Metamath Proof Explorer


Theorem marypha1lem

Description: Core induction for Philip Hall's marriage theorem. (Contributed by Stefan O'Rear, 19-Feb-2015)

Ref Expression
Assertion marypha1lem AFinbFinc𝒫A×bd𝒫Adcde𝒫ce:A1-1V

Proof

Step Hyp Ref Expression
1 xpeq1 a=fa×b=f×b
2 1 pweqd a=f𝒫a×b=𝒫f×b
3 pweq a=f𝒫a=𝒫f
4 3 raleqdv a=fd𝒫adcdd𝒫fdcd
5 f1eq2 a=fe:a1-1Ve:f1-1V
6 5 rexbidv a=fe𝒫ce:a1-1Ve𝒫ce:f1-1V
7 4 6 imbi12d a=fd𝒫adcde𝒫ce:a1-1Vd𝒫fdcde𝒫ce:f1-1V
8 2 7 raleqbidv a=fc𝒫a×bd𝒫adcde𝒫ce:a1-1Vc𝒫f×bd𝒫fdcde𝒫ce:f1-1V
9 8 imbi2d a=fbFinc𝒫a×bd𝒫adcde𝒫ce:a1-1VbFinc𝒫f×bd𝒫fdcde𝒫ce:f1-1V
10 xpeq1 a=Aa×b=A×b
11 10 pweqd a=A𝒫a×b=𝒫A×b
12 pweq a=A𝒫a=𝒫A
13 12 raleqdv a=Ad𝒫adcdd𝒫Adcd
14 f1eq2 a=Ae:a1-1Ve:A1-1V
15 14 rexbidv a=Ae𝒫ce:a1-1Ve𝒫ce:A1-1V
16 13 15 imbi12d a=Ad𝒫adcde𝒫ce:a1-1Vd𝒫Adcde𝒫ce:A1-1V
17 11 16 raleqbidv a=Ac𝒫a×bd𝒫adcde𝒫ce:a1-1Vc𝒫A×bd𝒫Adcde𝒫ce:A1-1V
18 17 imbi2d a=AbFinc𝒫a×bd𝒫adcde𝒫ce:a1-1VbFinc𝒫A×bd𝒫Adcde𝒫ce:A1-1V
19 bi2.04 afbFinc𝒫a×bd𝒫adcde𝒫ce:a1-1VbFinafc𝒫a×bd𝒫adcde𝒫ce:a1-1V
20 19 albii aafbFinc𝒫a×bd𝒫adcde𝒫ce:a1-1VabFinafc𝒫a×bd𝒫adcde𝒫ce:a1-1V
21 19.21v abFinafc𝒫a×bd𝒫adcde𝒫ce:a1-1VbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1V
22 20 21 bitri aafbFinc𝒫a×bd𝒫adcde𝒫ce:a1-1VbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1V
23 0elpw 𝒫g
24 f10 :1-1V
25 f1eq1 e=e:1-1V:1-1V
26 25 rspcev 𝒫g:1-1Ve𝒫ge:1-1V
27 23 24 26 mp2an e𝒫ge:1-1V
28 f1eq2 f=e:f1-1Ve:1-1V
29 28 rexbidv f=e𝒫ge:f1-1Ve𝒫ge:1-1V
30 27 29 mpbiri f=e𝒫ge:f1-1V
31 30 a1i fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghf=e𝒫ge:f1-1V
32 n0 fiif
33 snelpwi ifi𝒫f
34 id d=id=i
35 imaeq2 d=igd=gi
36 34 35 breq12d d=idgdigi
37 36 rspcva i𝒫fd𝒫fdgdigi
38 vex iV
39 38 snnz i
40 vsnex iV
41 40 0sdom ii
42 39 41 mpbir i
43 sdomdomtr iigigi
44 42 43 mpan igigi
45 vex gV
46 45 imaex giV
47 46 0sdom gigi
48 44 47 sylib igigi
49 37 48 syl i𝒫fd𝒫fdgdgi
50 49 expcom d𝒫fdgdi𝒫fgi
51 33 50 syl5 d𝒫fdgdifgi
52 51 adantl g𝒫f×bd𝒫fdgdifgi
53 52 ad2antlr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifgi
54 53 impr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifgi
55 n0 gijjgi
56 54 55 sylib fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjjgi
57 45 imaex gcV
58 57 difexi gcjV
59 58 0dom gcj
60 breq1 c=cgcjgcj
61 59 60 mpbiri c=cgcj
62 61 a1i hhfhhghifc𝒫fic=cgcj
63 simpll hhfhhghifc𝒫fichhfhhgh
64 elpwi c𝒫ficfi
65 64 ad2antrl hhfhhghifc𝒫ficcfi
66 difsnpss iffif
67 66 biimpi iffif
68 67 ad2antlr hhfhhghifc𝒫ficfif
69 65 68 sspsstrd hhfhhghifc𝒫ficcf
70 simprr hhfhhghifc𝒫ficc
71 69 70 jca hhfhhghifc𝒫ficcfc
72 psseq1 h=chfcf
73 neeq1 h=chc
