Metamath Proof Explorer


Theorem dvlipcn

Description: A complex function with derivative bounded by M on an open ball is M-Lipschitz continuous. (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Hypotheses dvlipcn.x φX
dvlipcn.f φF:X
dvlipcn.a φA
dvlipcn.r φR*
dvlipcn.b B=AballabsR
dvlipcn.d φBdomF
dvlipcn.m φM
dvlipcn.l φxBFxM
Assertion dvlipcn φYBZBFYFZMYZ

Proof

Step Hyp Ref Expression
1 dvlipcn.x φX
2 dvlipcn.f φF:X
3 dvlipcn.a φA
4 dvlipcn.r φR*
5 dvlipcn.b B=AballabsR
6 dvlipcn.d φBdomF
7 dvlipcn.m φM
8 dvlipcn.l φxBFxM
9 1elunit 101
10 0elunit 001
11 0red φYBZB0
12 1red φYBZB1
13 ssidd φ
14 13 2 1 dvbss φdomFX
15 6 14 sstrd φBX
16 15 1 sstrd φB
17 16 adantr φYBZBB
18 simprl φYBZBYB
19 17 18 sseldd φYBZBY
20 19 adantr φYBZBt01Y
21 unitssre 01
22 ax-resscn
23 21 22 sstri 01
24 simpr φYBZBt01t01
25 23 24 sselid φYBZBt01t
26 20 25 mulcomd φYBZBt01Yt=tY
27 simprr φYBZBZB
28 17 27 sseldd φYBZBZ
29 28 adantr φYBZBt01Z
30 iirev t011t01
31 30 adantl φYBZBt011t01
32 23 31 sselid φYBZBt011t
33 29 32 mulcomd φYBZBt01Z1t=1tZ
34 26 33 oveq12d φYBZBt01Yt+Z1t=tY+1tZ
35 3 ad2antrr φYBZBt01A
36 4 ad2antrr φYBZBt01R*
37 18 adantr φYBZBt01YB
38 27 adantr φYBZBt01ZB
39 5 blcvx AR*YBZBt01tY+1tZB
40 35 36 37 38 24 39 syl23anc φYBZBt01tY+1tZB
41 34 40 eqeltrd φYBZBt01Yt+Z1tB
42 eqidd φYBZBt01Yt+Z1t=t01Yt+Z1t
43 2 15 fssresd φFB:B
44 43 feqmptd φFB=zBFBz
45 fvres zBFBz=Fz
46 45 mpteq2ia zBFBz=zBFz
47 44 46 eqtrdi φFB=zBFz
48 47 adantr φYBZBFB=zBFz
49 fveq2 z=Yt+Z1tFz=FYt+Z1t
50 41 42 48 49 fmptco φYBZBFBt01Yt+Z1t=t01FYt+Z1t
51 41 fmpttd φYBZBt01Yt+Z1t:01B
52 eqid TopOpenfld=TopOpenfld
53 52 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
54 53 a1i φYBZB+TopOpenfld×tTopOpenfldCnTopOpenfld
55 ssid
56 cncfmptc Y01t01Y:01cn
57 23 55 56 mp3an23 Yt01Y:01cn
58 19 57 syl φYBZBt01Y:01cn
59 cncfmptid 01t01t:01cn
60 23 55 59 mp2an t01t:01cn
61 60 a1i φYBZBt01t:01cn
62 58 61 mulcncf φYBZBt01Yt:01cn
63 cncfmptc Z01t01Z:01cn
64 23 55 63 mp3an23 Zt01Z:01cn
65 28 64 syl φYBZBt01Z:01cn
66 52 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
67 66 a1i φYBZBTopOpenfld×tTopOpenfldCnTopOpenfld
68 ax-1cn 1
69 cncfmptc 101t011:01cn
