Metamath Proof Explorer


Theorem pntlem3

Description: Lemma for pnt . Equation 10.6.35 in Shapiro, p. 436. (Contributed by Mario Carneiro, 8-Apr-2016) (Proof shortened by AV, 27-Sep-2020)

Ref Expression
Hypotheses pntlem3.r R=a+ψaa
pntlem3.a φA+
pntlem3.A φx+RxxA
pntlem3.1 T=t0A|y+zy+∞Rzzt
pntlem3.2 φC+
pntlem3.3 φuTuCu3T
Assertion pntlem3 φx+ψxx1

Proof

Step Hyp Ref Expression
1 pntlem3.r R=a+ψaa
2 pntlem3.a φA+
3 pntlem3.A φx+RxxA
4 pntlem3.1 T=t0A|y+zy+∞Rzzt
5 pntlem3.2 φC+
6 pntlem3.3 φuTuCu3T
7 rpssre +
8 eqid TopOpenfld=TopOpenfld
9 8 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
10 9 a1i φ0<supT<TopOpenfld×tTopOpenfldCnTopOpenfld
11 ssid
12 cncfmptid pp:cn
13 11 11 12 mp2an pp:cn
14 13 a1i φ0<supT<pp:cn
15 5 adantr φ0<supT<C+
16 15 rpcnd φ0<supT<C
17 11 a1i φ0<supT<
18 cncfmptc CpC:cn
19 16 17 17 18 syl3anc φ0<supT<pC:cn
20 3nn0 30
21 8 expcn 30pp3TopOpenfldCnTopOpenfld
22 20 21 mp1i φ0<supT<pp3TopOpenfldCnTopOpenfld
23 8 cncfcn1 cn=TopOpenfldCnTopOpenfld
24 22 23 eleqtrrdi φ0<supT<pp3:cn
25 19 24 mulcncf φ0<supT<pCp3:cn
26 8 10 14 25 cncfmpt2f φ0<supT<ppCp3:cn
27 4 ssrab3 T0A
28 0re 0
29 2 rpred φA
30 iccssre 0A0A
31 28 29 30 sylancr φ0A
32 27 31 sstrid φT
33 0xr 0*
34 2 rpxrd φA*
35 2 rpge0d φ0A
36 ubicc2 0*A*0AA0A
37 33 34 35 36 mp3an2i φA0A
38 1rp 1+
39 fveq2 x=zRx=Rz
40 id x=zx=z
41 39 40 oveq12d x=zRxx=Rzz
42 41 fveq2d x=zRxx=Rzz
43 42 breq1d x=zRxxARzzA
44 3 adantr φz1+∞x+RxxA
45 1re 1
46 elicopnf 1z1+∞z1z
47 45 46 mp1i φz1+∞z1z
48 47 simprbda φz1+∞z
49 0red φz1+∞0
50 45 a1i φz1+∞1
51 0lt1 0<1
52 51 a1i φz1+∞0<1
53 47 simplbda φz1+∞1z
54 49 50 48 52 53 ltletrd φz1+∞0<z
55 48 54 elrpd φz1+∞z+
56 43 44 55 rspcdva φz1+∞RzzA
57 56 ralrimiva φz1+∞RzzA
58 oveq1 y=1y+∞=1+∞
59 58 raleqdv y=1zy+∞RzzAz1+∞RzzA
60 59 rspcev 1+z1+∞RzzAy+zy+∞RzzA
61 38 57 60 sylancr φy+zy+∞RzzA
62 breq2 t=ARzztRzzA
63 62 rexralbidv t=Ay+zy+∞Rzzty+zy+∞RzzA
64 63 4 elrab2 ATA0Ay+zy+∞RzzA
65 37 61 64 sylanbrc φAT
66 65 ne0d φT
67 elicc2 0At0At0ttA
68 28 29 67 sylancr φt0At0ttA
69 68 biimpa φt0At0ttA
70 69 simp2d φt0A0t