74 72 73 anbi12d h=chfhcfc
75 id h=ch=c
76 imaeq2 h=cgh=gc
77 75 76 breq12d h=chghcgc
78 74 77 imbi12d h=chfhhghcfccgc
79 78 spvv hhfhhghcfccgc
80 63 71 79 sylc hhfhhghifc𝒫ficcgc
81 domdifsn cgccgcj
82 80 81 syl hhfhhghifc𝒫ficcgcj
83 82 expr hhfhhghifc𝒫ficcgcj
84 62 83 pm2.61dne hhfhhghifc𝒫ficgcj
85 84 adantlrr hhfhhghifjgic𝒫ficgcj
86 85 adantll fFinbFing𝒫f×bd𝒫fdgdhhfhhghifjgic𝒫ficgcj
87 df-ss cficfi=c
88 64 87 sylib c𝒫ficfi=c
89 88 imaeq2d c𝒫figcfi=gc
90 89 ineq1d c𝒫figcfibj=gcbj
91 90 adantl fFinbFing𝒫f×bd𝒫fdgdhhfhhghifjgic𝒫figcfibj=gcbj
92 indif2 gcbj=gcbj
93 imassrn gcrang
94 elpwi g𝒫f×bgf×b
95 rnss gf×brangranf×b
96 rnxpss ranf×bb
97 95 96 sstrdi gf×brangb
98 94 97 syl g𝒫f×brangb
99 93 98 sstrid g𝒫f×bgcb
100 df-ss gcbgcb=gc
101 99 100 sylib g𝒫f×bgcb=gc
102 101 difeq1d g𝒫f×bgcbj=gcj
103 102 ad2antrl fFinbFing𝒫f×bd𝒫fdgdgcbj=gcj
104 92 103 eqtrid fFinbFing𝒫f×bd𝒫fdgdgcbj=gcj
105 104 ad2antrr fFinbFing𝒫f×bd𝒫fdgdhhfhhghifjgic𝒫figcbj=gcj
106 91 105 eqtrd fFinbFing𝒫f×bd𝒫fdgdhhfhhghifjgic𝒫figcfibj=gcj
107 86 106 breqtrrd fFinbFing𝒫f×bd𝒫fdgdhhfhhghifjgic𝒫ficgcfibj
108 107 ralrimiva fFinbFing𝒫f×bd𝒫fdgdhhfhhghifjgic𝒫ficgcfibj
109 id c=dc=d
110 imainrect gfi×bjc=gcfibj
111 imaeq2 c=dgfi×bjc=gfi×bjd
112 110 111 eqtr3id c=dgcfibj=gfi×bjd
113 109 112 breq12d c=dcgcfibjdgfi×bjd
114 113 cbvralvw c𝒫ficgcfibjd𝒫fidgfi×bjd
115 108 114 sylib fFinbFing𝒫f×bd𝒫fdgdhhfhhghifjgid𝒫fidgfi×bjd
116 115 adantllr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgid𝒫fidgfi×bjd
117 inss2 gfi×bjfi×bj
118 difss bjb
119 xpss2 bjbfi×bjfi×b
120 118 119 ax-mp fi×bjfi×b
121 117 120 sstri gfi×bjfi×b
122 45 inex1 gfi×bjV
123 122 elpw gfi×bj𝒫fi×bgfi×bjfi×b
124 121 123 mpbir gfi×bj𝒫fi×b
125 simpllr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgiaafc𝒫a×bd𝒫adcde𝒫ce:a1-1V
126 67 adantr ifjgifif
127 126 ad2antll fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgifif
128 vex fV
129 128 difexi fiV
130 psseq1 a=fiaffif
131 xpeq1 a=fia×b=fi×b
132 131 pweqd a=fi𝒫a×b=𝒫fi×b
133 pweq a=fi𝒫a=𝒫fi
134 133 raleqdv a=fid𝒫adcdd𝒫fidcd
135 f1eq2 a=fie:a1-1Ve:fi1-1V
136 135 rexbidv a=fie𝒫ce:a1-1Ve𝒫ce:fi1-1V
137 134 136 imbi12d a=fid𝒫adcde𝒫ce:a1-1Vd𝒫fidcde𝒫ce:fi1-1V
138 132 137 raleqbidv a=fic𝒫a×bd𝒫adcde𝒫ce:a1-1Vc𝒫fi×bd𝒫fidcde𝒫ce:fi1-1V
139 130 138 imbi12d a=fiafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vfifc𝒫fi×bd𝒫fidcde𝒫ce:fi1-1V
140 129 139 spcv aafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vfifc𝒫fi×bd𝒫fidcde𝒫ce:fi1-1V
141 125 127 140 sylc fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgic𝒫fi×bd𝒫fidcde𝒫ce:fi1-1V
