Metamath Proof Explorer


Theorem itgperiod

Description: The integral of a periodic function, with period T stays the same if the domain of integration is shifted. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgperiod.a φA
itgperiod.b φB
itgperiod.aleb φAB
itgperiod.t φT+
itgperiod.f φF:
itgperiod.fper φxABFx+T=Fx
itgperiod.fcn φFAB:ABcn
Assertion itgperiod φA+TB+TFxdx=ABFxdx

Proof

Step Hyp Ref Expression
1 itgperiod.a φA
2 itgperiod.b φB
3 itgperiod.aleb φAB
4 itgperiod.t φT+
5 itgperiod.f φF:
6 itgperiod.fper φxABFx+T=Fx
7 itgperiod.fcn φFAB:ABcn
8 4 rpred φT
9 1 2 8 3 leadd1dd φA+TB+T
10 9 ditgpos φA+TB+TFxdx=A+TB+TFxdx
11 1 8 readdcld φA+T
12 2 8 readdcld φB+T
13 5 adantr φxA+TB+TF:
14 11 adantr φxA+TB+TA+T
15 12 adantr φxA+TB+TB+T
16 simpr φxA+TB+TxA+TB+T
17 eliccre A+TB+TxA+TB+Tx
18 14 15 16 17 syl3anc φxA+TB+Tx
19 13 18 ffvelcdmd φxA+TB+TFx
20 11 12 19 itgioo φA+TB+TFxdx=A+TB+TFxdx
21 10 20 eqtr2d φA+TB+TFxdx=A+TB+TFxdx
22 eqid yy+T=yy+T
23 8 recnd φT
24 22 addccncf Tyy+T:cn
25 23 24 syl φyy+T:cn
26 1 2 iccssred φAB
27 ax-resscn
28 26 27 sstrdi φAB
29 11 12 iccssred φA+TB+T
30 29 27 sstrdi φA+TB+T
31 11 adantr φyABA+T
32 12 adantr φyABB+T
33 26 sselda φyABy
34 8 adantr φyABT
35 33 34 readdcld φyABy+T
36 1 adantr φyABA
37 simpr φyAByAB
38 2 adantr φyABB
39 elicc2 AByAByAyyB
40 36 38 39 syl2anc φyAByAByAyyB
41 37 40 mpbid φyAByAyyB
42 41 simp2d φyABAy
43 36 33 34 42 leadd1dd φyABA+Ty+T
44 41 simp3d φyAByB
45 33 38 34 44 leadd1dd φyABy+TB+T
46 31 32 35 43 45 eliccd φyABy+TA+TB+T
47 22 25 28 30 46 cncfmptssg φyABy+T:ABcnA+TB+T
48 eqeq1 w=xw=z+Tx=z+T
49 48 rexbidv w=xzABw=z+TzABx=z+T
50 oveq1 z=yz+T=y+T
51 50 eqeq2d z=yx=z+Tx=y+T
52 51 cbvrexvw zABx=z+TyABx=y+T
53 49 52 bitrdi w=xzABw=z+TyABx=y+T
54 53 cbvrabv w|zABw=z+T=x|yABx=y+T
55 5 ffdmd φF:domF
56 simp3 φzABw=z+Tw=z+T
57 26 sselda φzABz
58 8 adantr φzABT
59 57 58 readdcld φzABz+T
60 59 3adant3 φzABw=z+Tz+T
61 56 60 eqeltrd φzABw=z+Tw
62 61 rexlimdv3a φzABw=z+Tw
63 62 ralrimivw φwzABw=z+Tw
64 rabss w|zABw=z+TwzABw=z+Tw
65 63 64 sylibr φw|zABw=z+T
66 5 fdmd φdomF=
67 65 66 sseqtrrd φw|zABw=z+TdomF
