Metamath Proof Explorer


Theorem etransclem24

Description: P divides the I -th derivative of F applied to J . when J = 0 and I is not equal to P - 1 . This is the second part of case 2 proven in Juillerat p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem24.p φP
etransclem24.m φM0
etransclem24.i φI0
etransclem24.ip φIP1
etransclem24.j φJ=0
etransclem24.c C=n0c0n0M|j=0Mcj=n
etransclem24.d φDCI
Assertion etransclem24 φPI!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!

Proof

Step Hyp Ref Expression
1 etransclem24.p φP
2 etransclem24.m φM0
3 etransclem24.i φI0
4 etransclem24.ip φIP1
5 etransclem24.j φJ=0
6 etransclem24.c C=n0c0n0M|j=0Mcj=n
7 etransclem24.d φDCI
8 6 3 etransclem12 φCI=c0I0M|j=0Mcj=I
9 7 8 eleqtrd φDc0I0M|j=0Mcj=I
10 fveq1 c=Dcj=Dj
11 10 sumeq2sdv c=Dj=0Mcj=j=0MDj
12 11 eqeq1d c=Dj=0Mcj=Ij=0MDj=I
13 12 elrab Dc0I0M|j=0Mcj=ID0I0Mj=0MDj=I
14 9 13 sylib φD0I0Mj=0MDj=I
15 14 simprd φj=0MDj=I
16 15 ad2antrr φD0=P1¬k1MDkj=0MDj=I
17 ralnex k1M¬Dk¬k1MDk
18 nn0uz 0=0
19 2 18 eleqtrdi φM0
20 19 ad2antrr φD0=P1k1M¬DkM0
21 fzsscn 0I
22 ssrab2 c0I0M|j=0Mcj=I0I0M
23 8 22 eqsstrdi φCI0I0M
24 23 7 sseldd φD0I0M
25 elmapi D0I0MD:0M0I
26 24 25 syl φD:0M0I
27 26 ffvelcdmda φj0MDj0I
28 21 27 sselid φj0MDj
29 28 ad4ant14 φD0=P1k1M¬Dkj0MDj
30 fveq2 j=0Dj=D0
31 20 29 30 fsum1p φD0=P1k1M¬Dkj=0MDj=D0+j=0+1MDj
32 simplr φD0=P1k1M¬DkD0=P1
33 0p1e1 0+1=1
34 33 oveq1i 0+1M=1M
35 34 sumeq1i j=0+1MDj=j=1MDj
36 35 a1i φk1M¬Dkj=0+1MDj=j=1MDj
37 fveq2 k=jDk=Dj
38 37 eleq1d k=jDkDj
39 38 notbid k=j¬Dk¬Dj
40 39 rspccva k1M¬Dkj1M¬Dj
41 40 adantll φk1M¬Dkj1M¬Dj
42 fzssnn0 0I0
43 fz1ssfz0 1M0M
44 43 sseli j1Mj0M
45 44 27 sylan2 φj1MDj0I
46 42 45 sselid φj1MDj0
47 elnn0 Dj0DjDj=0
48 46 47 sylib φj1MDjDj=0
49 48 adantlr φk1M¬Dkj1MDjDj=0
50 orel1 ¬DjDjDj=0Dj=0
51 41 49 50 sylc φk1M¬Dkj1MDj=0
52 51 sumeq2dv φk1M¬Dkj=1MDj=j=1M0
53 fzfi 1MFin
54 53 olci 1MA1MFin
55 sumz 1MA1MFinj=1M0=0
56 54 55 mp1i φk1M¬Dkj=1M0=0
57 36 52 56 3eqtrd φk1M¬Dkj=0+1MDj=0
58 57 adantlr φD0=P1k1M¬Dkj=0+1MDj=0
59 32 58 oveq12d φD0=P1k1M¬DkD0+j=0+1MDj=P-1+0
60 nnm1nn0 PP10
61 1 60 syl φP10
62 61 nn0red φP1
63 62 recnd φP1
64 63 addridd φP-1+0=P1
65 64 ad2antrr φD0=P1k1M¬DkP-1+0=P1
66 31 59 65 3eqtrd φD0=P1k1M¬Dkj=0MDj=P1
67 4 necomd φP1I
68 67 ad2antrr φD0=P1k1M¬DkP1I
69 66 68 eqnetrd φD0=P1k1M¬Dkj=0MDjI
70 69 neneqd φD0=P1k1M¬Dk¬j=0MDj=I
71 17 70 sylan2br φD0=P1¬k1MDk¬j=0MDj=I
72 16 71 condan φD0=P1k1MDk
73 1 nnzd φP
74 15 eqcomd φI=j=0MDj
75 74 fveq2d φI!=j=0MDj!
