Metamath Proof Explorer


Theorem dimkerim

Description: Given a linear map F between vector spaces V and U , the dimension of the vector space V is the sum of the dimension of F 's kernel and the dimension of F 's image. Second part of theorem 5.3 in Lang p. 141 This can also be described as the Rank-nullity theorem, ( dimI ) being the rank of F (the dimension of its image), and ( dimK ) its nullity (the dimension of its kernel). (Contributed by Thierry Arnoux, 17-May-2023)

Ref Expression
Hypotheses dimkerim.0 0 ˙ = 0 U
dimkerim.k K = V 𝑠 F -1 0 ˙
dimkerim.i I = U 𝑠 ran F
Assertion dimkerim V LVec F V LMHom U dim V = dim K + 𝑒 dim I

Proof

Step Hyp Ref Expression
1 dimkerim.0 0 ˙ = 0 U
2 dimkerim.k K = V 𝑠 F -1 0 ˙
3 dimkerim.i I = U 𝑠 ran F
4 1 2 kerlmhm V LVec F V LMHom U K LVec
5 eqid LBasis K = LBasis K
6 5 lbsex K LVec LBasis K
7 4 6 syl V LVec F V LMHom U LBasis K
8 n0 LBasis K w w LBasis K
9 7 8 sylib V LVec F V LMHom U w w LBasis K
10 simpllr V LVec F V LMHom U w LBasis K b LBasis V w b w LBasis K
11 vex b V
12 11 difexi b w V
13 12 a1i V LVec F V LMHom U w LBasis K b LBasis V w b b w V
14 disjdif w b w =
15 14 a1i V LVec F V LMHom U w LBasis K b LBasis V w b w b w =
16 hashunx w LBasis K b w V w b w = w b w = w + 𝑒 b w
17 10 13 15 16 syl3anc V LVec F V LMHom U w LBasis K b LBasis V w b w b w = w + 𝑒 b w
18 simp-4l V LVec F V LMHom U w LBasis K b LBasis V w b V LVec
19 simpr V LVec F V LMHom U w LBasis K b LBasis V w b w b
20 undif w b w b w = b
21 19 20 sylib V LVec F V LMHom U w LBasis K b LBasis V w b w b w = b
22 simplr V LVec F V LMHom U w LBasis K b LBasis V w b b LBasis V
23 21 22 eqeltrd V LVec F V LMHom U w LBasis K b LBasis V w b w b w LBasis V
24 eqid LBasis V = LBasis V
25 24 dimval V LVec w b w LBasis V dim V = w b w
26 18 23 25 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b dim V = w b w
27 4 ad3antrrr V LVec F V LMHom U w LBasis K b LBasis V w b K LVec
28 5 dimval K LVec w LBasis K dim K = w
29 27 10 28 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b dim K = w
30 3 imlmhm V LVec F V LMHom U I LVec
31 30 ad3antrrr V LVec F V LMHom U w LBasis K b LBasis V w b I LVec
32 simp-4r V LVec F V LMHom U w LBasis K b LBasis V w b F V LMHom U
33 lmhmlmod2 F V LMHom U U LMod
34 32 33 syl V LVec F V LMHom U w LBasis K b LBasis V w b U LMod
35 lmhmrnlss F V LMHom U ran F LSubSp U
36 32 35 syl V LVec F V LMHom U w LBasis K b LBasis V w b ran F LSubSp U
37 df-ima F LSpan V b w = ran F LSpan V b w
38 imassrn F LSpan V b w ran F
39 38 a1i V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w ran F
40 37 39 eqsstrrid V LVec F V LMHom U w LBasis K b LBasis V w b ran F LSpan V b w ran F
41 lveclmod V LVec V LMod
42 41 ad4antr V LVec F V LMHom U w LBasis K b LBasis V w b V LMod
43 24 lbslinds LBasis V LIndS V
44 43 22 sselid V LVec F V LMHom U w LBasis K b LBasis V w b b LIndS V
45 difssd V LVec F V LMHom U w LBasis K b LBasis V w b b w b
46 lindsss V LMod b LIndS V b w b b w LIndS V
47 42 44 45 46 syl3anc V LVec F V LMHom U w LBasis K b LBasis V w b b w LIndS V
48 eqid Base V = Base V
49 48 linds1 b w LIndS V b w Base V
50 47 49 syl V LVec F V LMHom U w LBasis K b LBasis V w b b w Base V
51 eqid LSubSp V = LSubSp V
52 eqid LSpan V = LSpan V
53 48 51 52 lspcl V LMod b w Base V LSpan V b w LSubSp V
54 42 50 53 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b w LSubSp V