142 imaeq1 c=gfi×bjcd=gfi×bjd
143 142 breq2d c=gfi×bjdcddgfi×bjd
144 143 ralbidv c=gfi×bjd𝒫fidcdd𝒫fidgfi×bjd
145 pweq c=gfi×bj𝒫c=𝒫gfi×bj
146 145 rexeqdv c=gfi×bje𝒫ce:fi1-1Ve𝒫gfi×bje:fi1-1V
147 144 146 imbi12d c=gfi×bjd𝒫fidcde𝒫ce:fi1-1Vd𝒫fidgfi×bjde𝒫gfi×bje:fi1-1V
148 147 rspcva gfi×bj𝒫fi×bc𝒫fi×bd𝒫fidcde𝒫ce:fi1-1Vd𝒫fidgfi×bjde𝒫gfi×bje:fi1-1V
149 124 141 148 sylancr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgid𝒫fidgfi×bjde𝒫gfi×bje:fi1-1V
150 116 149 mpd fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgie𝒫gfi×bje:fi1-1V
151 f1eq1 e=ke:fi1-1Vk:fi1-1V
152 151 cbvrexvw e𝒫gfi×bje:fi1-1Vk𝒫gfi×bjk:fi1-1V
153 150 152 sylib fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgik𝒫gfi×bjk:fi1-1V
154 vex jV
155 38 154 elimasn jgiijg
156 155 biimpi jgiijg
157 156 snssd jgiijg
158 157 ad2antlr ifjgik𝒫gfi×bjijg
159 elpwi k𝒫gfi×bjkgfi×bj
160 inss1 gfi×bjg
161 159 160 sstrdi k𝒫gfi×bjkg
162 161 adantl ifjgik𝒫gfi×bjkg
163 158 162 unssd ifjgik𝒫gfi×bjijkg
164 45 elpw2 ijk𝒫gijkg
165 163 164 sylibr ifjgik𝒫gfi×bjijk𝒫g
166 165 ad2ant2lr g𝒫f×bifjgik𝒫gfi×bjk:fi1-1Vijk𝒫g
167 38 154 f1osn ij:i1-1 ontoj
168 167 a1i k𝒫gfi×bjk:fi1-1Vij:i1-1 ontoj
169 f1f1orn k:fi1-1Vk:fi1-1 ontorank
170 169 adantl k𝒫gfi×bjk:fi1-1Vk:fi1-1 ontorank
171 disjdif ifi=
172 171 a1i k𝒫gfi×bjk:fi1-1Vifi=
173 incom jrank=rankj
174 159 117 sstrdi k𝒫gfi×bjkfi×bj
175 rnss kfi×bjrankranfi×bj
176 rnxpss ranfi×bjbj
177 175 176 sstrdi kfi×bjrankbj
178 174 177 syl k𝒫gfi×bjrankbj
179 disjdifr bjj=
180 ssdisj rankbjbjj=rankj=
181 178 179 180 sylancl k𝒫gfi×bjrankj=
182 173 181 eqtrid k𝒫gfi×bjjrank=
183 182 adantr k𝒫gfi×bjk:fi1-1Vjrank=
184 f1oun ij:i1-1 ontojk:fi1-1 ontorankifi=jrank=ijk:ifi1-1 ontojrank
185 168 170 172 183 184 syl22anc k𝒫gfi×bjk:fi1-1Vijk:ifi1-1 ontojrank
186 185 adantl g𝒫f×bifjgik𝒫gfi×bjk:fi1-1Vijk:ifi1-1 ontojrank
187 snssi ifif
188 187 ad2antrl g𝒫f×bifjgiif
189 undif ififi=f
190 188 189 sylib g𝒫f×bifjgiifi=f
191 190 f1oeq2d g𝒫f×bifjgiijk:ifi1-1 ontojrankijk:f1-1 ontojrank
192 191 adantr g𝒫f×bifjgik𝒫gfi×bjk:fi1-1Vijk:ifi1-1 ontojrankijk:f1-1 ontojrank
193 186 192 mpbid g𝒫f×bifjgik𝒫gfi×bjk:fi1-1Vijk:f1-1 ontojrank
194 f1of1 ijk:f1-1 ontojrankijk:f1-1jrank
195 ssv jrankV
196 f1ss ijk:f1-1jrankjrankVijk:f1-1V
197 194 195 196 sylancl ijk:f1-1 ontojrankijk:f1-1V
198 193 197 syl g𝒫f×bifjgik𝒫gfi×bjk:fi1-1Vijk:f1-1V
199 f1eq1 e=ijke:f1-1Vijk:f1-1V
200 199 rspcev ijk𝒫gijk:f1-1Ve𝒫ge:f1-1V
201 166 198 200 syl2anc g𝒫f×bifjgik𝒫gfi×bjk:fi1-1Ve𝒫ge:f1-1V
202 201 rexlimdvaa g𝒫f×bifjgik𝒫gfi×bjk:fi1-1Ve𝒫ge:f1-1V
203 202 ex g𝒫f×bifjgik𝒫gfi×bjk:fi1-1Ve𝒫ge:f1-1V