68 28 8 54 55 67 6 7 cncfperiod φFw|zABw=z+T:w|zABw=z+Tcn
69 49 elrab xw|zABw=z+TxzABx=z+T
70 simprr φxzABx=z+TzABx=z+T
71 nfv zφ
72 nfv zx
73 nfre1 zzABx=z+T
74 72 73 nfan zxzABx=z+T
75 71 74 nfan zφxzABx=z+T
76 nfv zxA+TB+T
77 simp3 φzABx=z+Tx=z+T
78 1 adantr φzABA
79 simpr φzABzAB
80 2 adantr φzABB
81 elicc2 ABzABzAzzB
82 78 80 81 syl2anc φzABzABzAzzB
83 79 82 mpbid φzABzAzzB
84 83 simp2d φzABAz
85 78 57 58 84 leadd1dd φzABA+Tz+T
86 83 simp3d φzABzB
87 57 80 58 86 leadd1dd φzABz+TB+T
88 59 85 87 3jca φzABz+TA+Tz+Tz+TB+T
89 88 3adant3 φzABx=z+Tz+TA+Tz+Tz+TB+T
90 11 3ad2ant1 φzABx=z+TA+T
91 12 3ad2ant1 φzABx=z+TB+T
92 elicc2 A+TB+Tz+TA+TB+Tz+TA+Tz+Tz+TB+T
93 90 91 92 syl2anc φzABx=z+Tz+TA+TB+Tz+TA+Tz+Tz+TB+T
94 89 93 mpbird φzABx=z+Tz+TA+TB+T
95 77 94 eqeltrd φzABx=z+TxA+TB+T
96 95 3exp φzABx=z+TxA+TB+T
97 96 adantr φxzABx=z+TzABx=z+TxA+TB+T
98 75 76 97 rexlimd φxzABx=z+TzABx=z+TxA+TB+T
99 70 98 mpd φxzABx=z+TxA+TB+T
100 69 99 sylan2b φxw|zABw=z+TxA+TB+T
101 18 recnd φxA+TB+Tx
102 1 adantr φxA+TB+TA
103 2 adantr φxA+TB+TB
104 8 adantr φxA+TB+TT
105 18 104 resubcld φxA+TB+TxT
106 1 recnd φA
107 106 23 pncand φA+T-T=A
108 107 eqcomd φA=A+T-T
109 108 adantr φxA+TB+TA=A+T-T
110 elicc2 A+TB+TxA+TB+TxA+TxxB+T
111 14 15 110 syl2anc φxA+TB+TxA+TB+TxA+TxxB+T
112 16 111 mpbid φxA+TB+TxA+TxxB+T
113 112 simp2d φxA+TB+TA+Tx
114 14 18 104 113 lesub1dd φxA+TB+TA+T-TxT
115 109 114 eqbrtrd φxA+TB+TAxT
116 112 simp3d φxA+TB+TxB+T
117 18 15 104 116 lesub1dd φxA+TB+TxTB+T-T
118 2 recnd φB
119 118 23 pncand φB+T-T=B
120 119 adantr φxA+TB+TB+T-T=B
121 117 120 breqtrd φxA+TB+TxTB
122 102 103 105 115 121 eliccd φxA+TB+TxTAB
123 23 adantr φxA+TB+TT
124 101 123 npcand φxA+TB+Tx-T+T=x
125 124 eqcomd φxA+TB+Tx=x-T+T
126 oveq1 z=xTz+T=x-T+T
127 126 rspceeqv xTABx=x-T+TzABx=z+T
128 122 125 127 syl2anc φxA+TB+TzABx=z+T
129 101 128 69 sylanbrc φxA+TB+Txw|zABw=z+T
130 100 129 impbida φxw|zABw=z+TxA+TB+T
131 130 eqrdv φw|zABw=z+T=A+TB+T
132 131 reseq2d φFw|zABw=z+T=FA+TB+T
133 131 67 eqsstrrd φA+TB+TdomF
134 55 133 feqresmpt φFA+TB+T=xA+TB+TFx
135 132 134 eqtr2d φxA+TB+TFx=Fw|zABw=z+T
136 1 2 8 iccshift φA+TB+T=w|zABw=z+T
137 136 oveq1d φA+TB+Tcn=w|zABw=z+Tcn