55 eqid V 𝑠 LSpan V b w = V 𝑠 LSpan V b w
56 51 55 reslmhm F V LMHom U LSpan V b w LSubSp V F LSpan V b w V 𝑠 LSpan V b w LMHom U
57 32 54 56 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w V 𝑠 LSpan V b w LMHom U
58 eqid LSubSp U = LSubSp U
59 3 58 reslmhm2b U LMod ran F LSubSp U ran F LSpan V b w ran F F LSpan V b w V 𝑠 LSpan V b w LMHom U F LSpan V b w V 𝑠 LSpan V b w LMHom I
60 59 biimpa U LMod ran F LSubSp U ran F LSpan V b w ran F F LSpan V b w V 𝑠 LSpan V b w LMHom U F LSpan V b w V 𝑠 LSpan V b w LMHom I
61 34 36 40 57 60 syl31anc V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w V 𝑠 LSpan V b w LMHom I
62 lmghm F V LMHom U F V GrpHom U
63 62 ad4antlr V LVec F V LMHom U w LBasis K b LBasis V w b F V GrpHom U
64 48 24 lbsss b LBasis V b Base V
65 22 64 syl V LVec F V LMHom U w LBasis K b LBasis V w b b Base V
66 45 65 sstrd V LVec F V LMHom U w LBasis K b LBasis V w b b w Base V
67 42 66 53 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b w LSubSp V
68 51 lsssubg V LMod LSpan V b w LSubSp V LSpan V b w SubGrp V
69 42 67 68 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b w SubGrp V
70 55 resghm F V GrpHom U LSpan V b w SubGrp V F LSpan V b w V 𝑠 LSpan V b w GrpHom U
71 63 69 70 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w V 𝑠 LSpan V b w GrpHom U
72 eqid Base U = Base U
73 48 72 lmhmf F V LMHom U F : Base V Base U
74 73 ad4antlr V LVec F V LMHom U w LBasis K b LBasis V w b F : Base V Base U
75 74 ffnd V LVec F V LMHom U w LBasis K b LBasis V w b F Fn Base V
76 48 52 lspssv V LMod b w Base V LSpan V b w Base V
77 42 66 76 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b w Base V
78 fnssres F Fn Base V LSpan V b w Base V F LSpan V b w Fn LSpan V b w
79 75 77 78 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w Fn LSpan V b w
80 fniniseg F LSpan V b w Fn LSpan V b w x F LSpan V b w -1 0 ˙ x LSpan V b w F LSpan V b w x = 0 ˙
81 80 biimpa F LSpan V b w Fn LSpan V b w x F LSpan V b w -1 0 ˙ x LSpan V b w F LSpan V b w x = 0 ˙
82 79 81 sylan V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ x LSpan V b w F LSpan V b w x = 0 ˙
83 82 simpld V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ x LSpan V b w
84 75 adantr V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ F Fn Base V
85 77 adantr V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ LSpan V b w Base V
86 85 83 sseldd V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ x Base V
87 83 fvresd V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ F LSpan V b w x = F x
88 82 simprd V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ F LSpan V b w x = 0 ˙
89 87 88 eqtr3d V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ F x = 0 ˙
90 fniniseg F Fn Base V x F -1 0 ˙ x Base V F x = 0 ˙
91 90 biimpar F Fn Base V x Base V F x = 0 ˙ x F -1 0 ˙
92 84 86 89 91 syl12anc V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ x F -1 0 ˙
93 83 92 elind V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ x LSpan V b w F -1 0 ˙
94 simpr V LVec F V LMHom U w LBasis K w LBasis K
95 eqid Base K = Base K
96 eqid LSpan K = LSpan K
97 95 5 96 lbssp w LBasis K LSpan K w = Base K
98 94 97 syl V LVec F V LMHom U w LBasis K LSpan K w = Base K
99 41 ad2antrr V LVec F V LMHom U w LBasis K V LMod
100 eqid F -1 0 ˙ = F -1 0 ˙
101 100 1 51 lmhmkerlss F V LMHom U F -1 0 ˙ LSubSp V
102 101 ad2antlr V LVec F V LMHom U w LBasis K F -1 0 ˙ LSubSp V