204 203 adantr g𝒫f×bd𝒫fdgdifjgik𝒫gfi×bjk:fi1-1Ve𝒫ge:f1-1V
205 204 ad2antlr fFinbFing𝒫f×bd𝒫fdgdhhfhhghifjgik𝒫gfi×bjk:fi1-1Ve𝒫ge:f1-1V
206 205 impr fFinbFing𝒫f×bd𝒫fdgdhhfhhghifjgik𝒫gfi×bjk:fi1-1Ve𝒫ge:f1-1V
207 206 adantllr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgik𝒫gfi×bjk:fi1-1Ve𝒫ge:f1-1V
208 153 207 mpd fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgie𝒫ge:f1-1V
209 208 expr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgie𝒫ge:f1-1V
210 209 expd fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgie𝒫ge:f1-1V
211 210 impr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjgie𝒫ge:f1-1V
212 211 exlimdv fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghifjjgie𝒫ge:f1-1V
213 56 212 mpd fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghife𝒫ge:f1-1V
214 213 expr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghife𝒫ge:f1-1V
215 214 exlimdv fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghiife𝒫ge:f1-1V
216 32 215 biimtrid fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghfe𝒫ge:f1-1V
217 31 216 pm2.61dne fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfhhghe𝒫ge:f1-1V
218 exanali hhfh¬hgh¬hhfhhgh
219 simprll fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghhf
220 pssss hfhf
221 219 220 syl fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghhf
222 221 sspwd fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hgh𝒫h𝒫f
223 simplrr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghd𝒫fdgd
224 ssralv 𝒫h𝒫fd𝒫fdgdd𝒫hdgd
225 222 223 224 sylc fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghd𝒫hdgd
226 elpwi d𝒫hdh
227 resima2 dhghd=gd
228 226 227 syl d𝒫hghd=gd
229 228 eqcomd d𝒫hgd=ghd
230 229 breq2d d𝒫hdgddghd
231 230 ralbiia d𝒫hdgdd𝒫hdghd
232 225 231 sylib fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghd𝒫hdghd
233 imaeq1 c=ghcd=ghd
234 233 breq2d c=ghdcddghd
235 234 ralbidv c=ghd𝒫hdcdd𝒫hdghd
236 pweq c=gh𝒫c=𝒫gh
237 236 rexeqdv c=ghe𝒫ce:h1-1Ve𝒫ghe:h1-1V
238 235 237 imbi12d c=ghd𝒫hdcde𝒫ce:h1-1Vd𝒫hdghde𝒫ghe:h1-1V
239 simpllr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghaafc𝒫a×bd𝒫adcde𝒫ce:a1-1V
240 psseq1 a=hafhf
241 xpeq1 a=ha×b=h×b
242 241 pweqd a=h𝒫a×b=𝒫h×b
243 pweq a=h𝒫a=𝒫h
244 243 raleqdv a=hd𝒫adcdd𝒫hdcd
245 f1eq2 a=he:a1-1Ve:h1-1V
246 245 rexbidv a=he𝒫ce:a1-1Ve𝒫ce:h1-1V
247 244 246 imbi12d a=hd𝒫adcde𝒫ce:a1-1Vd𝒫hdcde𝒫ce:h1-1V
248 242 247 raleqbidv a=hc𝒫a×bd𝒫adcde𝒫ce:a1-1Vc𝒫h×bd𝒫hdcde𝒫ce:h1-1V
249 240 248 imbi12d a=hafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vhfc𝒫h×bd𝒫hdcde𝒫ce:h1-1V