71 70 a1d φt0Ay+zy+∞Rzzt0t
72 71 ralrimiva φt0Ay+zy+∞Rzzt0t
73 4 raleqi wT0wwt0A|y+zy+∞Rzzt0w
74 breq2 w=t0w0t
75 74 ralrab2 wt0A|y+zy+∞Rzzt0wt0Ay+zy+∞Rzzt0t
76 73 75 bitri wT0wt0Ay+zy+∞Rzzt0t
77 72 76 sylibr φwT0w
78 breq1 x=0xw0w
79 78 ralbidv x=0wTxwwT0w
80 79 rspcev 0wT0wxwTxw
81 28 77 80 sylancr φxwTxw
82 infrecl TTxwTxwsupT<
83 32 66 81 82 syl3anc φsupT<
84 83 recnd φsupT<
85 84 adantr φ0<supT<supT<
86 elrp supT<+supT<0<supT<
87 86 biimpri supT<0<supT<supT<+
88 83 87 sylan φ0<supT<supT<+
89 3z 3
90 rpexpcl supT<+3supT<3+
91 88 89 90 sylancl φ0<supT<supT<3+
92 15 91 rpmulcld φ0<supT<CsupT<3+
93 cncfi ppCp3:cnsupT<CsupT<3+s+uusupT<<sppCp3uppCp3supT<<CsupT<3
94 26 85 92 93 syl3anc φ0<supT<s+uusupT<<sppCp3uppCp3supT<<CsupT<3
95 83 ad2antrr φ0<supT<s+supT<
96 rphalfcl s+s2+
97 96 adantl φ0<supT<s+s2+
98 95 97 ltaddrpd φ0<supT<s+supT<<supT<+s2
99 97 rpred φ0<supT<s+s2
100 95 99 readdcld φ0<supT<s+supT<+s2
101 95 100 ltnled φ0<supT<s+supT<<supT<+s2¬supT<+s2supT<
102 98 101 mpbid φ0<supT<s+¬supT<+s2supT<
103 ax-resscn
104 32 103 sstrdi φT
105 104 ad2antrr φ0<supT<s+T
106 ssralv TuusupT<<sppCp3uppCp3supT<<CsupT<3uTusupT<<sppCp3uppCp3supT<<CsupT<3
107 105 106 syl φ0<supT<s+uusupT<<sppCp3uppCp3supT<<CsupT<3uTusupT<<sppCp3uppCp3supT<<CsupT<3
108 32 ad2antrr φ0<supT<s+T
109 108 sselda φ0<supT<s+uTu
110 100 adantr φ0<supT<s+uTsupT<+s2
111 109 110 ltnled φ0<supT<s+uTu<supT<+s2¬supT<+s2u
112 83 ad3antrrr φ0<supT<s+uTsupT<
113 99 adantr φ0<supT<s+uTs2
114 112 113 resubcld φ0<supT<s+uTsupT<s2
115 95 97 ltsubrpd φ0<supT<s+supT<s2<supT<
116 115 adantr φ0<supT<s+uTsupT<s2<supT<
117 32 ad3antrrr φ0<supT<s+uTT
118 81 ad3antrrr φ0<supT<s+uTxwTxw
119 simpr φ0<supT<s+uTuT
120 infrelb TxwTxwuTsupT<u
121 117 118 119 120 syl3anc φ0<supT<s+uTsupT<u
122 114 112 109 116 121 ltletrd φ0<supT<s+uTsupT<s2<u
123 109 112 113 absdifltd φ0<supT<s+uTusupT<<s2supT<s2<uu<supT<+s2
124 123 biimprd φ0<supT<s+uTsupT<s2<uu<supT<+s2usupT<<s2
125 122 124 mpand φ0<supT<s+uTu<supT<+s2usupT<<s2
126 rphalflt s+s2<s
127 126 ad2antlr φ0<supT<s+uTs2<s
