Metamath Proof Explorer


Theorem expgrowth

Description: Exponential growth and decay model. The derivative of a functiony of variablet equals a constantk timesy itself, iffy equals some constantC times the exponential ofkt. This theorem and expgrowthi illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.

Section 6.3 of Strang p. 242 callsy' =ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as theMalthusian growth model or exponential law, andC,k, andt correspond to initial population size, growth rate, and time respectively ( https://en.wikipedia.org/wiki/Malthusian_growth_model ); and in finance, the model appears in a similar role incontinuous compounding withC as the initial amount of money. Inexponential decay models, k is often expressed as the negative of a positive constant λ.

Herey' is given as ( SD Y ) , C_ as c , andky as ( ( S X. { K } ) oF x. Y ) . ( S X. { K } ) is the constant function that maps any real or complex input tok and oF x. is multiplication as a function operation.

The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of LarsonHostetlerEdwards p. 375 (which notes "C is theinitial value ofy, andk is theproportionality constant.Exponential growth occurs whenk > 0, andexponential decay occurs whenk < 0."); its proof here closely follows the proof ofy' =y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case .

Statements for this and expgrowthi formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015)

Ref Expression
Hypotheses expgrowth.s φS
expgrowth.k φK
expgrowth.y φY:S
expgrowth.dy φdomYS=S
Assertion expgrowth φSDY=S×K×fYcY=tSceKt