250 249 spvv aafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vhfc𝒫h×bd𝒫hdcde𝒫ce:h1-1V
251 239 219 250 sylc fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghc𝒫h×bd𝒫hdcde𝒫ce:h1-1V
252 simplrl fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghg𝒫f×b
253 ssres gf×bghf×bh
254 df-res f×bh=f×bh×V
255 inxp f×bh×V=fh×bV
256 inss2 fhh
257 inss1 bVb
258 xpss12 fhhbVbfh×bVh×b
259 256 257 258 mp2an fh×bVh×b
260 255 259 eqsstri f×bh×Vh×b
261 254 260 eqsstri f×bhh×b
262 253 261 sstrdi gf×bghh×b
263 94 262 syl g𝒫f×bghh×b
264 45 resex ghV
265 264 elpw gh𝒫h×bghh×b
266 263 265 sylibr g𝒫f×bgh𝒫h×b
267 252 266 syl fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghgh𝒫h×b
268 238 251 267 rspcdva fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghd𝒫hdghde𝒫ghe:h1-1V
269 232 268 mpd fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghe𝒫ghe:h1-1V
270 f1eq1 e=ie:h1-1Vi:h1-1V
271 270 cbvrexvw e𝒫ghe:h1-1Vi𝒫ghi:h1-1V
272 269 271 sylib fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghi𝒫ghi:h1-1V
273 id d=hcd=hc
274 imaeq2 d=hcgd=ghc
275 273 274 breq12d d=hcdgdhcghc
276 simprr fFinbFing𝒫f×bd𝒫fdgdd𝒫fdgd
277 276 ad2antrr fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhd𝒫fdgd
278 220 ad2antrr hfh¬hghhf
279 278 ad2antlr fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhhf
280 elpwi c𝒫fhcfh
281 difss fhf
282 280 281 sstrdi c𝒫fhcf
283 282 adantl fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhcf
284 279 283 unssd fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhhcf
285 128 elpw2 hc𝒫fhcf
286 284 285 sylibr fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhhc𝒫f
287 275 277 286 rspcdva fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhhcghc
288 imaundi ghc=ghgc
289 undif2 ghgcgh=ghgc
290 288 289 eqtr4i ghc=ghgcgh
291 287 290 breqtrdi fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhhcghgcgh
292 simp-4l fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhfFin
293 292 279 ssfid fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhhFin
294 id d=hd=h
295 imaeq2 d=hgd=gh
296 294 295 breq12d d=hdgdhgh
297 vex hV
298 297 elpw h𝒫fhf
299 279 298 sylibr fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhh𝒫f
300 296 277 299 rspcdva fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhhgh
301 simplrr fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fh¬hgh
302 bren2 hghhgh¬hgh
303 300 301 302 sylanbrc fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhhgh
304 303 ensymd fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhghh
305 incom hc=ch
306 ssdifin0 cfhch=
