Metamath Proof Explorer


Theorem ramcl

Description: Ramsey's theorem: the Ramsey number is an integer for every finite coloring and set of upper bounds. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion ramcl M0RFinF:R0MRamseyF0

Proof

Step Hyp Ref Expression
1 nn0ex 0V
2 simpr M0RFinRFin
3 elmapg 0VRFinF0RF:R0
4 1 2 3 sylancr M0RFinF0RF:R0
5 oveq1 x=0xRamseyf=0Ramseyf
6 5 eleq1d x=0xRamseyf00Ramseyf0
7 6 ralbidv x=0f0RxRamseyf0f0R0Ramseyf0
8 7 imbi2d x=0RFinf0RxRamseyf0RFinf0R0Ramseyf0
9 oveq1 x=mxRamseyf=mRamseyf
10 9 eleq1d x=mxRamseyf0mRamseyf0
11 10 ralbidv x=mf0RxRamseyf0f0RmRamseyf0
12 11 imbi2d x=mRFinf0RxRamseyf0RFinf0RmRamseyf0
13 oveq1 x=m+1xRamseyf=m+1Ramseyf
14 13 eleq1d x=m+1xRamseyf0m+1Ramseyf0
15 14 ralbidv x=m+1f0RxRamseyf0f0Rm+1Ramseyf0
16 15 imbi2d x=m+1RFinf0RxRamseyf0RFinf0Rm+1Ramseyf0
17 oveq1 x=MxRamseyf=MRamseyf
18 17 eleq1d x=MxRamseyf0MRamseyf0
19 18 ralbidv x=Mf0RxRamseyf0f0RMRamseyf0
20 19 imbi2d x=MRFinf0RxRamseyf0RFinf0RMRamseyf0
21 elmapi f0Rf:R0
22 0ramcl RFinf:R00Ramseyf0
23 21 22 sylan2 RFinf0R0Ramseyf0
24 23 ralrimiva RFinf0R0Ramseyf0
25 oveq2 f=gmRamseyf=mRamseyg
26 25 eleq1d f=gmRamseyf0mRamseyg0
27 26 cbvralvw f0RmRamseyf0g0RmRamseyg0
28 simpll RFinm0f0Rg0RmRamseyg0RFin
29 21 ad2antrl RFinm0f0Rg0RmRamseyg0f:R0
30 29 ffvelcdmda RFinm0f0Rg0RmRamseyg0kRfk0
31 28 30 fsumnn0cl RFinm0f0Rg0RmRamseyg0kRfk0
32 eqeq2 x=0kRhk=xkRhk=0
33 32 anbi2d x=0h:R0kRhk=xh:R0kRhk=0
34 33 imbi1d x=0h:R0kRhk=xm+1Ramseyh0h:R0kRhk=0m+1Ramseyh0
35 34 albidv x=0hh:R0kRhk=xm+1Ramseyh0hh:R0kRhk=0m+1Ramseyh0
36 35 imbi2d x=0RFinm0g0RmRamseyg0hh:R0kRhk=xm+1Ramseyh0RFinm0g0RmRamseyg0hh:R0kRhk=0m+1Ramseyh0
37 eqeq2 x=nkRhk=xkRhk=n
38 37 anbi2d x=nh:R0kRhk=xh:R0kRhk=n
39 38 imbi1d x=nh:R0kRhk=xm+1Ramseyh0h:R0kRhk=nm+1Ramseyh0
40 39 albidv x=nhh:R0kRhk=xm+1Ramseyh0hh:R0kRhk=nm+1Ramseyh0
41 40 imbi2d x=nRFinm0g0RmRamseyg0hh:R0kRhk=xm+1Ramseyh0RFinm0g0RmRamseyg0hh:R0kRhk=nm+1Ramseyh0
42 eqeq2 x=n+1kRhk=xkRhk=n+1
43 42 anbi2d x=n+1h:R0kRhk=xh:R0kRhk=n+1
44 43 imbi1d x=n+1h:R0kRhk=xm+1Ramseyh0h:R0kRhk=n+1m+1Ramseyh0
45 44 albidv x=n+1hh:R0kRhk=xm+1Ramseyh0hh:R0kRhk=n+1m+1Ramseyh0
46 45 imbi2d x=n+1RFinm0g0RmRamseyg0hh:R0kRhk=xm+1Ramseyh0RFinm0g0RmRamseyg0hh:R0kRhk=n+1m+1Ramseyh0
47 eqeq2 x=kRfkkRhk=xkRhk=kRfk
48 47 anbi2d x=kRfkh:R0kRhk=xh:R0kRhk=kRfk
49 48 imbi1d x=kRfkh:R0kRhk=xm+1Ramseyh0h:R0kRhk=kRfkm+1Ramseyh0
50 49 albidv x=kRfkhh:R0kRhk=xm+1Ramseyh0hh:R0kRhk=kRfkm+1Ramseyh0
51 50 imbi2d x=kRfkRFinm0g0RmRamseyg0hh:R0kRhk=xm+1Ramseyh0RFinm0g0RmRamseyg0hh:R0kRhk=kRfkm+1Ramseyh0
52 simplll RFinm0g0RmRamseyg0h:R0RFin
53 ffvelcdm h:R0kRhk0
54 53 adantll RFinm0g0RmRamseyg0h:R0kRhk0
55 54 nn0red RFinm0g0RmRamseyg0h:R0kRhk
56 54 nn0ge0d RFinm0g0RmRamseyg0h:R0kR0hk
57 52 55 56 fsum00 RFinm0g0RmRamseyg0h:R0kRhk=0kRhk=0
58 fvex hkV
59 58 rgenw kRhkV
60 mpteqb kRhkVkRhk=kR0kRhk=0
61 59 60 ax-mp kRhk=kR0kRhk=0
62 57 61 bitr4di RFinm0g0RmRamseyg0h:R0kRhk=0kRhk=kR0