70 68 23 55 69 mp3an t011:01cn
71 70 a1i φYBZBt011:01cn
72 52 67 71 61 cncfmpt2f φYBZBt011t:01cn
73 65 72 mulcncf φYBZBt01Z1t:01cn
74 52 54 62 73 cncfmpt2f φYBZBt01Yt+Z1t:01cn
75 cncfcdm Bt01Yt+Z1t:01cnt01Yt+Z1t:01cnBt01Yt+Z1t:01B
76 17 74 75 syl2anc φYBZBt01Yt+Z1t:01cnBt01Yt+Z1t:01B
77 51 76 mpbird φYBZBt01Yt+Z1t:01cnB
78 ssidd φYBZB
79 43 adantr φYBZBFB:B
80 52 cnfldtopon TopOpenfldTopOn
81 80 toponrestid TopOpenfld=TopOpenfld𝑡
82 52 81 dvres F:XXBDFB=FintTopOpenfldB
83 13 2 1 16 82 syl22anc φDFB=FintTopOpenfldB
84 52 cnfldtop TopOpenfldTop
85 cnxmet abs∞Met
86 52 cnfldtopn TopOpenfld=MetOpenabs
87 86 blopn abs∞MetAR*AballabsRTopOpenfld
88 85 3 4 87 mp3an2i φAballabsRTopOpenfld
89 5 88 eqeltrid φBTopOpenfld
90 isopn3i TopOpenfldTopBTopOpenfldintTopOpenfldB=B
91 84 89 90 sylancr φintTopOpenfldB=B
92 91 reseq2d φFintTopOpenfldB=FB
93 83 92 eqtrd φDFB=FB
94 93 dmeqd φdomFB=domFB
95 dmres domFB=BdomF
96 df-ss BdomFBdomF=B
97 6 96 sylib φBdomF=B
98 95 97 eqtrid φdomFB=B
99 94 98 eqtrd φdomFB=B
100 99 adantr φYBZBdomFB=B
101 dvcn FB:BBdomFB=BFB:Bcn
102 78 79 17 100 101 syl31anc φYBZBFB:Bcn
103 77 102 cncfco φYBZBFBt01Yt+Z1t:01cn
104 50 103 eqeltrrd φYBZBt01FYt+Z1t:01cn
105 22 a1i φYBZB
106 21 a1i φYBZB01
107 2 ad2antrr φYBZBt01F:X
108 15 ad2antrr φYBZBt01BX
109 108 41 sseldd φYBZBt01Yt+Z1tX
110 107 109 ffvelcdmd φYBZBt01FYt+Z1t
111 52 tgioo2 topGenran.=TopOpenfld𝑡
112 1re 1
113 iccntr 01inttopGenran.01=01
114 11 112 113 sylancl φYBZBinttopGenran.01=01
115 105 106 110 111 52 114 dvmptntr φYBZBdt01FYt+Z1tdt=dt01FYt+Z1tdt
116 reelprrecn
117 116 a1i φYBZB
118 cnelprrecn
119 118 a1i φYBZB
120 ioossicc 0101
121 120 sseli t01t01
122 121 41 sylan2 φYBZBt01Yt+Z1tB
123 19 28 subcld φYBZBYZ
124 123 adantr φYBZBt01YZ
125 15 adantr φYBZBBX
126 125 sselda φYBZBzBzX
127 2 adantr φYBZBF:X
128 127 ffvelcdmda φYBZBzXFz
129 126 128 syldan φYBZBzBFz
130 fvexd φYBZBzBFzV
131 19 adantr φYBZBt01Y
132 121 25 sylan2 φYBZBt01t
133 131 132 mulcld φYBZBt01Yt
134 1red φYBZBt011
135 simpr φYBZBtt
136 135 recnd φYBZBtt
137 1red φYBZBt1
138 117 dvmptid φYBZBdttdt=t1
139 ioossre 01
140 139 a1i φYBZB01
141 iooretop 01topGenran.
142 141 a1i φYBZB01topGenran.