Proof

Step Hyp Ref Expression
1 expgrowth.s φS
2 expgrowth.k φK
3 expgrowth.y φY:S
4 expgrowth.dy φdomYS=S
5 cnelprrecn
6 5 a1i φ
7 recnprss SS
8 1 7 syl φS
9 8 sseld φuSu
10 mulcl KuKu
11 2 9 10 syl6an φuSKu
12 11 imp φuSKu
13 12 negcld φuSKu
14 2 negcld φK
15 14 adantr φuSK
16 efcl yey
17 16 adantl φyey
18 2 adantr φuSK
19 9 imp φuSu
20 ax-1cn 1
21 20 a1i φuS1
22 1 dvmptid φduSudSu=uS1
23 1 19 21 22 2 dvmptcmul φduSKudSu=uSK1
24 2 mulridd φK1=K
25 24 mpteq2dv φuSK1=uSK
26 23 25 eqtrd φduSKudSu=uSK
27 1 12 18 26 dvmptneg φduSKudSu=uSK
28 dvef Dexp=exp
29 eff exp:
30 ffn exp:expFn
31 29 30 ax-mp expFn
32 dffn5 expFnexp=yey
33 31 32 mpbi exp=yey
34 33 oveq2i Dexp=dyeydy
35 28 34 33 3eqtr3i dyeydy=yey
36 35 a1i φdyeydy=yey
37 fveq2 y=Kuey=eKu
38 1 6 13 15 17 17 27 36 37 37 dvmptco φduSeKudSu=uSeKuK
39 38 oveq2d φY×fduSeKudSu=Y×fuSeKuK
40 efcl KueKu
41 13 40 syl φuSeKu
42 41 15 mulcld φuSeKuK
43 42 fmpttd φuSeKuK:S
44 38 feq1d φduSeKudSu:SuSeKuK:S
45 43 44 mpbird φduSeKudSu:S
46 mulcom xyxy=yx
47 46 adantl φxyxy=yx
48 1 3 45 47 caofcom φY×fduSeKudSu=duSeKudSu×fY
49 39 48 eqtr3d φY×fuSeKuK=duSeKudSu×fY
50 49 oveq2d φYS×fuSeKu+fY×fuSeKuK=YS×fuSeKu+fduSeKudSu×fY
51 fconst6g KS×K:S
52 14 51 syl φS×K:S
53 41 fmpttd φuSeKu:S
54 1 52 53 47 caofcom φS×K×fuSeKu=uSeKu×fS×K
55 eqidd φuSeKu=uSeKu
56 fconstmpt S×K=uSK
57 56 a1i φS×K=uSK
58 1 41 15 55 57 offval2 φuSeKu×fS×K=uSeKuK
59 54 58 eqtrd φS×K×fuSeKu=uSeKuK
60 59 oveq2d φY×fS×K×fuSeKu=Y×fuSeKuK
61 60 oveq2d φYS×fuSeKu+fY×fS×K×fuSeKu=YS×fuSeKu+fY×fuSeKuK
62 38 dmeqd φdomduSeKudSu=domuSeKuK
63 eqid uSeKuK=uSeKuK
64 63 42 dmmptd φdomuSeKuK=S
65 62 64 eqtrd φdomduSeKudSu=S
66 1 3 53 4 65 dvmulf φSDY×fuSeKu=YS×fuSeKu+fduSeKudSu×fY
67 50 61 66 3eqtr4rd φSDY×fuSeKu=YS×fuSeKu+fY×fS×K×fuSeKu
68 ofmul12 SY:SS×K:SuSeKu:SY×fS×K×fuSeKu=S×K×fY×fuSeKu
69 1 3 52 53 68 syl22anc φY×fS×K×fuSeKu=S×K×fY×fuSeKu
70 69 oveq2d φYS×fuSeKu+fY×fS×K×fuSeKu=YS×fuSeKu+fS×K×fY×fuSeKu
71 67 70 eqtrd φSDY×fuSeKu=YS×fuSeKu+fS×K×fY×fuSeKu
72 oveq1 SDY=S×K×fYYS×fuSeKu=S×K×fY×fuSeKu
73 72 oveq1d SDY=S×K×fYYS×fuSeKu+fS×K×fY×fuSeKu=S×K×fY×fuSeKu+fS×K×fY×fuSeKu
74 71 73 sylan9eq φSDY=S×K×fYSDY×fuSeKu=S×K×fY×fuSeKu+fS×K×fY×fuSeKu
75 mulass xyzxyz=xyz
76 75 adantl φxyzxyz=xyz
77 1 52 3 53 76 caofass φS×K×fY×fuSeKu=S×K×fY×fuSeKu
78 77 oveq2d φS×K×fY×fuSeKu+fS×K×fY×fuSeKu=S×K×fY×fuSeKu+fS×K×fY×fuSeKu
79 78 eqeq2d φSDY×fuSeKu=S×K×fY×fuSeKu+fS×K×fY×fuSeKuSDY×fuSeKu=S×K×fY×fuSeKu+fS×K×fY×fuSeKu
80 79 adantr φSDY=S×K×fYSDY×fuSeKu=S×K×fY×fuSeKu+fS×K×fY×fuSeKuSDY×fuSeKu=S×K×fY×fuSeKu+fS×K×fY×fuSeKu
81 74 80 mpbird φSDY=S×K×fYSDY×fuSeKu=S×K×fY×fuSeKu+fS×K×fY×fuSeKu
82 mulcl xyxy
83 82 adantl φxyxy
84 fconst6g KS×K:S
85 2 84 syl φS×K:S
86 inidm SS=S
87 83 85 3 1 1 86 off φS×K×fY:S
88 83 52 3 1 1 86 off φS×K×fY:S
89 adddir xyzx+yz=xz+yz
90 89 adantl φxyzx+yz=xz+yz
91 1 53 87 88 90 caofdir φS×K×fY+fS×K×fY×fuSeKu=S×K×fY×fuSeKu+fS×K×fY×fuSeKu
92 91 eqeq2d φSDY×fuSeKu=S×K×fY+fS×K×fY×fuSeKuSDY×fuSeKu=S×K×fY×fuSeKu+fS×K×fY×fuSeKu
93 92 adantr φSDY=S×K×fYSDY×fuSeKu=S×K×fY+fS×K×fY×fuSeKuSDY×fuSeKu=S×K×fY×fuSeKu+fS×K×fY×fuSeKu
94 81 93 mpbird φSDY=S×K×fYSDY×fuSeKu=S×K×fY+fS×K×fY×fuSeKu
95 ofnegsub SS×K×fY:SS×K×fY:SS×K×fY+fS×1×fS×K×fY=S×K×fYfS×K×fY
96 1 87 87 95 syl3anc φS×K×fY+fS×1×fS×K×fY=S×K×fYfS×K×fY
97 neg1cn 1
98 97 fconst6 S×1:S
99 98 a1i φS×1:S
100 1 99 85 3 76 caofass φS×1×fS×K×fY=S×1×fS×K×fY
101 97 a1i φ1
