb×˙fGV
189 187 9 188 fvmpt xBEx=SbDFxb·˙Tb×˙fG
190 116 189 syl φxByBEx=SbDFxb·˙Tb×˙fG
191 fveq1 p=ypb=yb
192 191 fveq2d p=yFpb=Fyb
193 192 oveq1d p=yFpb·˙Tb×˙fG=Fyb·˙Tb×˙fG
194 193 mpteq2dv p=ybDFpb·˙Tb×˙fG=bDFyb·˙Tb×˙fG
195 194 oveq2d p=ySbDFpb·˙Tb×˙fG=SbDFyb·˙Tb×˙fG
196 ovex SbDFyb·˙Tb×˙fGV
197 195 9 196 fvmpt yBEy=SbDFyb·˙Tb×˙fG
198 197 ad2antll φxByBEy=SbDFyb·˙Tb×˙fG
199 190 198 oveq12d φxByBEx+SEy=SbDFxb·˙Tb×˙fG+SSbDFyb·˙Tb×˙fG
200 171 182 199 3eqtr4d φxByBEx+Py=Ex+SEy
201 2 3 89 90 91 92 110 200 isghmd φEPGrpHomS
202 eqid mulGrpR=mulGrpR
203 202 5 rhmmhm FRRingHomSFmulGrpRMndHomT
204 13 203 syl φFmulGrpRMndHomT
205 204 adantr φxByBzDwDFmulGrpRMndHomT
206 simprll φxByBzDwDxB
207 1 27 2 4 206 mplelf φxByBzDwDx:DBaseR
208 simprrl φxByBzDwDzD
209 207 208 ffvelcdmd φxByBzDwDxzBaseR
210 simprlr φxByBzDwDyB
211 1 27 2 4 210 mplelf φxByBzDwDy:DBaseR
212 simprrr φxByBzDwDwD
213 211 212 ffvelcdmd φxByBzDwDywBaseR
214 202 27 mgpbas BaseR=BasemulGrpR
215 eqid R=R
216 202 215 mgpplusg R=+mulGrpR
217 5 7 mgpplusg ·˙=+T
218 214 216 217 mhmlin FmulGrpRMndHomTxzBaseRywBaseRFxzRyw=Fxz·˙Fyw
219 205 209 213 218 syl3anc φxByBzDwDFxzRyw=Fxz·˙Fyw
220 57 ad2antrr φzDwDvITMnd
221 simprl φzDwDzD
222 4 psrbagf zDz:I0
223 221 222 syl φzDwDz:I0
224 223 ffvelcdmda φzDwDvIzv0
225 4 psrbagf wDw:I0
226 225 ad2antll φzDwDw:I0
227 226 ffvelcdmda φzDwDvIwv0
228 14 adantr φzDwDG:IC
229 228 ffvelcdmda φzDwDvIGvC
230 48 6 217 mulgnn0dir TMndzv0wv0GvCzv+wv×˙Gv=zv×˙Gv·˙wv×˙Gv
231 220 224 227 229 230 syl13anc φzDwDvIzv+wv×˙Gv=zv×˙Gv·˙wv×˙Gv
232 231 mpteq2dva φzDwDvIzv+wv×˙Gv=vIzv×˙Gv·˙wv×˙Gv
233 10 adantr φzDwDIW
234 ovexd φzDwDvIzv+wvV
235 fvexd φzDwDvIGvV
236 223 ffnd φzDwDzFnI
237 226 ffnd φzDwDwFnI
238 inidm II=I
239 eqidd φzDwDvIzv=zv
240 eqidd φzDwDvIwv=wv
241 236 237 233 233 238 239 240 offval φzDwDz+fw=vIzv+wv
242 14 feqmptd φG=vIGv
243 242 adantr φzDwDG=vIGv
244 233 234 235 241 243 offval2 φzDwDz+fw×˙fG=vIzv+wv×˙Gv
245 ovexd φzDwDvIzv×˙GvV
246 ovexd φzDwDvIwv×˙GvV
247 14 ffnd φGFnI
248 247 adantr φzDwDGFnI
249 eqidd φzDwDvIGv=Gv
250 236 248 233 233 238 239 249 offval φzDwDz×˙fG=vIzv×˙Gv
251 237 248 233 233 238 240 249 offval φzDwDw×˙fG=vIwv×˙Gv
252 233 245 246 250 251 offval2 φzDwDz×˙fG·˙fw×˙fG=vIzv×˙Gv·˙wv×˙Gv
253 232 244 252 3eqtr4d φzDwDz+fw×˙fG=z×˙fG·˙fw×˙fG
254 253 oveq2d φzDwDTz+fw×˙fG=Tz×˙fG·˙fw×˙fG
255 56 adantr φzDwDTCMnd
256 4 48 6 49 255 221 228 psrbagev1 φzDwDz×˙fG:ICfinSupp1Sz×˙fG
257 256 simpld φzDwDz×˙fG:IC
