Metamath Proof Explorer


Theorem inar1

Description: ( R1A ) for A a strongly inaccessible cardinal is equipotent to A . (Contributed by Mario Carneiro, 6-Jun-2013)

Ref Expression
Assertion inar1 AInaccR1AA

Proof

Step Hyp Ref Expression
1 inawina AInaccAInacc𝑤
2 winaon AInacc𝑤AOn
3 1 2 syl AInaccAOn
4 winalim AInacc𝑤LimA
5 1 4 syl AInaccLimA
6 r1lim AOnLimAR1A=xAR1x
7 3 5 6 syl2anc AInaccR1A=xAR1x
8 onelon AOnxAxOn
9 3 8 sylan AInaccxAxOn
10 eleq1 x=xAA
11 fveq2 x=R1x=R1
12 11 breq1d x=R1xAR1A
13 10 12 imbi12d x=xAR1xAAR1A
14 eleq1 x=yxAyA
15 fveq2 x=yR1x=R1y
16 15 breq1d x=yR1xAR1yA
17 14 16 imbi12d x=yxAR1xAyAR1yA
18 eleq1 x=sucyxAsucyA
19 fveq2 x=sucyR1x=R1sucy
20 19 breq1d x=sucyR1xAR1sucyA
21 18 20 imbi12d x=sucyxAR1xAsucyAR1sucyA
22 ne0i AA
23 0sdomg AOnAA
24 22 23 imbitrrid AOnAA
25 r10 R1=
26 25 breq1i R1AA
27 24 26 syl6ibr AOnAR1A
28 1 2 27 3syl AInaccAR1A
29 eloni AOnOrdA
30 ordtr OrdATrA
31 29 30 syl AOnTrA
32 trsuc TrAsucyAyA
33 32 ex TrAsucyAyA
34 3 31 33 3syl AInaccsucyAyA
35 34 adantl yOnAInaccsucyAyA
36 r1suc yOnR1sucy=𝒫R1y
37 fvex R1yV
38 37 cardid cardR1yR1y
39 38 ensymi R1ycardR1y
40 pwen R1ycardR1y𝒫R1y𝒫cardR1y
41 39 40 ax-mp 𝒫R1y𝒫cardR1y
42 36 41 eqbrtrdi yOnR1sucy𝒫cardR1y
43 winacard AInacc𝑤cardA=A
44 43 eleq2d AInacc𝑤cardR1ycardAcardR1yA
45 cardsdom R1yVAOncardR1ycardAR1yA
46 37 2 45 sylancr AInacc𝑤cardR1ycardAR1yA
47 44 46 bitr3d AInacc𝑤cardR1yAR1yA
48 1 47 syl AInacccardR1yAR1yA
49 elina AInaccAcfA=AzA𝒫zA
50 49 simp3bi AInacczA𝒫zA
51 pweq z=cardR1y𝒫z=𝒫cardR1y
52 51 breq1d z=cardR1y𝒫zA𝒫cardR1yA
53 52 rspccv zA𝒫zAcardR1yA𝒫cardR1yA
54 50 53 syl AInacccardR1yA𝒫cardR1yA
55 48 54 sylbird AInaccR1yA𝒫cardR1yA
56 55 imp AInaccR1yA𝒫cardR1yA
57 ensdomtr R1sucy𝒫cardR1y𝒫cardR1yAR1sucyA
58 42 56 57 syl2an yOnAInaccR1yAR1sucyA
59 58 expr yOnAInaccR1yAR1sucyA
60 35 59 imim12d yOnAInaccyAR1yAsucyAR1sucyA
61 60 ex yOnAInaccyAR1yAsucyAR1sucyA
62 vex xV
63 r1lim xVLimxR1x=zxR1z
64 62 63 mpan LimxR1x=zxR1z
65 nfcv _yz
66 nfcv _yR1z
67 nfcv _y
68 nfiu1 _yyxcardR1y
69 66 67 68 nfbr yR1zyxcardR1y
70 fveq2 y=zR1y=R1z
71 70 breq1d y=zR1yyxcardR1yR1zyxcardR1y
72 fvex cardR1yV
73 62 72 iunex yxcardR1yV
74 ssiun2 yxcardR1yyxcardR1y
75 ssdomg yxcardR1yVcardR1yyxcardR1ycardR1yyxcardR1y
76 73 74 75 mpsyl yxcardR1yyxcardR1y
77 endomtr R1ycardR1ycardR1yyxcardR1yR1yyxcardR1y
78 39 76 77 sylancr yxR1yyxcardR1y
79 65 69 71 78 vtoclgaf zxR1zyxcardR1y
80 79 rgen zxR1zyxcardR1y
81 iundom xVzxR1zyxcardR1yzxR1zx×yxcardR1y
82 62 80 81 mp2an zxR1zx×yxcardR1y