103 95 5 lbsss w LBasis K w Base K
104 94 103 syl V LVec F V LMHom U w LBasis K w Base K
105 cnvimass F -1 0 ˙ dom F
106 105 73 fssdm F V LMHom U F -1 0 ˙ Base V
107 2 48 ressbas2 F -1 0 ˙ Base V F -1 0 ˙ = Base K
108 106 107 syl F V LMHom U F -1 0 ˙ = Base K
109 108 ad2antlr V LVec F V LMHom U w LBasis K F -1 0 ˙ = Base K
110 104 109 sseqtrrd V LVec F V LMHom U w LBasis K w F -1 0 ˙
111 2 52 96 51 lsslsp V LMod F -1 0 ˙ LSubSp V w F -1 0 ˙ LSpan V w = LSpan K w
112 99 102 110 111 syl3anc V LVec F V LMHom U w LBasis K LSpan V w = LSpan K w
113 98 112 109 3eqtr4d V LVec F V LMHom U w LBasis K LSpan V w = F -1 0 ˙
114 113 ad2antrr V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V w = F -1 0 ˙
115 114 ineq2d V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b w LSpan V w = LSpan V b w F -1 0 ˙
116 eqid 0 V = 0 V
117 24 52 116 lbsdiflsp0 V LVec b LBasis V w b LSpan V b w LSpan V w = 0 V
118 117 ad5ant145 V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b w LSpan V w = 0 V
119 115 118 eqtr3d V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b w F -1 0 ˙ = 0 V
120 119 adantr V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ LSpan V b w F -1 0 ˙ = 0 V
121 93 120 eleqtrd V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ x 0 V
122 121 ex V LVec F V LMHom U w LBasis K b LBasis V w b x F LSpan V b w -1 0 ˙ x 0 V
123 122 ssrdv V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w -1 0 ˙ 0 V
124 116 48 52 0ellsp V LMod b w Base V 0 V LSpan V b w
125 42 66 124 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b 0 V LSpan V b w
126 fvexd V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w 0 V V
127 125 fvresd V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w 0 V = F 0 V
128 116 1 ghmid F V GrpHom U F 0 V = 0 ˙
129 62 128 syl F V LMHom U F 0 V = 0 ˙
130 129 ad4antlr V LVec F V LMHom U w LBasis K b LBasis V w b F 0 V = 0 ˙
131 127 130 eqtrd V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w 0 V = 0 ˙
132 elsng F LSpan V b w 0 V V F LSpan V b w 0 V 0 ˙ F LSpan V b w 0 V = 0 ˙
133 132 biimpar F LSpan V b w 0 V V F LSpan V b w 0 V = 0 ˙ F LSpan V b w 0 V 0 ˙
134 126 131 133 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w 0 V 0 ˙
135 79 125 134 elpreimad V LVec F V LMHom U w LBasis K b LBasis V w b 0 V F LSpan V b w -1 0 ˙
136 135 snssd V LVec F V LMHom U w LBasis K b LBasis V w b 0 V F LSpan V b w -1 0 ˙
137 123 136 eqssd V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w -1 0 ˙ = 0 V
138 lmodgrp V LMod V Grp
139 grpmnd V Grp V Mnd
140 42 138 139 3syl V LVec F V LMHom U w LBasis K b LBasis V w b V Mnd
141 55 48 116 ress0g V Mnd 0 V LSpan V b w LSpan V b w Base V 0 V = 0 V 𝑠 LSpan V b w
142 140 125 77 141 syl3anc V LVec F V LMHom U w LBasis K b LBasis V w b 0 V = 0 V 𝑠 LSpan V b w
143 142 sneqd V LVec F V LMHom U w LBasis K b LBasis V w b 0 V = 0 V 𝑠 LSpan V b w
144 137 143 eqtrd V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w -1 0 ˙ = 0 V 𝑠 LSpan V b w
145 eqid Base V 𝑠 LSpan V b w = Base V 𝑠 LSpan V b w
146 eqid 0 V 𝑠 LSpan V b w = 0 V 𝑠 LSpan V b w
147 145 72 146 1 kerf1ghm F LSpan V b w V 𝑠 LSpan V b w GrpHom U F LSpan V b w : Base V 𝑠 LSpan V b w 1-1 Base U F LSpan V b w -1 0 ˙ = 0 V 𝑠 LSpan V b w
148 147 biimpar F LSpan V b w V 𝑠 LSpan V b w GrpHom U F LSpan V b w -1 0 ˙ = 0 V 𝑠 LSpan V b w F LSpan V b w : Base V 𝑠 LSpan V b w 1-1 Base U