76 75 oveq1d φI!j=0MDj!=j=0MDj!j=0MDj!
77 nfcv _jD
78 fzfid φ0MFin
79 nn0ex 0V
80 mapss 0V0I00I0M00M
81 79 42 80 mp2an 0I0M00M
82 81 24 sselid φD00M
83 77 78 82 mccl φj=0MDj!j=0MDj!
84 76 83 eqeltrd φI!j=0MDj!
85 84 nnzd φI!j=0MDj!
86 fzfid φ1MFin
87 1 adantr φj1MP
88 26 adantr φj1MD:0M0I
89 44 adantl φj1Mj0M
90 0zd φ0
91 5 90 eqeltrd φJ
92 91 adantr φj1MJ
93 87 88 89 92 etransclem3 φj1MifP<Dj0P!PDj!JjPDj
94 86 93 fprodzcl φj=1MifP<Dj0P!PDj!JjPDj
95 73 85 94 3jca φPI!j=0MDj!j=1MifP<Dj0P!PDj!JjPDj
96 95 3ad2ant1 φk1MDkPI!j=0MDj!j=1MifP<Dj0P!PDj!JjPDj
97 73 adantr φk1MP
98 1 adantr φk1MP
99 26 adantr φk1MD:0M0I
100 43 sseli k1Mk0M
101 100 adantl φk1Mk0M
102 91 adantr φk1MJ
103 98 99 101 102 etransclem3 φk1MifP<Dk0P!PDk!JkPDk
104 difss 1Mk1M
105 ssfi 1MFin1Mk1M1MkFin
106 53 104 105 mp2an 1MkFin
107 106 a1i φ1MkFin
108 1 adantr φj1MkP
109 26 adantr φj1MkD:0M0I
110 104 43 sstri 1Mk0M
111 110 sseli j1Mkj0M
112 111 adantl φj1Mkj0M
113 91 adantr φj1MkJ
114 108 109 112 113 etransclem3 φj1MkifP<Dj0P!PDj!JjPDj
115 107 114 fprodzcl φj1MkifP<Dj0P!PDj!JjPDj
116 115 adantr φk1Mj1MkifP<Dj0P!PDj!JjPDj
117 97 103 116 3jca φk1MPifP<Dk0P!PDk!JkPDkj1MkifP<Dj0P!PDj!JjPDj
118 117 3adant3 φk1MDkPifP<Dk0P!PDk!JkPDkj1MkifP<Dj0P!PDj!JjPDj
119 dvds0 PP0
120 73 119 syl φP0
121 120 adantr φP<DkP0
122 121 3ad2antl1 φk1MDkP<DkP0
123 iftrue P<DkifP<Dk0P!PDk!JkPDk=0
124 123 eqcomd P<Dk0=ifP<Dk0P!PDk!JkPDk
125 124 adantl φk1MDkP<Dk0=ifP<Dk0P!PDk!JkPDk
126 122 125 breqtrd φk1MDkP<DkPifP<Dk0P!PDk!JkPDk
127 97 adantr φk1M¬P<DkP
128 0zd φk1M0
129 99 101 ffvelcdmd φk1MDk0I
130 129 elfzelzd φk1MDk
131 97 130 zsubcld φk1MPDk
132 128 97 131 3jca φk1M0PPDk
133 132 adantr φk1M¬P<Dk0PPDk
134 fzssre 0I
135 134 129 sselid φk1MDk
136 135 adantr φk1M¬P<DkDk
137 127 zred φk1M¬P<DkP
138 simpr φk1M¬P<Dk¬P<Dk
139 136 137 138 nltled φk1M¬P<DkDkP
140 137 136 subge0d φk1M¬P<Dk0PDkDkP
141 139 140 mpbird φk1M¬P<Dk0PDk
142 elfzle1 Dk0I0Dk
143 129 142 syl φk1M0Dk
144 143 adantr φk1M¬P<Dk0Dk
145 137 136 subge02d φk1M¬P<Dk0DkPDkP
146 144 145 mpbid φk1M¬P<DkPDkP
147 133 141 146 jca32 φk1M¬P<Dk0PPDk0PDkPDkP
148 elfz2 PDk0P0PPDk0PDkPDkP
149 147 148 sylibr φk1M¬P<DkPDk0P
150 permnn PDk0PP!PDk!
151 149 150 syl φk1M¬P<DkP!PDk!
152 151 nnzd φk1M¬P<DkP!PDk!