63 simpr RFinm0g0RmRamseyg0h:R0h:R0
64 63 feqmptd RFinm0g0RmRamseyg0h:R0h=kRhk
65 fconstmpt R×0=kR0
66 65 a1i RFinm0g0RmRamseyg0h:R0R×0=kR0
67 64 66 eqeq12d RFinm0g0RmRamseyg0h:R0h=R×0kRhk=kR0
68 62 67 bitr4d RFinm0g0RmRamseyg0h:R0kRhk=0h=R×0
69 xpeq1 R=R×0=×0
70 0xp ×0=
71 69 70 eqtrdi R=R×0=
72 71 oveq2d R=m+1RamseyR×0=m+1Ramsey
73 simpllr RFinm0g0RmRamseyg0h:R0m0
74 peano2nn0 m0m+10
75 73 74 syl RFinm0g0RmRamseyg0h:R0m+10
76 ram0 m+10m+1Ramsey=m+1
77 75 76 syl RFinm0g0RmRamseyg0h:R0m+1Ramsey=m+1
78 72 77 sylan9eqr RFinm0g0RmRamseyg0h:R0R=m+1RamseyR×0=m+1
79 75 adantr RFinm0g0RmRamseyg0h:R0R=m+10
80 78 79 eqeltrd RFinm0g0RmRamseyg0h:R0R=m+1RamseyR×00
81 75 adantr RFinm0g0RmRamseyg0h:R0Rm+10
82 simp-4l RFinm0g0RmRamseyg0h:R0RRFin
83 simpr RFinm0g0RmRamseyg0h:R0RR
84 ramz m+10RFinRm+1RamseyR×0=0
85 81 82 83 84 syl3anc RFinm0g0RmRamseyg0h:R0Rm+1RamseyR×0=0
86 0nn0 00
87 85 86 eqeltrdi RFinm0g0RmRamseyg0h:R0Rm+1RamseyR×00
88 80 87 pm2.61dane RFinm0g0RmRamseyg0h:R0m+1RamseyR×00
89 oveq2 h=R×0m+1Ramseyh=m+1RamseyR×0
90 89 eleq1d h=R×0m+1Ramseyh0m+1RamseyR×00
91 88 90 syl5ibrcom RFinm0g0RmRamseyg0h:R0h=R×0m+1Ramseyh0
92 68 91 sylbid RFinm0g0RmRamseyg0h:R0kRhk=0m+1Ramseyh0
93 92 expimpd RFinm0g0RmRamseyg0h:R0kRhk=0m+1Ramseyh0
94 93 alrimiv RFinm0g0RmRamseyg0hh:R0kRhk=0m+1Ramseyh0
95 ffn f:R0fFnR
96 95 ad2antrl RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1fFnR
97 ffnfv f:RfFnRxRfx
98 97 baib fFnRf:RxRfx
99 96 98 syl RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1f:RxRfx
100 simplr RFinm0g0RmRamseyg0n0m0
101 100 ad2antrr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rm0
102 101 74 syl RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rm+10
103 simp-4l RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RRFin
104 simprr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rf:R
105 nnssnn0 0
106 fss f:R0f:R0
107 104 105 106 sylancl RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rf:R0
108 101 nn0cnd RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rm
109 ax-1cn 1
110 pncan m1m+1-1=m
111 108 109 110 sylancl RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rm+1-1=m
112 111 oveq1d RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rm+1-1RamseyxRm+1RamseyyRify=xfx1fy=mRamseyxRm+1RamseyyRify=xfx1fy
113 oveq2 g=xRm+1RamseyyRify=xfx1fymRamseyg=mRamseyxRm+1RamseyyRify=xfx1fy
114 113 eleq1d g=xRm+1RamseyyRify=xfx1fymRamseyg0mRamseyxRm+1RamseyyRify=xfx1fy0
115 simprl RFinm0g0RmRamseyg0n0g0RmRamseyg0
116 115 ad2antrr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rg0RmRamseyg0
117 103 adantr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRRFin
118 117 mptexd RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRyRify=xfx1fyV
119 simpllr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRhh:R0kRhk=nm+1Ramseyh0
120 104 ffvelcdmda RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRfx
121 nnm1nn0 fxfx10
122 120 121 syl RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRfx10
123 122 adantr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRyRfx10
124 107 adantr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRf:R0
125 124 ffvelcdmda RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRyRfy0
126 123 125 ifcld RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRyRify=xfx1fy0
127 126 fmpttd RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRyRify=xfx1fy:R0
128 simplrr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRf:R
129 simpr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRxR
130 ffvelcdm f:RkRfk
131 130 3ad2antl2 RFinf:RxRkRfk
132 131 nncnd RFinf:RxRkRfk
133 132 subid1d RFinf:RxRkRfk0=fk
134 133 ifeq2d RFinf:RxRkRifk=xfk1fk0=ifk=xfk1fk
135 fveq2 k=xfk=fx
136 135 adantl RFinf:RxRkRk=xfk=fx
137 136 oveq1d RFinf:RxRkRk=xfk1=fx1
138 137 ifeq1da RFinf:RxRkRifk=xfk1fk=ifk=xfx1fk
139 134 138 eqtr2d RFinf:RxRkRifk=xfx1fk=ifk=xfk1fk0
140 ovif2 fkifk=x10=ifk=xfk1fk0
141 139 140 eqtr4di RFinf:RxRkRifk=xfx1fk=fkifk=x10
142 141 sumeq2dv RFinf:RxRkRifk=xfx1fk=kRfkifk=x10
143 simp1 RFinf:RxRRFin
144 0cn 0
145 109 144 ifcli ifk=x10
146 145 a1i RFinf:RxRkRifk=x10
147 143 132 146 fsumsub RFinf:RxRkRfkifk=x10=kRfkkRifk=x10
148 elsng kRkxk=x
149 148 ifbid kRifkx10=ifk=x10
150 149 sumeq2i kRifkx10=kRifk=x10
151 simp3 RFinf:RxRxR
152 151 snssd RFinf:RxRxR
153 sumhash RFinxRkRifkx10=x
154 143 152 153 syl2anc RFinf:RxRkRifkx10=x
155 hashsng xRx=1
156 151 155 syl RFinf:RxRx=1
157 154 156 eqtrd RFinf:RxRkRifkx10=1
158 150 157 eqtr3id RFinf:RxRkRifk=x10=1
159 158 oveq2d RFinf:RxRkRfkkRifk=x10=kRfk1
160 142 147 159 3eqtrd RFinf:RxRkRifk=xfx1fk=kRfk1
161 117 128 129 160 syl3anc RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRkRifk=xfx1fk=kRfk1
162 simplrl RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRkRfk=n+1
163 162 oveq1d RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRkRfk1=n+1-1
164 simplrr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0n0
165 164 ad2antrr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRn0
166 165 nn0cnd RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRn
167 pncan n1n+1-1=n
168 166 109 167 sylancl RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRn+1-1=n
169 161 163 168 3eqtrd RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRkRifk=xfx1fk=n
170 127 169 jca RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRyRify=xfx1fy:R0kRifk=xfx1fk=n
171 feq1 h=yRify=xfx1fyh:R0yRify=xfx1fy:R0
172 fveq1 h=yRify=xfx1fyhk=yRify=xfx1fyk
173 equequ1 y=ky=xk=x
174 fveq2 y=kfy=fk
175 173 174 ifbieq2d y=kify=xfx1fy=ifk=xfx1fk
176 eqid yRify=xfx1fy=yRify=xfx1fy
177 ovex fx1V
178 fvex fkV
179 177 178 ifex ifk=xfx1fkV
180 175 176 179 fvmpt kRyRify=xfx1fyk=ifk=xfx1fk
181 172 180 sylan9eq h=yRify=xfx1fykRhk=ifk=xfx1fk
182 181 sumeq2dv h=yRify=xfx1fykRhk=kRifk=xfx1fk