128 109 112 resubcld φ0<supT<s+uTusupT<
129 128 recnd φ0<supT<s+uTusupT<
130 129 abscld φ0<supT<s+uTusupT<
131 rpre s+s
132 131 ad2antlr φ0<supT<s+uTs
133 lttr usupT<s2susupT<<s2s2<susupT<<s
134 130 113 132 133 syl3anc φ0<supT<s+uTusupT<<s2s2<susupT<<s
135 127 134 mpan2d φ0<supT<s+uTusupT<<s2usupT<<s
136 125 135 syld φ0<supT<s+uTu<supT<+s2usupT<<s
137 111 136 sylbird φ0<supT<s+uT¬supT<+s2uusupT<<s
138 137 con1d φ0<supT<s+uT¬usupT<<ssupT<+s2u
139 109 recnd φ0<supT<s+uTu
140 id p=up=u
141 oveq1 p=up3=u3
142 141 oveq2d p=uCp3=Cu3
143 140 142 oveq12d p=upCp3=uCu3
144 eqid ppCp3=ppCp3
145 ovex uCu3V
146 143 144 145 fvmpt uppCp3u=uCu3
147 139 146 syl φ0<supT<s+uTppCp3u=uCu3
148 85 ad2antrr φ0<supT<s+uTsupT<
149 id p=supT<p=supT<
150 oveq1 p=supT<p3=supT<3
151 150 oveq2d p=supT<Cp3=CsupT<3
152 149 151 oveq12d p=supT<pCp3=supT<CsupT<3
153 ovex supT<CsupT<3V
154 152 144 153 fvmpt supT<ppCp3supT<=supT<CsupT<3
155 148 154 syl φ0<supT<s+uTppCp3supT<=supT<CsupT<3
156 147 155 oveq12d φ0<supT<s+uTppCp3uppCp3supT<=u-Cu3-supT<CsupT<3
157 156 fveq2d φ0<supT<s+uTppCp3uppCp3supT<=u-Cu3-supT<CsupT<3
158 157 breq1d φ0<supT<s+uTppCp3uppCp3supT<<CsupT<3u-Cu3-supT<CsupT<3<CsupT<3
159 5 rpred φC
160 159 ad3antrrr φ0<supT<s+uTC
161 reexpcl u30u3
162 109 20 161 sylancl φ0<supT<s+uTu3
163 160 162 remulcld φ0<supT<s+uTCu3
164 109 163 resubcld φ0<supT<s+uTuCu3
165 20 a1i φ0<supT<s+uT30
166 112 165 reexpcld φ0<supT<s+uTsupT<3
167 160 166 remulcld φ0<supT<s+uTCsupT<3
168 112 167 resubcld φ0<supT<s+uTsupT<CsupT<3
169 164 168 167 absdifltd φ0<supT<s+uTu-Cu3-supT<CsupT<3<CsupT<3supT<-CsupT<3-CsupT<3<uCu3uCu3<supT<-CsupT<3+CsupT<3
170 167 recnd φ0<supT<s+uTCsupT<3
171 148 170 npcand φ0<supT<s+uTsupT<-CsupT<3+CsupT<3=supT<
172 171 breq2d φ0<supT<s+uTuCu3<supT<-CsupT<3+CsupT<3uCu3<supT<
173 6 ad4ant14 φ0<supT<s+uTuCu3T
174 infrelb TxwTxwuCu3TsupT<uCu3
175 117 118 173 174 syl3anc φ0<supT<s+uTsupT<uCu3
176 112 164 175 lensymd φ0<supT<s+uT¬uCu3<supT<
177 176 pm2.21d φ0<supT<s+uTuCu3<supT<supT<+s2u
178 172 177 sylbid φ0<supT<s+uTuCu3<supT<-CsupT<3+CsupT<3supT<+s2u