153 101 elfzelzd φk1Mk
154 102 153 zsubcld φk1MJk
155 154 adantr φk1M¬P<DkJk
156 131 adantr φk1M¬P<DkPDk
157 elnn0z PDk0PDk0PDk
158 156 141 157 sylanbrc φk1M¬P<DkPDk0
159 zexpcl JkPDk0JkPDk
160 155 158 159 syl2anc φk1M¬P<DkJkPDk
161 127 152 160 3jca φk1M¬P<DkPP!PDk!JkPDk
162 161 3adantl3 φk1MDk¬P<DkPP!PDk!JkPDk
163 127 3adantl3 φk1MDk¬P<DkP
164 61 nn0zd φP1
165 164 adantr φk1MP1
166 128 165 131 3jca φk1M0P1PDk
167 166 3adant3 φk1MDk0P1PDk
168 167 adantr φk1MDk¬P<Dk0P1PDk
169 141 3adantl3 φk1MDk¬P<Dk0PDk
170 1red φDk1
171 nnre DkDk
172 171 adantl φDkDk
173 1 nnred φP
174 173 adantr φDkP
175 nnge1 Dk1Dk
176 175 adantl φDk1Dk
177 170 172 174 176 lesub2dd φDkPDkP1
178 177 3adant2 φk1MDkPDkP1
179 178 adantr φk1MDk¬P<DkPDkP1
180 168 169 179 jca32 φk1MDk¬P<Dk0P1PDk0PDkPDkP1
181 elfz2 PDk0P10P1PDk0PDkPDkP1
182 180 181 sylibr φk1MDk¬P<DkPDk0P1
183 permnn PDk0P1P1!PDk!
184 182 183 syl φk1MDk¬P<DkP1!PDk!
185 184 nnzd φk1MDk¬P<DkP1!PDk!
186 dvdsmul1 PP1!PDk!PPP1!PDk!
187 163 185 186 syl2anc φk1MDk¬P<DkPPP1!PDk!
188 1 nncnd φP
189 1cnd φ1
190 188 189 npcand φP-1+1=P
191 190 eqcomd φP=P-1+1
192 191 fveq2d φP!=P-1+1!
193 facp1 P10P-1+1!=P1!P-1+1
194 61 193 syl φP-1+1!=P1!P-1+1
195 190 oveq2d φP1!P-1+1=P1!P
196 61 faccld φP1!
197 196 nncnd φP1!
198 197 188 mulcomd φP1!P=PP1!
199 195 198 eqtrd φP1!P-1+1=PP1!
200 192 194 199 3eqtrd φP!=PP1!
201 200 oveq1d φP!PDk!=PP1!PDk!
202 201 adantr φ¬P<DkP!PDk!=PP1!PDk!
203 202 3ad2antl1 φk1MDk¬P<DkP!PDk!=PP1!PDk!
204 188 ad2antrr φk1M¬P<DkP
205 197 ad2antrr φk1M¬P<DkP1!
206 158 faccld φk1M¬P<DkPDk!
207 206 nncnd φk1M¬P<DkPDk!
208 206 nnne0d φk1M¬P<DkPDk!0
209 204 205 207 208 divassd φk1M¬P<DkPP1!PDk!=PP1!PDk!
210 209 3adantl3 φk1MDk¬P<DkPP1!PDk!=PP1!PDk!
211 203 210 eqtr2d φk1MDk¬P<DkPP1!PDk!=P!PDk!
212 187 211 breqtrd φk1MDk¬P<DkPP!PDk!
213 dvdsmultr1 PP!PDk!JkPDkPP!PDk!PP!PDk!JkPDk
214 162 212 213 sylc φk1MDk¬P<DkPP!PDk!JkPDk
215 iffalse ¬P<DkifP<Dk0P!PDk!JkPDk=P!PDk!JkPDk
216 215 adantl φk1MDk¬P<DkifP<Dk0P!PDk!JkPDk=P!PDk!JkPDk
217 214 216 breqtrrd φk1MDk¬P<DkPifP<Dk0P!PDk!JkPDk
218 126 217 pm2.61dan φk1MDkPifP<Dk0P!PDk!JkPDk
219 dvdsmultr1 PifP<Dk0P!PDk!JkPDkj1MkifP<Dj0P!PDj!JjPDjPifP<Dk0P!PDk!JkPDkPifP<Dk0P!PDk!JkPDkj1MkifP<Dj0P!PDj!JjPDj
220 118 218 219 sylc φk1MDkPifP<Dk0P!PDk!JkPDkj1MkifP<Dj0P!PDj!JjPDj
221 fzfid φk1MDk1MFin
222 93 zcnd φj1MifP<Dj0P!PDj!JjPDj
223 222 3ad2antl1 φk1MDkj1MifP<Dj0P!PDj!JjPDj
224 simp2 φk1MDkk1M
225 fveq2 j=kDj=Dk
226 225 breq2d j=kP<DjP<Dk
227 225 oveq2d j=kPDj=PDk
228 227 fveq2d j=kPDj!=PDk!