183 182 eqeq1d h=yRify=xfx1fykRhk=nkRifk=xfx1fk=n
184 171 183 anbi12d h=yRify=xfx1fyh:R0kRhk=nyRify=xfx1fy:R0kRifk=xfx1fk=n
185 oveq2 h=yRify=xfx1fym+1Ramseyh=m+1RamseyyRify=xfx1fy
186 185 eleq1d h=yRify=xfx1fym+1Ramseyh0m+1RamseyyRify=xfx1fy0
187 184 186 imbi12d h=yRify=xfx1fyh:R0kRhk=nm+1Ramseyh0yRify=xfx1fy:R0kRifk=xfx1fk=nm+1RamseyyRify=xfx1fy0
188 187 spcgv yRify=xfx1fyVhh:R0kRhk=nm+1Ramseyh0yRify=xfx1fy:R0kRifk=xfx1fk=nm+1RamseyyRify=xfx1fy0
189 118 119 170 188 syl3c RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRm+1RamseyyRify=xfx1fy0
190 189 fmpttd RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRm+1RamseyyRify=xfx1fy:R0
191 elmapg 0VRFinxRm+1RamseyyRify=xfx1fy0RxRm+1RamseyyRify=xfx1fy:R0
192 1 103 191 sylancr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRm+1RamseyyRify=xfx1fy0RxRm+1RamseyyRify=xfx1fy:R0
193 190 192 mpbird RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RxRm+1RamseyyRify=xfx1fy0R
194 114 116 193 rspcdva RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:RmRamseyxRm+1RamseyyRify=xfx1fy0
195 112 194 eqeltrd RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rm+1-1RamseyxRm+1RamseyyRify=xfx1fy0
196 peano2nn0 m+1-1RamseyxRm+1RamseyyRify=xfx1fy0m+1-1RamseyxRm+1RamseyyRify=xfx1fy+10
197 195 196 syl RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rm+1-1RamseyxRm+1RamseyyRify=xfx1fy+10
198 nn0p1nn m0m+1
199 100 198 syl RFinm0g0RmRamseyg0n0m+1
200 199 ad2antrr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rm+1
201 equequ1 y=wy=xw=x
202 fveq2 y=wfy=fw
203 201 202 ifbieq2d y=wify=xfx1fy=ifw=xfx1fw
204 203 cbvmptv yRify=xfx1fy=wRifw=xfx1fw
205 eqeq2 x=zw=xw=z
206 fveq2 x=zfx=fz
207 206 oveq1d x=zfx1=fz1
208 205 207 ifbieq1d x=zifw=xfx1fw=ifw=zfz1fw
209 208 mpteq2dv x=zwRifw=xfx1fw=wRifw=zfz1fw
210 204 209 eqtrid x=zyRify=xfx1fy=wRifw=zfz1fw
211 210 oveq2d x=zm+1RamseyyRify=xfx1fy=m+1RamseywRifw=zfz1fw
212 211 cbvmptv xRm+1RamseyyRify=xfx1fy=zRm+1RamseywRifw=zfz1fw
213 200 103 104 212 190 195 ramub1 RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rm+1Ramseyfm+1-1RamseyxRm+1RamseyyRify=xfx1fy+1
214 ramubcl m+10RFinf:R0m+1-1RamseyxRm+1RamseyyRify=xfx1fy+10m+1Ramseyfm+1-1RamseyxRm+1RamseyyRify=xfx1fy+1m+1Ramseyf0
215 102 103 107 197 213 214 syl32anc RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rm+1Ramseyf0
216 215 expr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0kRfk=n+1f:Rm+1Ramseyf0
217 216 adantrl RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1f:Rm+1Ramseyf0
218 99 217 sylbird RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1xRfxm+1Ramseyf0
219 rexnal xR¬fx¬xRfx
220 simprl RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1f:R0
221 220 ffvelcdmda RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1xRfx0
222 elnn0 fx0fxfx=0
223 221 222 sylib RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1xRfxfx=0
224 223 ord RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1xR¬fxfx=0