102 1 101 2 ofc12 φS×1×fS×K=S×-1K
103 2 mulm1d φ-1K=K
104 103 sneqd φ-1K=K
105 104 xpeq2d φS×-1K=S×K
106 102 105 eqtrd φS×1×fS×K=S×K
107 106 oveq1d φS×1×fS×K×fY=S×K×fY
108 100 107 eqtr3d φS×1×fS×K×fY=S×K×fY
109 108 oveq2d φS×K×fY+fS×1×fS×K×fY=S×K×fY+fS×K×fY
110 ofsubid SS×K×fY:SS×K×fYfS×K×fY=S×0
111 1 87 110 syl2anc φS×K×fYfS×K×fY=S×0
112 96 109 111 3eqtr3d φS×K×fY+fS×K×fY=S×0
113 112 oveq1d φS×K×fY+fS×K×fY×fuSeKu=S×0×fuSeKu
114 113 eqeq2d φSDY×fuSeKu=S×K×fY+fS×K×fY×fuSeKuSDY×fuSeKu=S×0×fuSeKu
115 114 adantr φSDY=S×K×fYSDY×fuSeKu=S×K×fY+fS×K×fY×fuSeKuSDY×fuSeKu=S×0×fuSeKu
116 94 115 mpbid φSDY=S×K×fYSDY×fuSeKu=S×0×fuSeKu
117 0cnd φ0
118 mul02 x0x=0
119 118 adantl φx0x=0
120 1 53 117 117 119 caofid2 φS×0×fuSeKu=S×0
121 120 adantr φSDY=S×K×fYS×0×fuSeKu=S×0
122 116 121 eqtrd φSDY=S×K×fYSDY×fuSeKu=S×0
123 1 adantr φSDY=S×K×fYS
124 83 3 53 1 1 86 off φY×fuSeKu:S
125 124 adantr φSDY=S×K×fYY×fuSeKu:S
126 122 dmeqd φSDY=S×K×fYdomY×fuSeKuS=domS×0
127 0cn 0
128 127 fconst6 S×0:S
129 128 fdmi domS×0=S
130 126 129 eqtrdi φSDY=S×K×fYdomY×fuSeKuS=S
131 123 125 130 dvconstbi φSDY=S×K×fYSDY×fuSeKu=S×0xY×fuSeKu=S×x
132 122 131 mpbid φSDY=S×K×fYxY×fuSeKu=S×x
133 oveq1 Y×fuSeKu=S×xY×fuSeKu÷fuSeKu=S×x÷fuSeKu
134 efne0 KueKu0
135 eldifsn eKu0eKueKu0
136 40 134 135 sylanbrc KueKu0
137 13 136 syl φuSeKu0
138 137 fmpttd φuSeKu:S0
139 ofdivcan4 SY:SuSeKu:S0Y×fuSeKu÷fuSeKu=Y
140 1 3 138 139 syl3anc φY×fuSeKu÷fuSeKu=Y
141 140 eqeq1d φY×fuSeKu÷fuSeKu=S×x÷fuSeKuY=S×x÷fuSeKu
142 133 141 imbitrid φY×fuSeKu=S×xY=S×x÷fuSeKu
143 142 adantr φxY×fuSeKu=S×xY=S×x÷fuSeKu
144 vex xV
145 144 a1i φuSxV
146 ovexd φuS1eKuV
147 fconstmpt S×x=uSx
148 147 a1i φS×x=uSx
149 efneg KueKu=1eKu
150 12 149 syl φuSeKu=1eKu
151 150 mpteq2dva φuSeKu=uS1eKu
152 1 145 146 148 151 offval2 φS×x÷fuSeKu=uSx1eKu
153 152 adantr φxS×x÷fuSeKu=uSx1eKu
154 efcl KueKu
155 efne0 KueKu0
156 154 155 jca KueKueKu0
157 12 156 syl φuSeKueKu0
158 ax-1ne0 10
159 20 158 pm3.2i 110
160 divdiv2 x110eKueKu0x1eKu=xeKu1
161 159 160 mp3an2 xeKueKu0x1eKu=xeKu1
162 157 161 sylan2 xφuSx1eKu=xeKu1
163 12 154 syl φuSeKu
164 mulcl xeKuxeKu
165 163 164 sylan2 xφuSxeKu
166 165 div1d xφuSxeKu1=xeKu
167 162 166 eqtrd xφuSx1eKu=xeKu
168 167 ancoms φuSxx1eKu=xeKu
169 168 an32s φxuSx1eKu=xeKu
170 169 mpteq2dva φxuSx1eKu=uSxeKu
171 153 170 eqtrd φxS×x÷fuSeKu=uSxeKu
172 171 eqeq2d φxY=S×x÷fuSeKuY=uSxeKu
173 143 172 sylibd φxY×fuSeKu=S×xY=uSxeKu
174 173 reximdva φxY×fuSeKu=S×xxY=uSxeKu
175 174 adantr φSDY=S×K×fYxY×fuSeKu=S×xxY=uSxeKu
176 132 175 mpd φSDY=S×K×fYxY=uSxeKu
177 176 ex φSDY=S×K×fYxY=uSxeKu
178 1 adantr φxY=uSxeKuS
179 2 adantr φxY=uSxeKuK
180 simprl φxY=uSxeKux
181 eqid uSxeKu=uSxeKu
182 178 179 180 181 expgrowthi φxY=uSxeKuduSxeKudSu=S×K×fuSxeKu
183 182 3impb φxY=uSxeKuduSxeKudSu=S×K×fuSxeKu
184 oveq2 Y=uSxeKuSDY=duSxeKudSu
185 oveq2 Y=uSxeKuS×K×fY=S×K×fuSxeKu
186 184 185 eqeq12d Y=uSxeKuSDY=S×K×fYduSxeKudSu=S×K×fuSxeKu
187 186 3ad2ant3 φxY=uSxeKuSDY=S×K×fYduSxeKudSu=S×K×fuSxeKu
188 183 187 mpbird φxY=uSxeKuSDY=S×K×fY
189 188 rexlimdv3a φxY=uSxeKuSDY=S×K×fY
190 177 189 impbid φSDY=S×K×fYxY=uSxeKu
191 oveq2 u=tKu=Kt
192 191 fveq2d u=teKu=eKt
193 192 oveq2d u=txeKu=xeKt
194 193 cbvmptv uSxeKu=tSxeKt
195 oveq1 x=cxeKt=ceKt
196 195 mpteq2dv x=ctSxeKt=tSceKt
197 194 196 eqtrid x=cuSxeKu=tSceKt
198 197 eqeq2d x=cY=uSxeKuY=tSceKt
199 198 cbvrexvw xY=uSxeKucY=tSceKt
200 190 199 bitrdi φSDY=S×K×fYcY=tSceKt