229 228 oveq2d j=kP!PDj!=P!PDk!
230 oveq2 j=kJj=Jk
231 230 227 oveq12d j=kJjPDj=JkPDk
232 229 231 oveq12d j=kP!PDj!JjPDj=P!PDk!JkPDk
233 226 232 ifbieq2d j=kifP<Dj0P!PDj!JjPDj=ifP<Dk0P!PDk!JkPDk
234 233 adantl φk1MDkj=kifP<Dj0P!PDj!JjPDj=ifP<Dk0P!PDk!JkPDk
235 221 223 224 234 fprodsplit1 φk1MDkj=1MifP<Dj0P!PDj!JjPDj=ifP<Dk0P!PDk!JkPDkj1MkifP<Dj0P!PDj!JjPDj
236 220 235 breqtrrd φk1MDkPj=1MifP<Dj0P!PDj!JjPDj
237 dvdsmultr2 PI!j=0MDj!j=1MifP<Dj0P!PDj!JjPDjPj=1MifP<Dj0P!PDj!JjPDjPI!j=0MDj!j=1MifP<Dj0P!PDj!JjPDj
238 96 236 237 sylc φk1MDkPI!j=0MDj!j=1MifP<Dj0P!PDj!JjPDj
239 238 3adant1r φD0=P1k1MDkPI!j=0MDj!j=1MifP<Dj0P!PDj!JjPDj
240 simpr φD0=P1D0=P1
241 eluzfz1 M000M
242 19 241 syl φ00M
243 26 242 ffvelcdmd φD00I
244 134 243 sselid φD0
245 244 adantr φD0=P1D0
246 62 adantr φD0=P1P1
247 245 246 lttri3d φD0=P1D0=P1¬D0<P1¬P1<D0
248 240 247 mpbid φD0=P1¬D0<P1¬P1<D0
249 248 simprd φD0=P1¬P1<D0
250 249 iffalsed φD0=P1ifP1<D00P1!P-1-D0!JP-1-D0=P1!P-1-D0!JP-1-D0
251 oveq2 D0=P1P-1-D0=P-1-P1
252 63 subidd φP-1-P1=0
253 251 252 sylan9eqr φD0=P1P-1-D0=0
254 253 fveq2d φD0=P1P-1-D0!=0!
255 fac0 0!=1
256 254 255 eqtrdi φD0=P1P-1-D0!=1
257 256 oveq2d φD0=P1P1!P-1-D0!=P1!1
258 197 div1d φP1!1=P1!
259 258 adantr φD0=P1P1!1=P1!
260 257 259 eqtrd φD0=P1P1!P-1-D0!=P1!
261 253 oveq2d φD0=P1JP-1-D0=J0
262 91 zcnd φJ
263 262 exp0d φJ0=1
264 263 adantr φD0=P1J0=1
265 261 264 eqtrd φD0=P1JP-1-D0=1
266 260 265 oveq12d φD0=P1P1!P-1-D0!JP-1-D0=P1!1
267 197 mulridd φP1!1=P1!
268 267 adantr φD0=P1P1!1=P1!
269 250 266 268 3eqtrd φD0=P1ifP1<D00P1!P-1-D0!JP-1-D0=P1!
270 269 oveq1d φD0=P1ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj=P1!j=1MifP<Dj0P!PDj!JjPDj
271 270 oveq2d φD0=P1I!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj=I!j=0MDj!P1!j=1MifP<Dj0P!PDj!JjPDj
272 271 oveq1d φD0=P1I!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!=I!j=0MDj!P1!j=1MifP<Dj0P!PDj!JjPDjP1!
273 84 nncnd φI!j=0MDj!
274 94 zcnd φj=1MifP<Dj0P!PDj!JjPDj
275 197 274 mulcld φP1!j=1MifP<Dj0P!PDj!JjPDj
276 196 nnne0d φP1!0
277 273 275 197 276 divassd φI!j=0MDj!P1!j=1MifP<Dj0P!PDj!JjPDjP1!=I!j=0MDj!P1!j=1MifP<Dj0P!PDj!JjPDjP1!
278 277 adantr φD0=P1I!j=0MDj!P1!j=1MifP<Dj0P!PDj!JjPDjP1!=I!j=0MDj!P1!j=1MifP<Dj0P!PDj!JjPDjP1!