225 199 ad2antrr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1m+1
226 simp-4l RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1RFin
227 225 226 220 3jca RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1m+1RFinf:R0
228 ramz2 m+1RFinf:R0xRfx=0m+1Ramseyf=0
229 227 228 sylan RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1xRfx=0m+1Ramseyf=0
230 229 86 eqeltrdi RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1xRfx=0m+1Ramseyf0
231 230 expr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1xRfx=0m+1Ramseyf0
232 224 231 syld RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1xR¬fxm+1Ramseyf0
233 232 rexlimdva RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1xR¬fxm+1Ramseyf0
234 219 233 biimtrrid RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1¬xRfxm+1Ramseyf0
235 218 234 pm2.61d RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1m+1Ramseyf0
236 235 exp31 RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0f:R0kRfk=n+1m+1Ramseyf0
237 236 alrimdv RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0ff:R0kRfk=n+1m+1Ramseyf0
238 feq1 h=fh:R0f:R0
239 fveq1 h=fhk=fk
240 239 sumeq2sdv h=fkRhk=kRfk
241 240 eqeq1d h=fkRhk=n+1kRfk=n+1
242 238 241 anbi12d h=fh:R0kRhk=n+1f:R0kRfk=n+1
243 oveq2 h=fm+1Ramseyh=m+1Ramseyf
244 243 eleq1d h=fm+1Ramseyh0m+1Ramseyf0
245 242 244 imbi12d h=fh:R0kRhk=n+1m+1Ramseyh0f:R0kRfk=n+1m+1Ramseyf0
246 245 cbvalvw hh:R0kRhk=n+1m+1Ramseyh0ff:R0kRfk=n+1m+1Ramseyf0
247 237 246 syl6ibr RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0hh:R0kRhk=n+1m+1Ramseyh0
248 247 anassrs RFinm0g0RmRamseyg0n0hh:R0kRhk=nm+1Ramseyh0hh:R0kRhk=n+1m+1Ramseyh0
249 248 expcom n0RFinm0g0RmRamseyg0hh:R0kRhk=nm+1Ramseyh0hh:R0kRhk=n+1m+1Ramseyh0
250 249 a2d n0RFinm0g0RmRamseyg0hh:R0kRhk=nm+1Ramseyh0RFinm0g0RmRamseyg0hh:R0kRhk=n+1m+1Ramseyh0
251 36 41 46 51 94 250 nn0ind kRfk0RFinm0g0RmRamseyg0hh:R0kRhk=kRfkm+1Ramseyh0
252 251 com12 RFinm0g0RmRamseyg0kRfk0hh:R0kRhk=kRfkm+1Ramseyh0
253 252 adantrl RFinm0f0Rg0RmRamseyg0kRfk0hh:R0kRhk=kRfkm+1Ramseyh0
254 31 253 mpd RFinm0f0Rg0RmRamseyg0hh:R0kRhk=kRfkm+1Ramseyh0
255 240 biantrud h=fh:R0h:R0kRhk=kRfk
256 255 238 bitr3d h=fh:R0kRhk=kRfkf:R0
257 256 244 imbi12d h=fh:R0kRhk=kRfkm+1Ramseyh0f:R0m+1Ramseyf0
258 257 spvv hh:R0kRhk=kRfkm+1Ramseyh0f:R0m+1Ramseyf0
259 254 29 258 sylc RFinm0f0Rg0RmRamseyg0m+1Ramseyf0
260 259 expr RFinm0f0Rg0RmRamseyg0m+1Ramseyf0
261 260 ralrimdva RFinm0g0RmRamseyg0f0Rm+1Ramseyf0
262 27 261 biimtrid RFinm0f0RmRamseyf0f0Rm+1Ramseyf0
263 262 expcom m0RFinf0RmRamseyf0f0Rm+1Ramseyf0
264 263 a2d m0RFinf0RmRamseyf0RFinf0Rm+1Ramseyf0
265 8 12 16 20 24 264 nn0ind M0RFinf0RMRamseyf0
266 265 imp M0RFinf0RMRamseyf0
267 oveq2 f=FMRamseyf=MRamseyF
268 267 eleq1d f=FMRamseyf0MRamseyF0
269 268 rspccv f0RMRamseyf0F0RMRamseyF0
270 266 269 syl M0RFinF0RMRamseyF0
271 4 270 sylbird M0RFinF:R0MRamseyF0
272 271 3impia M0RFinF:R0MRamseyF0