179 178 adantld φ0<supT<s+uTsupT<-CsupT<3-CsupT<3<uCu3uCu3<supT<-CsupT<3+CsupT<3supT<+s2u
180 169 179 sylbid φ0<supT<s+uTu-Cu3-supT<CsupT<3<CsupT<3supT<+s2u
181 158 180 sylbid φ0<supT<s+uTppCp3uppCp3supT<<CsupT<3supT<+s2u
182 138 181 jad φ0<supT<s+uTusupT<<sppCp3uppCp3supT<<CsupT<3supT<+s2u
183 182 ralimdva φ0<supT<s+uTusupT<<sppCp3uppCp3supT<<CsupT<3uTsupT<+s2u
184 66 ad2antrr φ0<supT<s+T
185 81 ad2antrr φ0<supT<s+xwTxw
186 infregelb TTxwTxwsupT<+s2supT<+s2supT<uTsupT<+s2u
187 108 184 185 100 186 syl31anc φ0<supT<s+supT<+s2supT<uTsupT<+s2u
188 183 187 sylibrd φ0<supT<s+uTusupT<<sppCp3uppCp3supT<<CsupT<3supT<+s2supT<
189 107 188 syld φ0<supT<s+uusupT<<sppCp3uppCp3supT<<CsupT<3supT<+s2supT<
190 102 189 mtod φ0<supT<s+¬uusupT<<sppCp3uppCp3supT<<CsupT<3
191 190 nrexdv φ0<supT<¬s+uusupT<<sppCp3uppCp3supT<<CsupT<3
192 94 191 pm2.65da φ¬0<supT<
193 192 adantr φs+¬0<supT<
194 32 adantr φs+T
195 66 adantr φs+T
196 81 adantr φs+xwTxw
197 131 adantl φs+s
198 infregelb TTxwTxwsssupT<wTsw
199 194 195 196 197 198 syl31anc φs+ssupT<wTsw
200 4 raleqi wTswwt0A|y+zy+∞Rzztsw
201 breq2 w=tswst
202 201 ralrab2 wt0A|y+zy+∞Rzztswt0Ay+zy+∞Rzztst
203 200 202 bitri wTswt0Ay+zy+∞Rzztst
204 199 203 bitrdi φs+ssupT<t0Ay+zy+∞Rzztst
205 rpgt0 s+0<s
206 205 adantl φs+0<s
207 83 adantr φs+supT<
208 ltletr 0ssupT<0<sssupT<0<supT<
209 28 197 207 208 mp3an2i φs+0<sssupT<0<supT<
210 206 209 mpand φs+ssupT<0<supT<
211 204 210 sylbird φs+t0Ay+zy+∞Rzztst0<supT<
212 193 211 mtod φs+¬t0Ay+zy+∞Rzztst
213 rexanali t0Ay+zy+∞Rzzt¬st¬t0Ay+zy+∞Rzztst
214 212 213 sylibr φs+t0Ay+zy+∞Rzzt¬st
215 fveq2 z=xRz=Rx
216 id z=xz=x
217 215 216 oveq12d z=xRzz=Rxx
218 217 fveq2d z=xRzz=Rxx
219 218 breq1d z=xRzztRxxt
220 219 cbvralvw zy+∞Rzztxy+∞Rxxt
221 rpre x+x
222 221 ad2antll φs+t0A¬sty+yxx+x
223 simprl φs+t0A¬sty+yxx+yx
224 simplr φs+t0A¬sty+yxx+y+
225 224 rpred φs+t0A¬sty+yxx+y
226 elicopnf yxy+∞xyx
227 225 226 syl φs+t0A¬sty+yxx+xy+∞xyx
228 222 223 227 mpbir2and φs+t0A¬sty+yxx+xy+∞
229 1 pntrval x+Rx=ψxx
230 229 ad2antll φs+t0A¬sty+yxx+Rx=ψxx