279 274 197 276 divcan3d φP1!j=1MifP<Dj0P!PDj!JjPDjP1!=j=1MifP<Dj0P!PDj!JjPDj
280 279 oveq2d φI!j=0MDj!P1!j=1MifP<Dj0P!PDj!JjPDjP1!=I!j=0MDj!j=1MifP<Dj0P!PDj!JjPDj
281 280 adantr φD0=P1I!j=0MDj!P1!j=1MifP<Dj0P!PDj!JjPDjP1!=I!j=0MDj!j=1MifP<Dj0P!PDj!JjPDj
282 272 278 281 3eqtrd φD0=P1I!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!=I!j=0MDj!j=1MifP<Dj0P!PDj!JjPDj
283 282 3ad2ant1 φD0=P1k1MDkI!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!=I!j=0MDj!j=1MifP<Dj0P!PDj!JjPDj
284 239 283 breqtrrd φD0=P1k1MDkPI!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!
285 284 rexlimdv3a φD0=P1k1MDkPI!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!
286 72 285 mpd φD0=P1PI!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!
287 120 adantr φD0P1P0
288 simpr φD0P1P1<D0P1<D0
289 288 iftrued φD0P1P1<D0ifP1<D00P1!P-1-D0!JP-1-D0=0
290 simpr φD0P1¬P1<D0¬P1<D0
291 290 iffalsed φD0P1¬P1<D0ifP1<D00P1!P-1-D0!JP-1-D0=P1!P-1-D0!JP-1-D0
292 simpll φD0P1¬P1<D0φ
293 244 ad2antrr φD0P1¬P1<D0D0
294 62 ad2antrr φD0P1¬P1<D0P1
295 293 294 290 nltled φD0P1¬P1<D0D0P1
296 id D0P1D0P1
297 296 necomd D0P1P1D0
298 297 ad2antlr φD0P1¬P1<D0P1D0
299 293 294 295 298 leneltd φD0P1¬P1<D0D0<P1
300 5 oveq1d φJP-1-D0=0P-1-D0
301 300 adantr φD0<P1JP-1-D0=0P-1-D0
302 243 elfzelzd φD0
303 164 302 zsubcld φP-1-D0
304 303 adantr φD0<P1P-1-D0
305 simpr φD0<P1D0<P1
306 244 adantr φD0<P1D0
307 62 adantr φD0<P1P1
308 306 307 posdifd φD0<P1D0<P10<P-1-D0
309 305 308 mpbid φD0<P10<P-1-D0
310 elnnz P-1-D0P-1-D00<P-1-D0
311 304 309 310 sylanbrc φD0<P1P-1-D0
312 311 0expd φD0<P10P-1-D0=0
313 301 312 eqtrd φD0<P1JP-1-D0=0
314 313 oveq2d φD0<P1P1!P-1-D0!JP-1-D0=P1!P-1-D0!0
315 197 adantr φD0<P1P1!
316 311 nnnn0d φD0<P1P-1-D00
317 316 faccld φD0<P1P-1-D0!
318 317 nncnd φD0<P1P-1-D0!
319 317 nnne0d φD0<P1P-1-D0!0
320 315 318 319 divcld φD0<P1P1!P-1-D0!
321 320 mul01d φD0<P1P1!P-1-D0!0=0
322 314 321 eqtrd φD0<P1P1!P-1-D0!JP-1-D0=0
323 292 299 322 syl2anc φD0P1¬P1<D0P1!P-1-D0!JP-1-D0=0
324 291 323 eqtrd φD0P1¬P1<D0ifP1<D00P1!P-1-D0!JP-1-D0=0
325 289 324 pm2.61dan φD0P1ifP1<D00P1!P-1-D0!JP-1-D0=0
326 325 oveq1d φD0P1ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj=0j=1MifP<Dj0P!PDj!JjPDj
327 274 mul02d φ0j=1MifP<Dj0P!PDj!JjPDj=0
328 327 adantr φD0P10j=1MifP<Dj0P!PDj!JjPDj=0
329 326 328 eqtrd φD0P1ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj=0
330 329 oveq2d φD0P1I!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj=I!j=0MDj!0
331 273 mul01d φI!j=0MDj!0=0
332 331 adantr φD0P1I!j=0MDj!0=0
333 330 332 eqtrd φD0P1I!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj=0
334 333 oveq1d φD0P1I!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!=0P1!
335 197 276 div0d φ0P1!=0
336 335 adantr φD0P10P1!=0
337 334 336 eqtrd φD0P1I!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!=0
338 287 337 breqtrrd φD0P1PI!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!
339 286 338 pm2.61dane φPI!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!