307 305 306 eqtrid cfhhc=
308 280 307 syl c𝒫fhhc=
309 308 adantl fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhhc=
310 disjdif ghgcgh=
311 310 a1i fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhghgcgh=
312 domunfican hFinghhhc=ghgcgh=hcghgcghcgcgh
313 293 304 309 311 312 syl22anc fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhhcghgcghcgcgh
314 291 313 mpbid fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhcgcgh
315 101 difeq1d g𝒫f×bgcbgh=gcgh
316 315 ad2antrl fFinbFing𝒫f×bd𝒫fdgdgcbgh=gcgh
317 316 ad2antrr fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhgcbgh=gcgh
318 314 317 breqtrrd fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhcgcbgh
319 df-ss cfhcfh=c
320 280 319 sylib c𝒫fhcfh=c
321 320 imaeq2d c𝒫fhgcfh=gc
322 321 ineq1d c𝒫fhgcfhbgh=gcbgh
323 indif2 gcbgh=gcbgh
324 322 323 eqtrdi c𝒫fhgcfhbgh=gcbgh
325 324 adantl fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhgcfhbgh=gcbgh
326 318 325 breqtrrd fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhcgcfhbgh
327 326 ralrimiva fFinbFing𝒫f×bd𝒫fdgdhfh¬hghc𝒫fhcgcfhbgh
328 imainrect gfh×bghc=gcfhbgh
329 imaeq2 c=dgfh×bghc=gfh×bghd
330 328 329 eqtr3id c=dgcfhbgh=gfh×bghd
331 109 330 breq12d c=dcgcfhbghdgfh×bghd
332 331 cbvralvw c𝒫fhcgcfhbghd𝒫fhdgfh×bghd
333 327 332 sylib fFinbFing𝒫f×bd𝒫fdgdhfh¬hghd𝒫fhdgfh×bghd
334 333 adantllr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghd𝒫fhdgfh×bghd
335 inss2 gfh×bghfh×bgh
336 difss bghb
337 xpss2 bghbfh×bghfh×b
338 336 337 ax-mp fh×bghfh×b
339 335 338 sstri gfh×bghfh×b
340 45 inex1 gfh×bghV
341 340 elpw gfh×bgh𝒫fh×bgfh×bghfh×b
342 339 341 mpbir gfh×bgh𝒫fh×b
343 incom fh=hf
344 df-ss hfhf=h
345 220 344 sylib hfhf=h
346 343 345 eqtrid hffh=h
347 346 neeq1d hffhh
348 347 biimpar hfhfh
349 disj4 fh=¬fhf
350 349 bicomi ¬fhffh=
351 350 necon1abii fhfhf
352 348 351 sylib hfhfhf
353 352 ad2antrl fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghfhf
354 128 difexi fhV
355 psseq1 a=fhaffhf
356 xpeq1 a=fha×b=fh×b
357 356 pweqd a=fh𝒫a×b=𝒫fh×b
358 pweq a=fh𝒫a=𝒫fh
359 358 raleqdv a=fhd𝒫adcdd𝒫fhdcd
360 f1eq2 a=fhe:a1-1Ve:fh1-1V
361 360 rexbidv a=fhe𝒫ce:a1-1Ve𝒫ce:fh1-1V
362 359 361 imbi12d a=fhd𝒫adcde𝒫ce:a1-1Vd𝒫fhdcde𝒫ce:fh1-1V
363 357 362 raleqbidv a=fhc𝒫a×bd𝒫adcde𝒫ce:a1-1Vc𝒫fh×bd𝒫fhdcde𝒫ce:fh1-1V
364 355 363 imbi12d a=fhafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vfhfc𝒫fh×bd𝒫fhdcde𝒫ce:fh1-1V
365 354 364 spcv aafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vfhfc𝒫fh×bd𝒫fhdcde𝒫ce:fh1-1V
366 239 353 365 sylc fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghc𝒫fh×bd𝒫fhdcde𝒫ce:fh1-1V