83 62 73 unex xyxcardR1yV
84 ssun2 yxcardR1yxyxcardR1y
85 ssdomg xyxcardR1yVyxcardR1yxyxcardR1yyxcardR1yxyxcardR1y
86 83 84 85 mp2 yxcardR1yxyxcardR1y
87 62 xpdom2 yxcardR1yxyxcardR1yx×yxcardR1yx×xyxcardR1y
88 86 87 ax-mp x×yxcardR1yx×xyxcardR1y
89 ssun1 xxyxcardR1y
90 ssdomg xyxcardR1yVxxyxcardR1yxxyxcardR1y
91 83 89 90 mp2 xxyxcardR1y
92 83 xpdom1 xxyxcardR1yx×xyxcardR1yxyxcardR1y×xyxcardR1y
93 91 92 ax-mp x×xyxcardR1yxyxcardR1y×xyxcardR1y
94 domtr x×yxcardR1yx×xyxcardR1yx×xyxcardR1yxyxcardR1y×xyxcardR1yx×yxcardR1yxyxcardR1y×xyxcardR1y
95 88 93 94 mp2an x×yxcardR1yxyxcardR1y×xyxcardR1y
96 limomss Limxωx
97 96 89 sstrdi LimxωxyxcardR1y
98 ssdomg xyxcardR1yVωxyxcardR1yωxyxcardR1y
99 83 97 98 mpsyl LimxωxyxcardR1y
100 infxpidm ωxyxcardR1yxyxcardR1y×xyxcardR1yxyxcardR1y
101 99 100 syl LimxxyxcardR1y×xyxcardR1yxyxcardR1y
102 domentr x×yxcardR1yxyxcardR1y×xyxcardR1yxyxcardR1y×xyxcardR1yxyxcardR1yx×yxcardR1yxyxcardR1y
103 95 101 102 sylancr Limxx×yxcardR1yxyxcardR1y
104 domtr zxR1zx×yxcardR1yx×yxcardR1yxyxcardR1yzxR1zxyxcardR1y
105 82 103 104 sylancr LimxzxR1zxyxcardR1y
106 64 105 eqbrtrd LimxR1xxyxcardR1y
107 106 ad2antlr xALimxAInaccyxyAR1yAR1xxyxcardR1y
108 eleq1a xAA=xAA
109 ordirr OrdA¬AA
110 3 29 109 3syl AInacc¬AA
111 108 110 nsyli xAAInacc¬A=x
112 111 imp xAAInacc¬A=x
113 112 ad2ant2r xALimxAInaccyxyAR1yA¬A=x
114 simpll xALimxAInaccyxyAR1yAxA
115 limord LimxOrdx
116 62 elon xOnOrdx
117 115 116 sylibr LimxxOn
118 117 ad2antlr xALimxAInaccyxyAR1yAxOn
119 cardf card:VOn
120 r1fnon R1FnOn
121 dffn2 R1FnOnR1:OnV
122 120 121 mpbi R1:OnV
123 fco card:VOnR1:OnVcardR1:OnOn
124 119 122 123 mp2an cardR1:OnOn
125 onss xOnxOn
126 fssres cardR1:OnOnxOncardR1x:xOn
127 124 125 126 sylancr xOncardR1x:xOn
128 ffn cardR1x:xOncardR1xFnx
129 118 127 128 3syl xALimxAInaccyxyAR1yAcardR1xFnx
130 3 ad2antlr xALimxAInaccyxAOn
131 simpr xALimxAInaccyxyx
132 simplll xALimxAInaccyxxA
133 ontr1 AOnyxxAyA
134 133 imp AOnyxxAyA
135 130 131 132 134 syl12anc xALimxAInaccyxyA
136 37 130 45 sylancr xALimxAInaccyxcardR1ycardAR1yA
137 1 43 syl AInacccardA=A
138 137 ad2antlr xALimxAInaccyxcardA=A
139 138 eleq2d xALimxAInaccyxcardR1ycardAcardR1yA
140 136 139 bitr3d xALimxAInaccyxR1yAcardR1yA
141 140 biimpd xALimxAInaccyxR1yAcardR1yA
142 135 141 embantd xALimxAInaccyxyAR1yAcardR1yA
143 117 ad2antlr xALimxAInaccxOn
144 fvres yxcardR1xy=cardR1y
145 144 adantl xOnyxcardR1xy=cardR1y
146 onelon xOnyxyOn
147 fvco3 R1:OnVyOncardR1y=cardR1y
148 122 146 147 sylancr xOnyxcardR1y=cardR1y