258 simprr φzDwDwD
259 4 48 6 49 255 258 228 psrbagev1 φzDwDw×˙fG:ICfinSupp1Sw×˙fG
260 259 simpld φzDwDw×˙fG:IC
261 256 simprd φzDwDfinSupp1Sz×˙fG
262 259 simprd φzDwDfinSupp1Sw×˙fG
263 48 49 217 255 233 257 260 261 262 gsumadd φzDwDTz×˙fG·˙fw×˙fG=Tz×˙fG·˙Tw×˙fG
264 254 263 eqtrd φzDwDTz+fw×˙fG=Tz×˙fG·˙Tw×˙fG
265 264 adantrl φxByBzDwDTz+fw×˙fG=Tz×˙fG·˙Tw×˙fG
266 219 265 oveq12d φxByBzDwDFxzRyw·˙Tz+fw×˙fG=Fxz·˙Fyw·˙Tz×˙fG·˙Tw×˙fG
267 56 adantr φxByBzDwDTCMnd
268 64 adantr φxByBzDwDF:BaseRC
269 268 209 ffvelcdmd φxByBzDwDFxzC
270 268 213 ffvelcdmd φxByBzDwDFywC
271 4 48 6 255 221 228 psrbagev2 φzDwDTz×˙fGC
272 271 adantrl φxByBzDwDTz×˙fGC
273 4 48 6 255 258 228 psrbagev2 φzDwDTw×˙fGC
274 273 adantrl φxByBzDwDTw×˙fGC
275 48 217 cmn4 TCMndFxzCFywCTz×˙fGCTw×˙fGCFxz·˙Fyw·˙Tz×˙fG·˙Tw×˙fG=Fxz·˙Tz×˙fG·˙Fyw·˙Tw×˙fG
276 267 269 270 272 274 275 syl122anc φxByBzDwDFxz·˙Fyw·˙Tz×˙fG·˙Tw×˙fG=Fxz·˙Tz×˙fG·˙Fyw·˙Tw×˙fG
277 266 276 eqtrd φxByBzDwDFxzRyw·˙Tz+fw×˙fG=Fxz·˙Tz×˙fG·˙Fyw·˙Tw×˙fG
278 10 adantr φxByBzDwDIW
279 11 adantr φxByBzDwDRCRing
280 12 adantr φxByBzDwDSCRing
281 13 adantr φxByBzDwDFRRingHomS
282 14 adantr φxByBzDwDG:IC
283 4 psrbagaddcl zDwDz+fwD
284 283 ad2antll φxByBzDwDz+fwD
285 19 adantr φxByBzDwDRRing
286 27 215 ringcl RRingxzBaseRywBaseRxzRywBaseR
287 285 209 213 286 syl3anc φxByBzDwDxzRywBaseR
288 1 2 3 27 4 5 6 7 8 9 278 279 280 281 282 26 284 287 evlslem3 φxByBzDwDEvDifv=z+fwxzRyw0R=FxzRyw·˙Tz+fw×˙fG
289 1 2 3 27 4 5 6 7 8 9 278 279 280 281 282 26 208 209 evlslem3 φxByBzDwDEvDifv=zxz0R=Fxz·˙Tz×˙fG
290 1 2 3 27 4 5 6 7 8 9 278 279 280 281 282 26 212 213 evlslem3 φxByBzDwDEvDifv=wyw0R=Fyw·˙Tw×˙fG
291 289 290 oveq12d φxByBzDwDEvDifv=zxz0R·˙EvDifv=wyw0R=Fxz·˙Tz×˙fG·˙Fyw·˙Tw×˙fG
292 277 288 291 3eqtr4d φxByBzDwDEvDifv=z+fwxzRyw0R=EvDifv=zxz0R·˙EvDifv=wyw0R
293 1 2 7 26 4 10 11 12 201 292 evlslem2 φxByBExPy=Ex·˙Ey
294 2 16 17 18 7 21 22 88 293 3 89 90 110 200 isrhmd φEPRingHomS
295 ovex SbDFpb·˙Tb×˙fGV
296 295 9 fnmpti EFnB
297 296 a1i φEFnB
298 27 2 rhmf ARRingHomPA:BaseRB
299 82 298 syl φA:BaseRB
300 299 ffnd φAFnBaseR
301 299 frnd φranAB
302 fnco EFnBAFnBaseRranABEAFnBaseR
303 297 300 301 302 syl3anc φEAFnBaseR
304 64 ffnd φFFnBaseR
305 fvco2 AFnBaseRxBaseREAx=EAx
306 300 305 sylan φxBaseREAx=EAx
307 306 69 eqtrd φxBaseREAx=Fx
308 303 304 307 eqfnfvd φEA=F
309 1 8 2 10 19 mvrf2 φV:IB
310 309 ffnd φVFnI
311 309 frnd φranVB
312 fnco EFnBVFnIranVBEVFnI
313 297 310 311 312 syl3anc φEVFnI
314 fvco2 VFnIxIEVx=EVx