367 imaeq1 c=gfh×bghcd=gfh×bghd
368 367 breq2d c=gfh×bghdcddgfh×bghd
369 368 ralbidv c=gfh×bghd𝒫fhdcdd𝒫fhdgfh×bghd
370 pweq c=gfh×bgh𝒫c=𝒫gfh×bgh
371 370 rexeqdv c=gfh×bghe𝒫ce:fh1-1Ve𝒫gfh×bghe:fh1-1V
372 369 371 imbi12d c=gfh×bghd𝒫fhdcde𝒫ce:fh1-1Vd𝒫fhdgfh×bghde𝒫gfh×bghe:fh1-1V
373 372 rspcva gfh×bgh𝒫fh×bc𝒫fh×bd𝒫fhdcde𝒫ce:fh1-1Vd𝒫fhdgfh×bghde𝒫gfh×bghe:fh1-1V
374 342 366 373 sylancr fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghd𝒫fhdgfh×bghde𝒫gfh×bghe:fh1-1V
375 334 374 mpd fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghe𝒫gfh×bghe:fh1-1V
376 f1eq1 e=je:fh1-1Vj:fh1-1V
377 376 cbvrexvw e𝒫gfh×bghe:fh1-1Vj𝒫gfh×bghj:fh1-1V
378 375 377 sylib fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghj𝒫gfh×bghj:fh1-1V
379 elpwi i𝒫ghigh
380 resss ghg
381 379 380 sstrdi i𝒫ghig
382 381 adantr i𝒫ghi:h1-1Vig
383 382 ad2antlr g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vig
384 elpwi j𝒫gfh×bghjgfh×bgh
385 inss1 gfh×bghg
386 384 385 sstrdi j𝒫gfh×bghjg
387 386 ad2antrl g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vjg
388 383 387 unssd g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vijg
389 45 elpw2 ij𝒫gijg
390 388 389 sylibr g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vij𝒫g
391 f1f1orn i:h1-1Vi:h1-1 ontorani
392 391 adantl i𝒫ghi:h1-1Vi:h1-1 ontorani
393 392 ad2antlr g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vi:h1-1 ontorani
394 f1f1orn j:fh1-1Vj:fh1-1 ontoranj
395 394 ad2antll g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vj:fh1-1 ontoranj
396 disjdif hfh=
397 396 a1i g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vhfh=
398 rnss ighranirangh
399 379 398 syl i𝒫ghranirangh
400 df-ima gh=rangh
401 399 400 sseqtrrdi i𝒫ghranigh
402 401 adantr i𝒫ghi:h1-1Vranigh
403 402 ad2antlr g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vranigh
404 incom ghranj=ranjgh
405 384 335 sstrdi j𝒫gfh×bghjfh×bgh
406 rnss jfh×bghranjranfh×bgh
407 405 406 syl j𝒫gfh×bghranjranfh×bgh
408 rnxpss ranfh×bghbgh
409 407 408 sstrdi j𝒫gfh×bghranjbgh
410 409 ad2antrl g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vranjbgh
411 disjdifr bghgh=
412 ssdisj ranjbghbghgh=ranjgh=
413 410 411 412 sylancl g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vranjgh=
414 404 413 eqtrid g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vghranj=
415 ssdisj ranighghranj=raniranj=
416 403 414 415 syl2anc g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vraniranj=
417 f1oun i:h1-1 ontoranij:fh1-1 ontoranjhfh=raniranj=ij:hfh1-1 ontoraniranj