149 71 144 148 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w : Base V 𝑠 LSpan V b w 1-1 Base U
150 eqidd V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w = F LSpan V b w
151 55 48 ressbas2 LSpan V b w Base V LSpan V b w = Base V 𝑠 LSpan V b w
152 77 151 syl V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b w = Base V 𝑠 LSpan V b w
153 eqidd V LVec F V LMHom U w LBasis K b LBasis V w b Base U = Base U
154 150 152 153 f1eq123d V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w : LSpan V b w 1-1 Base U F LSpan V b w : Base V 𝑠 LSpan V b w 1-1 Base U
155 149 154 mpbird V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w : LSpan V b w 1-1 Base U
156 f1ssr F LSpan V b w : LSpan V b w 1-1 Base U ran F LSpan V b w ran F F LSpan V b w : LSpan V b w 1-1 ran F
157 155 40 156 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w : LSpan V b w 1-1 ran F
158 f1f1orn F LSpan V b w : LSpan V b w 1-1 ran F F LSpan V b w : LSpan V b w 1-1 onto ran F LSpan V b w
159 157 158 syl V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w : LSpan V b w 1-1 onto ran F LSpan V b w
160 simp-4r V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F x = y
161 75 ad6antr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F Fn Base V
162 simpllr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v u LSpan V w
163 113 ad8antr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v LSpan V w = F -1 0 ˙
164 162 163 eleqtrd V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v u F -1 0 ˙
165 fniniseg F Fn Base V u F -1 0 ˙ u Base V F u = 0 ˙
166 165 simplbda F Fn Base V u F -1 0 ˙ F u = 0 ˙
167 161 164 166 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F u = 0 ˙
168 167 oveq1d V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F u + U F v = 0 ˙ + U F v
169 simpr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v x = u + V v
170 169 fveq2d V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F x = F u + V v
171 63 ad6antr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F V GrpHom U
172 48 52 lspss V LMod b Base V w b LSpan V w LSpan V b
173 42 65 19 172 syl3anc V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V w LSpan V b
174 48 24 52 lbssp b LBasis V LSpan V b = Base V
175 22 174 syl V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b = Base V
176 173 175 sseqtrd V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V w Base V
177 176 ad3antrrr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y LSpan V w Base V
178 177 ad3antrrr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v LSpan V w Base V
179 178 162 sseldd V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v u Base V
180 77 ad3antrrr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y LSpan V b w Base V
181 180 ad3antrrr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v LSpan V b w Base V
182 simplr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v v LSpan V b w
183 181 182 sseldd V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v v Base V
184 eqid + V = + V
185 eqid + U = + U
186 48 184 185 ghmlin F V GrpHom U u Base V v Base V F u + V v = F u + U F v
187 171 179 183 186 syl3anc V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F u + V v = F u + U F v
188 170 187 eqtr2d V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F u + U F v = F x
189 lmhmlvec2 V LVec F V LMHom U U LVec
190 lveclmod U LVec U LMod