315 310 314 sylan φxIEVx=EVx
316 10 adantr φxIIW
317 11 adantr φxIRCRing
318 simpr φxIxI
319 8 4 26 71 316 317 318 mvrval φxIVx=yDify=zIifz=x101R0R
320 319 fveq2d φxIEVx=EyDify=zIifz=x101R0R
321 12 adantr φxISCRing
322 13 adantr φxIFRRingHomS
323 14 adantr φxIG:IC
324 4 psrbagsn IWzIifz=x10D
325 10 324 syl φzIifz=x10D
326 325 adantr φxIzIifz=x10D
327 73 adantr φxI1RBaseR
328 1 2 3 27 4 5 6 7 8 9 316 317 321 322 323 26 326 327 evlslem3 φxIEyDify=zIifz=x101R0R=F1R·˙TzIifz=x10×˙fG
329 87 adantr φxIF1R=1S
330 1nn0 10
331 0nn0 00
332 330 331 ifcli ifz=x100
333 332 a1i φzIifz=x100
334 14 ffvelcdmda φzIGzC
335 eqidd φzIifz=x10=zIifz=x10
336 14 feqmptd φG=zIGz
337 10 333 334 335 336 offval2 φzIifz=x10×˙fG=zIifz=x10×˙Gz
338 oveq1 1=ifz=x101×˙Gz=ifz=x10×˙Gz
339 338 eqeq1d 1=ifz=x101×˙Gz=ifz=xGz1Sifz=x10×˙Gz=ifz=xGz1S
340 oveq1 0=ifz=x100×˙Gz=ifz=x10×˙Gz
341 340 eqeq1d 0=ifz=x100×˙Gz=ifz=xGz1Sifz=x10×˙Gz=ifz=xGz1S
342 334 adantr φzIz=xGzC
343 48 6 mulg1 GzC1×˙Gz=Gz
344 342 343 syl φzIz=x1×˙Gz=Gz
345 iftrue z=xifz=xGz1S=Gz
346 345 adantl φzIz=xifz=xGz1S=Gz
347 344 346 eqtr4d φzIz=x1×˙Gz=ifz=xGz1S
348 48 49 6 mulg0 GzC0×˙Gz=1S
349 334 348 syl φzI0×˙Gz=1S
350 349 adantr φzI¬z=x0×˙Gz=1S
351 iffalse ¬z=xifz=xGz1S=1S
352 351 adantl φzI¬z=xifz=xGz1S=1S
353 350 352 eqtr4d φzI¬z=x0×˙Gz=ifz=xGz1S
354 339 341 347 353 ifbothda φzIifz=x10×˙Gz=ifz=xGz1S
355 354 mpteq2dva φzIifz=x10×˙Gz=zIifz=xGz1S
356 337 355 eqtrd φzIifz=x10×˙fG=zIifz=xGz1S
357 356 adantr φxIzIifz=x10×˙fG=zIifz=xGz1S
358 357 oveq2d φxITzIifz=x10×˙fG=TzIifz=xGz1S
359 57 adantr φxITMnd
360 334 adantlr φxIzIGzC
361 3 17 ringidcl SRing1SC
362 22 361 syl φ1SC
363 362 ad2antrr φxIzI1SC
364 360 363 ifcld φxIzIifz=xGz1SC
365 364 fmpttd φxIzIifz=xGz1S:IC
366 eldifsnneq zIx¬z=x
367 366 351 syl zIxifz=xGz1S=1S
368 367 adantl φxIzIxifz=xGz1S=1S
369 368 316 suppss2 φxIzIifz=xGz1Ssupp1Sx
370 48 49 359 316 318 365 369 gsumpt φxITzIifz=xGz1S=zIifz=xGz1Sx
371 fveq2 z=xGz=Gx
372 345 371 eqtrd z=xifz=xGz1S=Gx
373 eqid zIifz=xGz1S=zIifz=xGz1S
374 fvex GxV
375 372 373 374 fvmpt xIzIifz=xGz1Sx=Gx
376 375 adantl φxIzIifz=xGz1Sx=Gx
377 358 370 376 3eqtrd φxITzIifz=x10×˙fG=Gx
378 329 377 oveq12d φxIF1R·˙TzIifz=x10×˙fG=1S·˙Gx
379 3 7 17 ringlidm SRingGxC1S·˙Gx=Gx
380 22 47 379 syl2an2r φxI1S·˙Gx=Gx
381 378 380 eqtrd φxIF1R·˙TzIifz=x10×˙fG=Gx
382 320 328 381 3eqtrd φxIEVx=Gx
383 315 382 eqtrd φxIEVx=Gx
384 313 247 383 eqfnfvd φEV=G
385 294 308 384 3jca φEPRingHomSEA=FEV=G