149 145 148 eqtrd xOnyxcardR1xy=cardR1y
150 143 149 sylan xALimxAInaccyxcardR1xy=cardR1y
151 150 eleq1d xALimxAInaccyxcardR1xyAcardR1yA
152 142 151 sylibrd xALimxAInaccyxyAR1yAcardR1xyA
153 152 ralimdva xALimxAInaccyxyAR1yAyxcardR1xyA
154 153 impr xALimxAInaccyxyAR1yAyxcardR1xyA
155 ffnfv cardR1x:xAcardR1xFnxyxcardR1xyA
156 129 154 155 sylanbrc xALimxAInaccyxyAR1yAcardR1x:xA
157 eleq2 A=yxcardR1yzAzyxcardR1y
158 157 biimpa A=yxcardR1yzAzyxcardR1y
159 eliun zyxcardR1yyxzcardR1y
160 cardon cardR1yOn
161 160 onelssi zcardR1yzcardR1y
162 149 sseq2d xOnyxzcardR1xyzcardR1y
163 161 162 imbitrrid xOnyxzcardR1yzcardR1xy
164 163 reximdva xOnyxzcardR1yyxzcardR1xy
165 159 164 biimtrid xOnzyxcardR1yyxzcardR1xy
166 158 165 syl5 xOnA=yxcardR1yzAyxzcardR1xy
167 166 expdimp xOnA=yxcardR1yzAyxzcardR1xy
168 167 ralrimiv xOnA=yxcardR1yzAyxzcardR1xy
169 168 ex xOnA=yxcardR1yzAyxzcardR1xy
170 118 169 syl xALimxAInaccyxyAR1yAA=yxcardR1yzAyxzcardR1xy
171 ffun cardR1:OnOnFuncardR1
172 124 171 ax-mp FuncardR1
173 resfunexg FuncardR1xVcardR1xV
174 172 62 173 mp2an cardR1xV
175 feq1 w=cardR1xw:xAcardR1x:xA
176 fveq1 w=cardR1xwy=cardR1xy
177 176 sseq2d w=cardR1xzwyzcardR1xy
178 177 rexbidv w=cardR1xyxzwyyxzcardR1xy
179 178 ralbidv w=cardR1xzAyxzwyzAyxzcardR1xy
180 175 179 anbi12d w=cardR1xw:xAzAyxzwycardR1x:xAzAyxzcardR1xy
181 174 180 spcev cardR1x:xAzAyxzcardR1xyww:xAzAyxzwy
182 156 170 181 syl6an xALimxAInaccyxyAR1yAA=yxcardR1yww:xAzAyxzwy
183 3 ad2antrl xALimxAInaccyxyAR1yAAOn
184 cfflb AOnxOnww:xAzAyxzwycfAx
185 183 118 184 syl2anc xALimxAInaccyxyAR1yAww:xAzAyxzwycfAx
186 182 185 syld xALimxAInaccyxyAR1yAA=yxcardR1ycfAx
187 49 simp2bi AInacccfA=A
188 187 sseq1d AInacccfAxAx
189 188 ad2antrl xALimxAInaccyxyAR1yAcfAxAx
190 186 189 sylibd xALimxAInaccyxyAR1yAA=yxcardR1yAx
191 ontri1 AOnxOnAx¬xA
192 183 118 191 syl2anc xALimxAInaccyxyAR1yAAx¬xA
193 190 192 sylibd xALimxAInaccyxyAR1yAA=yxcardR1y¬xA
194 114 193 mt2d xALimxAInaccyxyAR1yA¬A=yxcardR1y
195 iunon xVyxcardR1yOnyxcardR1yOn
196 62 195 mpan yxcardR1yOnyxcardR1yOn
197 160 a1i yxcardR1yOn
198 196 197 mprg yxcardR1yOn
199 eqcom xyxcardR1y=AA=xyxcardR1y
200 eloni xOnOrdx
201 eloni yxcardR1yOnOrdyxcardR1y
202 ordequn OrdxOrdyxcardR1yA=xyxcardR1yA=xA=yxcardR1y
203 200 201 202 syl2an xOnyxcardR1yOnA=xyxcardR1yA=xA=yxcardR1y
204 199 203 biimtrid xOnyxcardR1yOnxyxcardR1y=AA=xA=yxcardR1y
205 118 198 204 sylancl xALimxAInaccyxyAR1yAxyxcardR1y=AA=xA=yxcardR1y
206 113 194 205 mtord xALimxAInaccyxyAR1yA¬xyxcardR1y=A