191 lmodgrp U LMod U Grp
192 189 190 191 3syl V LVec F V LMHom U U Grp
193 192 ad9antr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v U Grp
194 74 ad6antr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F : Base V Base U
195 194 183 ffvelrnd V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F v Base U
196 72 185 1 grplid U Grp F v Base U 0 ˙ + U F v = F v
197 193 195 196 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v 0 ˙ + U F v = F v
198 168 188 197 3eqtr3d V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F x = F v
199 160 198 eqtr3d V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v y = F v
200 161 183 182 fnfvimad V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v F v F LSpan V b w
201 199 200 eqeltrd V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v y F LSpan V b w
202 simp-7l V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y V LVec
203 simplr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y x Base V
204 110 ad2antrr V LVec F V LMHom U w LBasis K b LBasis V w b w F -1 0 ˙
205 106 ad4antlr V LVec F V LMHom U w LBasis K b LBasis V w b F -1 0 ˙ Base V
206 204 205 sstrd V LVec F V LMHom U w LBasis K b LBasis V w b w Base V
207 eqid LSSum V = LSSum V
208 48 52 207 lsmsp2 V LMod w Base V b w Base V LSpan V w LSSum V LSpan V b w = LSpan V w b w
209 42 206 66 208 syl3anc V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V w LSSum V LSpan V b w = LSpan V w b w
210 21 fveq2d V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V w b w = LSpan V b
211 209 210 175 3eqtrrd V LVec F V LMHom U w LBasis K b LBasis V w b Base V = LSpan V w LSSum V LSpan V b w
212 211 ad3antrrr V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y Base V = LSpan V w LSSum V LSpan V b w
213 203 212 eleqtrd V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y x LSpan V w LSSum V LSpan V b w
214 48 184 207 lsmelvalx V LVec LSpan V w Base V LSpan V b w Base V x LSpan V w LSSum V LSpan V b w u LSpan V w v LSpan V b w x = u + V v
215 214 biimpa V LVec LSpan V w Base V LSpan V b w Base V x LSpan V w LSSum V LSpan V b w u LSpan V w v LSpan V b w x = u + V v
216 202 177 180 213 215 syl31anc V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y u LSpan V w v LSpan V b w x = u + V v
217 201 216 r19.29vva V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y y F LSpan V b w
218 fvelrnb F Fn Base V y ran F x Base V F x = y
219 218 biimpa F Fn Base V y ran F x Base V F x = y
220 75 219 sylan V LVec F V LMHom U w LBasis K b LBasis V w b y ran F x Base V F x = y
221 217 220 r19.29a V LVec F V LMHom U w LBasis K b LBasis V w b y ran F y F LSpan V b w
222 39 221 eqelssd V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w = ran F
223 37 222 eqtr3id V LVec F V LMHom U w LBasis K b LBasis V w b ran F LSpan V b w = ran F
224 223 f1oeq3d V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w : LSpan V b w 1-1 onto ran F LSpan V b w F LSpan V b w : LSpan V b w 1-1 onto ran F
225 159 224 mpbid V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w : LSpan V b w 1-1 onto ran F
226 42 50 76 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b w Base V
227 226 151 syl V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b w = Base V 𝑠 LSpan V b w
228 frn F : Base V Base U ran F Base U
229 3 72 ressbas2 ran F Base U ran F = Base I
230 73 228 229 3syl F V LMHom U ran F = Base I