231 230 oveq1d φs+t0A¬sty+yxx+Rxx=ψxxx
232 chpcl xψx
233 222 232 syl φs+t0A¬sty+yxx+ψx
234 233 recnd φs+t0A¬sty+yxx+ψx
235 rpcn x+x
236 235 ad2antll φs+t0A¬sty+yxx+x
237 rpne0 x+x0
238 237 ad2antll φs+t0A¬sty+yxx+x0
239 234 236 236 238 divsubdird φs+t0A¬sty+yxx+ψxxx=ψxxxx
240 236 238 dividd φs+t0A¬sty+yxx+xx=1
241 240 oveq2d φs+t0A¬sty+yxx+ψxxxx=ψxx1
242 231 239 241 3eqtrrd φs+t0A¬sty+yxx+ψxx1=Rxx
243 242 fveq2d φs+t0A¬sty+yxx+ψxx1=Rxx
244 243 breq1d φs+t0A¬sty+yxx+ψxx1tRxxt
245 simprr φs+t0A¬st¬st
246 245 ad2antrr φs+t0A¬sty+yxx+¬st
247 31 ad2antrr φs+t0A¬st0A
248 247 ad2antrr φs+t0A¬sty+yxx+0A
249 simplrl φs+t0A¬sty+t0A
250 249 adantr φs+t0A¬sty+yxx+t0A
251 248 250 sseldd φs+t0A¬sty+yxx+t
252 simp-4r φs+t0A¬sty+yxx+s+
253 252 rpred φs+t0A¬sty+yxx+s
254 251 253 ltnled φs+t0A¬sty+yxx+t<s¬st
255 246 254 mpbird φs+t0A¬sty+yxx+t<s
256 221 232 syl x+ψx
257 rerpdivcl ψxx+ψxx
258 256 257 mpancom x+ψxx
259 258 ad2antll φs+t0A¬sty+yxx+ψxx
260 resubcl ψxx1ψxx1
261 259 45 260 sylancl φs+t0A¬sty+yxx+ψxx1
262 261 recnd φs+t0A¬sty+yxx+ψxx1
263 262 abscld φs+t0A¬sty+yxx+ψxx1
264 lelttr ψxx1tsψxx1tt<sψxx1<s
265 263 251 253 264 syl3anc φs+t0A¬sty+yxx+ψxx1tt<sψxx1<s
266 255 265 mpan2d φs+t0A¬sty+yxx+ψxx1tψxx1<s
267 244 266 sylbird φs+t0A¬sty+yxx+Rxxtψxx1<s
268 228 267 embantd φs+t0A¬sty+yxx+xy+∞Rxxtψxx1<s
269 268 exp32 φs+t0A¬sty+yxx+xy+∞Rxxtψxx1<s
270 269 com24 φs+t0A¬sty+xy+∞Rxxtx+yxψxx1<s
271 270 ralimdv2 φs+t0A¬sty+xy+∞Rxxtx+yxψxx1<s
272 220 271 biimtrid φs+t0A¬sty+zy+∞Rzztx+yxψxx1<s
273 272 reximdva φs+t0A¬sty+zy+∞Rzzty+x+yxψxx1<s
274 273 anassrs φs+t0A¬sty+zy+∞Rzzty+x+yxψxx1<s
275 274 impancom φs+t0Ay+zy+∞Rzzt¬sty+x+yxψxx1<s
276 275 expimpd φs+t0Ay+zy+∞Rzzt¬sty+x+yxψxx1<s
277 276 rexlimdva φs+t0Ay+zy+∞Rzzt¬sty+x+yxψxx1<s
278 214 277 mpd φs+y+x+yxψxx1<s
279 ssrexv +y+x+yxψxx1<syx+yxψxx1<s
280 7 278 279 mpsyl φs+yx+yxψxx1<s
281 280 ralrimiva φs+yx+yxψxx1<s
282 258 recnd x+ψxx
283 282 rgen x+ψxx
284 283 a1i φx+ψxx
285 7 a1i φ+
286 1cnd φ1
287 284 285 286 rlim2 φx+ψxx1s+yx+yxψxx1<s
288 281 287 mpbird φx+ψxx1