143 117 136 137 138 140 111 52 142 dvmptres φYBZBdt01tdt=t011
144 117 132 134 143 19 dvmptcmul φYBZBdt01Ytdt=t01Y1
145 19 mulridd φYBZBY1=Y
146 145 mpteq2dv φYBZBt01Y1=t01Y
147 144 146 eqtrd φYBZBdt01Ytdt=t01Y
148 28 adantr φYBZBt01Z
149 121 32 sylan2 φYBZBt011t
150 148 149 mulcld φYBZBt01Z1t
151 negex ZV
152 151 a1i φYBZBt01ZV
153 negex 1V
154 153 a1i φYBZBt011V
155 1cnd φYBZBt011
156 0red φYBZBt010
157 1cnd φYBZBt1
158 0red φYBZBt0
159 1cnd φYBZB1
160 117 159 dvmptc φYBZBdt1dt=t0
161 117 157 158 160 140 111 52 142 dvmptres φYBZBdt011dt=t010
162 117 155 156 161 132 134 143 dvmptsub φYBZBdt011tdt=t0101
163 df-neg 1=01
164 163 mpteq2i t011=t0101
165 162 164 eqtr4di φYBZBdt011tdt=t011
166 117 149 154 165 28 dvmptcmul φYBZBdt01Z1tdt=t01Z-1
167 neg1cn 1
168 mulcom Z1Z-1=-1Z
169 28 167 168 sylancl φYBZBZ-1=-1Z
170 28 mulm1d φYBZB-1Z=Z
171 169 170 eqtrd φYBZBZ-1=Z
172 171 mpteq2dv φYBZBt01Z-1=t01Z
173 166 172 eqtrd φYBZBdt01Z1tdt=t01Z
174 117 133 131 147 150 152 173 dvmptadd φYBZBdt01Yt+Z1tdt=t01Y+Z
175 19 28 negsubd φYBZBY+Z=YZ
176 175 mpteq2dv φYBZBt01Y+Z=t01YZ
177 174 176 eqtrd φYBZBdt01Yt+Z1tdt=t01YZ
178 1 adantr φYBZBX
179 78 127 178 17 82 syl22anc φYBZBDFB=FintTopOpenfldB
180 91 adantr φYBZBintTopOpenfldB=B
181 180 reseq2d φYBZBFintTopOpenfldB=FB
182 179 181 eqtrd φYBZBDFB=FB
183 48 oveq2d φYBZBDFB=dzBFzdz
184 dvfcn FB:domFB
185 100 feq2d φYBZBFB:domFBFB:B
186 184 185 mpbii φYBZBFB:B
187 182 feq1d φYBZBFB:BFB:B
188 186 187 mpbid φYBZBFB:B
189 188 feqmptd φYBZBFB=zBFBz
190 fvres zBFBz=Fz
191 190 mpteq2ia zBFBz=zBFz
192 189 191 eqtrdi φYBZBFB=zBFz
193 182 183 192 3eqtr3d φYBZBdzBFzdz=zBFz
194 fveq2 z=Yt+Z1tFz=FYt+Z1t
195 117 119 122 124 129 130 177 193 49 194 dvmptco φYBZBdt01FYt+Z1tdt=t01FYt+Z1tYZ
196 115 195 eqtrd φYBZBdt01FYt+Z1tdt=t01FYt+Z1tYZ
197 196 dmeqd φYBZBdomdt01FYt+Z1tdt=domt01FYt+Z1tYZ
198 ovex FYt+Z1tYZV
199 198 rgenw t01FYt+Z1tYZV
200 dmmptg t01FYt+Z1tYZVdomt01FYt+Z1tYZ=01
201 199 200 mp1i φYBZBdomt01FYt+Z1tYZ=01
202 197 201 eqtrd φYBZBdomdt01FYt+Z1tdt=01
203 7 adantr φYBZBM
204 123 abscld φYBZBYZ
205 203 204 remulcld φYBZBMYZ
206 196 fveq1d φYBZBdt01FYt+Z1tdtt=t01FYt+Z1tYZt
207 eqid t01FYt+Z1tYZ=t01FYt+Z1tYZ
208 207 fvmpt2 t01FYt+Z1tYZVt01FYt+Z1tYZt=FYt+Z1tYZ
209 198 208 mpan2 t01t01FYt+Z1tYZt=FYt+Z1tYZ
210 206 209 sylan9eq φYBZBt01dt01FYt+Z1tdtt=FYt+Z1tYZ
211 210 fveq2d φYBZBt01dt01FYt+Z1tdtt=FYt+Z1tYZ
212 dvfcn F:domF
213 6 ad2antrr φYBZBt01BdomF
214 213 122 sseldd φYBZBt01Yt+Z1tdomF
215 ffvelcdm F:domFYt+Z1tdomFFYt+Z1t
216 212 214 215 sylancr φYBZBt01FYt+Z1t