231 32 230 syl V LVec F V LMHom U w LBasis K b LBasis V w b ran F = Base I
232 150 227 231 f1oeq123d V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w : LSpan V b w 1-1 onto ran F F LSpan V b w : Base V 𝑠 LSpan V b w 1-1 onto Base I
233 225 232 mpbid V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w : Base V 𝑠 LSpan V b w 1-1 onto Base I
234 eqid Base I = Base I
235 145 234 islmim F LSpan V b w V 𝑠 LSpan V b w LMIso I F LSpan V b w V 𝑠 LSpan V b w LMHom I F LSpan V b w : Base V 𝑠 LSpan V b w 1-1 onto Base I
236 61 233 235 sylanbrc V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w V 𝑠 LSpan V b w LMIso I
237 48 52 lspssid V LMod b w Base V b w LSpan V b w
238 42 50 237 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b b w LSpan V b w
239 51 55 lsslinds V LMod LSpan V b w LSubSp V b w LSpan V b w b w LIndS V 𝑠 LSpan V b w b w LIndS V
240 239 biimpar V LMod LSpan V b w LSubSp V b w LSpan V b w b w LIndS V b w LIndS V 𝑠 LSpan V b w
241 42 67 238 47 240 syl31anc V LVec F V LMHom U w LBasis K b LBasis V w b b w LIndS V 𝑠 LSpan V b w
242 eqid LSpan V 𝑠 LSpan V b w = LSpan V 𝑠 LSpan V b w
243 55 52 242 51 lsslsp V LMod LSpan V b w LSubSp V b w LSpan V b w LSpan V b w = LSpan V 𝑠 LSpan V b w b w
244 42 54 238 243 syl3anc V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V b w = LSpan V 𝑠 LSpan V b w b w
245 244 227 eqtr3d V LVec F V LMHom U w LBasis K b LBasis V w b LSpan V 𝑠 LSpan V b w b w = Base V 𝑠 LSpan V b w
246 eqid LBasis V 𝑠 LSpan V b w = LBasis V 𝑠 LSpan V b w
247 145 246 242 islbs4 b w LBasis V 𝑠 LSpan V b w b w LIndS V 𝑠 LSpan V b w LSpan V 𝑠 LSpan V b w b w = Base V 𝑠 LSpan V b w
248 241 245 247 sylanbrc V LVec F V LMHom U w LBasis K b LBasis V w b b w LBasis V 𝑠 LSpan V b w
249 eqid LBasis I = LBasis I
250 246 249 lmimlbs F LSpan V b w V 𝑠 LSpan V b w LMIso I b w LBasis V 𝑠 LSpan V b w F LSpan V b w b w LBasis I
251 236 248 250 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w b w LBasis I
252 249 dimval I LVec F LSpan V b w b w LBasis I dim I = F LSpan V b w b w
253 31 251 252 syl2anc V LVec F V LMHom U w LBasis K b LBasis V w b dim I = F LSpan V b w b w
254 f1imaeng F LSpan V b w : LSpan V b w 1-1 ran F b w LSpan V b w b w LIndS V F LSpan V b w b w b w
255 hasheni F LSpan V b w b w b w F LSpan V b w b w = b w
256 254 255 syl F LSpan V b w : LSpan V b w 1-1 ran F b w LSpan V b w b w LIndS V F LSpan V b w b w = b w
257 157 238 47 256 syl3anc V LVec F V LMHom U w LBasis K b LBasis V w b F LSpan V b w b w = b w
258 253 257 eqtrd V LVec F V LMHom U w LBasis K b LBasis V w b dim I = b w
259 29 258 oveq12d V LVec F V LMHom U w LBasis K b LBasis V w b dim K + 𝑒 dim I = w + 𝑒 b w
260 17 26 259 3eqtr4d V LVec F V LMHom U w LBasis K b LBasis V w b dim V = dim K + 𝑒 dim I
261 5 lbslinds LBasis K LIndS K
262 261 94 sselid V LVec F V LMHom U w LBasis K w LIndS K
263 51 2 lsslinds V LMod F -1 0 ˙ LSubSp V w F -1 0 ˙ w LIndS K w LIndS V
264 263 biimpa V LMod F -1 0 ˙ LSubSp V w F -1 0 ˙ w LIndS K w LIndS V
265 99 102 110 262 264 syl31anc V LVec F V LMHom U w LBasis K w LIndS V
266 24 islinds4 V LVec w LIndS V b LBasis V w b
267 266 ad2antrr V LVec F V LMHom U w LBasis K w LIndS V b LBasis V w b
268 265 267 mpbid V LVec F V LMHom U w LBasis K b LBasis V w b
269 260 268 r19.29a V LVec F V LMHom U w LBasis K dim V = dim K + 𝑒 dim I
270 9 269 exlimddv V LVec F V LMHom U dim V = dim K + 𝑒 dim I