138 68 135 137 3eltr4d φxA+TB+TFx:A+TB+Tcn
139 ioosscn AB
140 139 a1i φAB
141 1cnd φ1
142 ssid
143 142 a1i φ
144 140 141 143 constcncfg φyAB1:ABcn
145 fconstmpt AB×1=yAB1
146 ioombl ABdomvol
147 146 a1i φABdomvol
148 ioovolcl ABvolAB
149 1 2 148 syl2anc φvolAB
150 iblconst ABdomvolvolAB1AB×1𝐿1
151 147 149 141 150 syl3anc φAB×1𝐿1
152 145 151 eqeltrrid φyAB1𝐿1
153 144 152 elind φyAB1ABcn𝐿1
154 26 resmptd φyy+TAB=yABy+T
155 154 eqcomd φyABy+T=yy+TAB
156 155 oveq2d φdyABy+Tdy=Dyy+TAB
157 27 a1i φ
158 157 sselda φyy
159 23 adantr φyT
160 158 159 addcld φyy+T
161 160 fmpttd φyy+T:
162 ssid
163 162 a1i φ
164 eqid TopOpenfld=TopOpenfld
165 164 tgioo2 topGenran.=TopOpenfld𝑡
166 164 165 dvres yy+T:ABDyy+TAB=dyy+TdyinttopGenran.AB
167 157 161 163 26 166 syl22anc φDyy+TAB=dyy+TdyinttopGenran.AB
168 156 167 eqtrd φdyABy+Tdy=dyy+TdyinttopGenran.AB
169 iccntr ABinttopGenran.AB=AB
170 1 2 169 syl2anc φinttopGenran.AB=AB
171 170 reseq2d φdyy+TdyinttopGenran.AB=dyy+TdyAB
172 reelprrecn
173 172 a1i φ
174 1cnd φy1
175 173 dvmptid φdyydy=y1
176 0cnd φy0
177 173 23 dvmptc φdyTdy=y0
178 173 158 174 175 159 176 177 dvmptadd φdyy+Tdy=y1+0
179 178 reseq1d φdyy+TdyAB=y1+0AB
180 ioossre AB
181 180 a1i φAB
182 181 resmptd φy1+0AB=yAB1+0
183 1p0e1 1+0=1
184 183 mpteq2i yAB1+0=yAB1
185 184 a1i φyAB1+0=yAB1
186 179 182 185 3eqtrd φdyy+TdyAB=yAB1
187 168 171 186 3eqtrd φdyABy+Tdy=yAB1
188 fveq2 x=y+TFx=Fy+T
189 oveq1 y=Ay+T=A+T
190 oveq1 y=By+T=B+T
191 1 2 3 47 138 153 187 188 189 190 11 12 itgsubsticc φA+TB+TFxdx=ABFy+T1dy
192 3 ditgpos φABFy+T1dy=ABFy+T1dy
193 5 adantr φyABF:
194 193 35 ffvelcdmd φyABFy+T
195 1cnd φyAB1
196 194 195 mulcld φyABFy+T1
197 1 2 196 itgioo φABFy+T1dy=ABFy+T1dy
198 fvoveq1 y=xFy+T=Fx+T
199 198 oveq1d y=xFy+T1=Fx+T1
200 199 cbvitgv ABFy+T1dy=ABFx+T1dx
201 5 adantr φxABF:
202 26 sselda φxABx
203 8 adantr φxABT
204 202 203 readdcld φxABx+T
205 201 204 ffvelcdmd φxABFx+T
206 205 mulridd φxABFx+T1=Fx+T
207 206 6 eqtrd φxABFx+T1=Fx
208 207 itgeq2dv φABFx+T1dx=ABFxdx
209 200 208 eqtrid φABFy+T1dy=ABFxdx
210 192 197 209 3eqtrd φABFy+T1dy=ABFxdx
211 21 191 210 3eqtrd φA+TB+TFxdx=ABFxdx