217 216 124 absmuld φYBZBt01FYt+Z1tYZ=FYt+Z1tYZ
218 211 217 eqtrd φYBZBt01dt01FYt+Z1tdtt=FYt+Z1tYZ
219 216 abscld φYBZBt01FYt+Z1t
220 7 ad2antrr φYBZBt01M
221 124 abscld φYBZBt01YZ
222 124 absge0d φYBZBt010YZ
223 2fveq3 y=Yt+Z1tFy=FYt+Z1t
224 223 breq1d y=Yt+Z1tFyMFYt+Z1tM
225 8 ralrimiva φxBFxM
226 2fveq3 x=yFx=Fy
227 226 breq1d x=yFxMFyM
228 227 cbvralvw xBFxMyBFyM
229 225 228 sylib φyBFyM
230 229 ad2antrr φYBZBt01yBFyM
231 224 230 122 rspcdva φYBZBt01FYt+Z1tM
232 219 220 221 222 231 lemul1ad φYBZBt01FYt+Z1tYZMYZ
233 218 232 eqbrtrd φYBZBt01dt01FYt+Z1tdttMYZ
234 233 ralrimiva φYBZBt01dt01FYt+Z1tdttMYZ
235 nfv zdt01FYt+Z1tdttMYZ
236 nfcv _tabs
237 nfcv _t
238 nfcv _tD
239 nfmpt1 _tt01FYt+Z1t
240 237 238 239 nfov _tdt01FYt+Z1tdt
241 nfcv _tz
242 240 241 nffv _tdt01FYt+Z1tdtz
243 236 242 nffv _tdt01FYt+Z1tdtz
244 nfcv _t
245 nfcv _tMYZ
246 243 244 245 nfbr tdt01FYt+Z1tdtzMYZ
247 2fveq3 t=zdt01FYt+Z1tdtt=dt01FYt+Z1tdtz
248 247 breq1d t=zdt01FYt+Z1tdttMYZdt01FYt+Z1tdtzMYZ
249 235 246 248 cbvralw t01dt01FYt+Z1tdttMYZz01dt01FYt+Z1tdtzMYZ
250 234 249 sylib φYBZBz01dt01FYt+Z1tdtzMYZ
251 250 r19.21bi φYBZBz01dt01FYt+Z1tdtzMYZ
252 11 12 104 202 205 251 dvlip φYBZB101001t01FYt+Z1t1t01FYt+Z1t0MYZ10
253 9 10 252 mpanr12 φYBZBt01FYt+Z1t1t01FYt+Z1t0MYZ10
254 oveq2 t=1Yt=Y1
255 oveq2 t=11t=11
256 1m1e0 11=0
257 255 256 eqtrdi t=11t=0
258 257 oveq2d t=1Z1t=Z0
259 254 258 oveq12d t=1Yt+Z1t=Y1+Z0
260 259 fveq2d t=1FYt+Z1t=FY1+Z0
261 eqid t01FYt+Z1t=t01FYt+Z1t
262 fvex FY1+Z0V
263 260 261 262 fvmpt 101t01FYt+Z1t1=FY1+Z0
264 9 263 ax-mp t01FYt+Z1t1=FY1+Z0
265 28 mul01d φYBZBZ0=0
266 145 265 oveq12d φYBZBY1+Z0=Y+0
267 19 addridd φYBZBY+0=Y
268 266 267 eqtrd φYBZBY1+Z0=Y
269 268 fveq2d φYBZBFY1+Z0=FY
270 264 269 eqtrid φYBZBt01FYt+Z1t1=FY
271 oveq2 t=0Yt=Y0
272 oveq2 t=01t=10
273 1m0e1 10=1
274 272 273 eqtrdi t=01t=1
275 274 oveq2d t=0Z1t=Z1
276 271 275 oveq12d t=0Yt+Z1t=Y0+Z1
277 276 fveq2d t=0FYt+Z1t=FY0+Z1
278 fvex FY0+Z1V
279 277 261 278 fvmpt 001t01FYt+Z1t0=FY0+Z1
280 10 279 ax-mp t01FYt+Z1t0=FY0+Z1
281 19 mul01d φYBZBY0=0
282 28 mulridd φYBZBZ1=Z
283 281 282 oveq12d φYBZBY0+Z1=0+Z
284 28 addlidd φYBZB0+Z=Z
285 283 284 eqtrd φYBZBY0+Z1=Z
286 285 fveq2d φYBZBFY0+Z1=FZ
287 280 286 eqtrid φYBZBt01FYt+Z1t0=FZ
288 270 287 oveq12d φYBZBt01FYt+Z1t1t01FYt+Z1t0=FYFZ
289 288 fveq2d φYBZBt01FYt+Z1t1t01FYt+Z1t0=FYFZ
290 273 fveq2i 10=1
291 abs1 1=1
292 290 291 eqtri 10=1
293 292 oveq2i MYZ10=MYZ1
294 205 recnd φYBZBMYZ
295 294 mulridd φYBZBMYZ1=MYZ
296 293 295 eqtrid φYBZBMYZ10=MYZ
297 253 289 296 3brtr3d φYBZBFYFZMYZ