207 onelss AOnxAxA
208 183 114 207 sylc xALimxAInaccyxyAR1yAxA
209 onelss AOncardR1yAcardR1yA
210 130 142 209 sylsyld xALimxAInaccyxyAR1yAcardR1yA
211 210 ralimdva xALimxAInaccyxyAR1yAyxcardR1yA
212 211 impr xALimxAInaccyxyAR1yAyxcardR1yA
213 iunss yxcardR1yAyxcardR1yA
214 212 213 sylibr xALimxAInaccyxyAR1yAyxcardR1yA
215 208 214 unssd xALimxAInaccyxyAR1yAxyxcardR1yA
216 id x=ifxOnxx=ifxOnx
217 iuneq1 x=ifxOnxyxcardR1y=yifxOnxcardR1y
218 216 217 uneq12d x=ifxOnxxyxcardR1y=ifxOnxyifxOnxcardR1y
219 218 eleq1d x=ifxOnxxyxcardR1yOnifxOnxyifxOnxcardR1yOn
220 0elon On
221 220 elimel ifxOnxOn
222 221 elexi ifxOnxV
223 iunon ifxOnxVyifxOnxcardR1yOnyifxOnxcardR1yOn
224 222 223 mpan yifxOnxcardR1yOnyifxOnxcardR1yOn
225 160 a1i yifxOnxcardR1yOn
226 224 225 mprg yifxOnxcardR1yOn
227 221 226 onun2i ifxOnxyifxOnxcardR1yOn
228 219 227 dedth xOnxyxcardR1yOn
229 117 228 syl LimxxyxcardR1yOn
230 229 adantl xALimxxyxcardR1yOn
231 3 adantr AInaccyxyAR1yAAOn
232 onsseleq xyxcardR1yOnAOnxyxcardR1yAxyxcardR1yAxyxcardR1y=A
233 230 231 232 syl2an xALimxAInaccyxyAR1yAxyxcardR1yAxyxcardR1yAxyxcardR1y=A
234 215 233 mpbid xALimxAInaccyxyAR1yAxyxcardR1yAxyxcardR1y=A
235 234 orcomd xALimxAInaccyxyAR1yAxyxcardR1y=AxyxcardR1yA
236 235 ord xALimxAInaccyxyAR1yA¬xyxcardR1y=AxyxcardR1yA
237 206 236 mpd xALimxAInaccyxyAR1yAxyxcardR1yA
238 137 ad2antrl xALimxAInaccyxyAR1yAcardA=A
239 iscard cardA=AAOnzAzA
240 239 simprbi cardA=AzAzA
241 breq1 z=xyxcardR1yzAxyxcardR1yA
242 241 rspccv zAzAxyxcardR1yAxyxcardR1yA
243 238 240 242 3syl xALimxAInaccyxyAR1yAxyxcardR1yAxyxcardR1yA
244 237 243 mpd xALimxAInaccyxyAR1yAxyxcardR1yA
245 domsdomtr R1xxyxcardR1yxyxcardR1yAR1xA
246 107 244 245 syl2anc xALimxAInaccyxyAR1yAR1xA
247 246 exp43 xALimxAInaccyxyAR1yAR1xA
248 247 com4l LimxAInaccyxyAR1yAxAR1xA
249 13 17 21 28 61 248 tfinds2 xOnAInaccxAR1xA
250 249 impd xOnAInaccxAR1xA
251 9 250 mpcom AInaccxAR1xA
252 sdomdom R1xAR1xA
253 251 252 syl AInaccxAR1xA
254 253 ralrimiva AInaccxAR1xA
255 iundom AOnxAR1xAxAR1xA×A
256 3 254 255 syl2anc AInaccxAR1xA×A
257 7 256 eqbrtrd AInaccR1AA×A
258 winainf AInacc𝑤ωA
259 1 258 syl AInaccωA
260 infxpen AOnωAA×AA
261 3 259 260 syl2anc AInaccA×AA
262 domentr R1AA×AA×AAR1AA
263 257 261 262 syl2anc AInaccR1AA
264 fvex R1AV
265 122 fdmi domR1=On
266 2 265 eleqtrrdi AInacc𝑤AdomR1
267 onssr1 AdomR1AR1A
268 1 266 267 3syl AInaccAR1A
269 ssdomg R1AVAR1AAR1A
270 264 268 269 mpsyl AInaccAR1A
271 sbth R1AAAR1AR1AA
272 263 270 271 syl2anc AInaccR1AA