418 393 395 397 416 417 syl22anc g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vij:hfh1-1 ontoraniranj
419 undif hfhfh=f
420 419 biimpi hfhfh=f
421 420 adantl g𝒫f×bhfhfh=f
422 421 ad2antrr g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vhfh=f
423 422 f1oeq2d g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vij:hfh1-1 ontoraniranjij:f1-1 ontoraniranj
424 418 423 mpbid g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vij:f1-1 ontoraniranj
425 f1of1 ij:f1-1 ontoraniranjij:f1-1raniranj
426 424 425 syl g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vij:f1-1raniranj
427 ssv raniranjV
428 f1ss ij:f1-1raniranjraniranjVij:f1-1V
429 426 427 428 sylancl g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Vij:f1-1V
430 f1eq1 e=ije:f1-1Vij:f1-1V
431 430 rspcev ij𝒫gij:f1-1Ve𝒫ge:f1-1V
432 390 429 431 syl2anc g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Ve𝒫ge:f1-1V
433 432 rexlimdvaa g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Ve𝒫ge:f1-1V
434 433 rexlimdvaa g𝒫f×bhfi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Ve𝒫ge:f1-1V
435 252 221 434 syl2anc fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghi𝒫ghi:h1-1Vj𝒫gfh×bghj:fh1-1Ve𝒫ge:f1-1V
436 272 378 435 mp2d fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghe𝒫ge:f1-1V
437 436 ex fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhfh¬hghe𝒫ge:f1-1V
438 437 exlimdv fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfh¬hghe𝒫ge:f1-1V
439 438 imp fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgdhhfh¬hghe𝒫ge:f1-1V
440 218 439 sylan2br fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgd¬hhfhhghe𝒫ge:f1-1V
441 217 440 pm2.61dan fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgde𝒫ge:f1-1V
442 441 exp32 fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgde𝒫ge:f1-1V
443 442 ralrimiv fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vg𝒫f×bd𝒫fdgde𝒫ge:f1-1V
444 imaeq1 g=cgd=cd
445 444 breq2d g=cdgddcd
446 445 ralbidv g=cd𝒫fdgdd𝒫fdcd
447 pweq g=c𝒫g=𝒫c
448 447 rexeqdv g=ce𝒫ge:f1-1Ve𝒫ce:f1-1V
449 446 448 imbi12d g=cd𝒫fdgde𝒫ge:f1-1Vd𝒫fdcde𝒫ce:f1-1V
450 449 cbvralvw g𝒫f×bd𝒫fdgde𝒫ge:f1-1Vc𝒫f×bd𝒫fdcde𝒫ce:f1-1V
451 443 450 sylib fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vc𝒫f×bd𝒫fdcde𝒫ce:f1-1V
452 451 exp31 fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1Vc𝒫f×bd𝒫fdcde𝒫ce:f1-1V
453 452 a2d fFinbFinaafc𝒫a×bd𝒫adcde𝒫ce:a1-1VbFinc𝒫f×bd𝒫fdcde𝒫ce:f1-1V
454 22 453 biimtrid fFinaafbFinc𝒫a×bd𝒫adcde𝒫ce:a1-1VbFinc𝒫f×bd𝒫fdcde𝒫ce:f1-1V
455 9 18 454 findcard3 AFinbFinc𝒫A×bd𝒫Adcde𝒫ce:A1-1V