Metamath Proof Explorer


Theorem eulerpartlemgvv

Description: Lemma for eulerpart : value of the function G evaluated. (Contributed by Thierry Arnoux, 10-Aug-2018)

Ref Expression
Hypotheses eulerpart.p P=f0|f-1Finkfkk=N
eulerpart.o O=gP|ng-1¬2n
eulerpart.d D=gP|ngn1
eulerpart.j J=z|¬2z
eulerpart.f F=xJ,y02yx
eulerpart.h H=r𝒫0FinJ|rsuppFin
eulerpart.m M=rHxy|xJyrx
eulerpart.r R=f|f-1Fin
eulerpart.t T=f0|f-1J
eulerpart.g G=oTR𝟙FMbitsoJ
Assertion eulerpartlemgvv ATRBGAB=iftnbitsAt2nt=B10

Proof

Step Hyp Ref Expression
1 eulerpart.p P=f0|f-1Finkfkk=N
2 eulerpart.o O=gP|ng-1¬2n
3 eulerpart.d D=gP|ngn1
4 eulerpart.j J=z|¬2z
5 eulerpart.f F=xJ,y02yx
6 eulerpart.h H=r𝒫0FinJ|rsuppFin
7 eulerpart.m M=rHxy|xJyrx
8 eulerpart.r R=f|f-1Fin
9 eulerpart.t T=f0|f-1J
10 eulerpart.g G=oTR𝟙FMbitsoJ
11 1 2 3 4 5 6 7 8 9 10 eulerpartlemgv ATRGA=𝟙FMbitsAJ
12 11 fveq1d ATRGAB=𝟙FMbitsAJB
13 12 adantr ATRBGAB=𝟙FMbitsAJB
14 nnex V
15 imassrn FMbitsAJranF
16 4 5 oddpwdc F:J×01-1 onto
17 f1of F:J×01-1 ontoF:J×0
18 frn F:J×0ranF
19 16 17 18 mp2b ranF
20 15 19 sstri FMbitsAJ
21 simpr ATRBB
22 indfval VFMbitsAJB𝟙FMbitsAJB=ifBFMbitsAJ10
23 14 20 21 22 mp3an12i ATRB𝟙FMbitsAJB=ifBFMbitsAJ10
24 ffn F:J×0FFnJ×0
25 16 17 24 mp2b FFnJ×0
26 1 2 3 4 5 6 7 8 9 10 eulerpartlemmf ATRbitsAJH
27 1 2 3 4 5 6 7 eulerpartlem1 M:H1-1 onto𝒫J×0Fin
28 f1of M:H1-1 onto𝒫J×0FinM:H𝒫J×0Fin
29 27 28 ax-mp M:H𝒫J×0Fin
30 29 ffvelcdmi bitsAJHMbitsAJ𝒫J×0Fin
31 26 30 syl ATRMbitsAJ𝒫J×0Fin
32 31 elin1d ATRMbitsAJ𝒫J×0
33 32 adantr ATRBMbitsAJ𝒫J×0
34 33 elpwid ATRBMbitsAJJ×0
35 fvelimab FFnJ×0MbitsAJJ×0BFMbitsAJwMbitsAJFw=B
36 25 34 35 sylancr ATRBBFMbitsAJwMbitsAJFw=B
37 4 ssrab3 J
38 fveq1 r=bitsAJrx=bitsAJx
39 38 eleq2d r=bitsAJyrxybitsAJx
40 39 anbi2d r=bitsAJxJyrxxJybitsAJx
41 40 opabbidv r=bitsAJxy|xJyrx=xy|xJybitsAJx
42 14 37 ssexi JV
43 abid2 y|ybitsAJx=bitsAJx
44 43 fvexi y|ybitsAJxV
45 44 a1i xJy|ybitsAJxV
46 42 45 opabex3 xy|xJybitsAJxV
47 46 a1i ATRxy|xJybitsAJxV
48 7 41 26 47 fvmptd3 ATRMbitsAJ=xy|xJybitsAJx
49 simpl x=ty=nx=t
50 49 eleq1d x=ty=nxJtJ
51 simpr x=ty=ny=n
52 49 fveq2d x=ty=nbitsAJx=bitsAJt
53 51 52 eleq12d x=ty=nybitsAJxnbitsAJt
54 50 53 anbi12d x=ty=nxJybitsAJxtJnbitsAJt
55 54 cbvopabv xy|xJybitsAJx=tn|tJnbitsAJt
56 48 55 eqtrdi ATRMbitsAJ=tn|tJnbitsAJt
57 56 eleq2d ATRwMbitsAJwtn|tJnbitsAJt
58 1 2 3 4 5 6 7 8 9 eulerpartlemt0 ATRA0A-1FinA-1J
59 58 simp1bi ATRA0
60 nn0ex 0V
61 60 14 elmap A0A:0
62 59 61 sylib ATRA:0
63 ffun A:0FunA
64 funres FunAFunAJ
65 62 63 64 3syl ATRFunAJ
66 fssres A:0JAJ:J0
67 62 37 66 sylancl ATRAJ:J0
68 fdm AJ:J0domAJ=J
69 68 eleq2d AJ:J0tdomAJtJ
70 67 69 syl ATRtdomAJtJ
71 70 biimpar ATRtJtdomAJ
72 fvco FunAJtdomAJbitsAJt=bitsAJt
73 65 71 72 syl2an2r ATRtJbitsAJt=bitsAJt
74 fvres tJAJt=At
75 74 fveq2d tJbitsAJt=bitsAt
76 75 adantl ATRtJbitsAJt=bitsAt
77 73 76 eqtrd ATRtJbitsAJt=bitsAt
78 77 eleq2d ATRtJnbitsAJtnbitsAt
79 78 pm5.32da ATRtJnbitsAJttJnbitsAt
80 79 opabbidv ATRtn|tJnbitsAJt=tn|tJnbitsAt
81 80 eleq2d ATRwtn|tJnbitsAJtwtn|tJnbitsAt
82 elopab wtn|tJnbitsAttnw=tntJnbitsAt
83 81 82 bitrdi ATRwtn|tJnbitsAJttnw=tntJnbitsAt
84 ancom w=tntJnbitsAttJnbitsAtw=tn
85 anass tJnbitsAtw=tntJnbitsAtw=tn
86 84 85 bitri w=tntJnbitsAttJnbitsAtw=tn
87 86 2exbii tnw=tntJnbitsAttntJnbitsAtw=tn
88 df-rex nbitsAtw=tnnnbitsAtw=tn
89 88 anbi2i tJnbitsAtw=tntJnnbitsAtw=tn
90 89 exbii ttJnbitsAtw=tnttJnnbitsAtw=tn
91 df-rex tJnbitsAtw=tnttJnbitsAtw=tn
92 exdistr tntJnbitsAtw=tnttJnnbitsAtw=tn
93 90 91 92 3bitr4i tJnbitsAtw=tntntJnbitsAtw=tn
94 87 93 bitr4i tnw=tntJnbitsAttJnbitsAtw=tn
95 83 94 bitrdi ATRwtn|tJnbitsAJttJnbitsAtw=tn
96 57 95 bitrd ATRwMbitsAJtJnbitsAtw=tn
97 96 biimpa ATRwMbitsAJtJnbitsAtw=tn
98 97 adantlr ATRBwMbitsAJtJnbitsAtw=tn
99 fveq2 w=tnFw=Ftn
100 99 adantl ATRBwMbitsAJtJnbitsAtw=tnFw=Ftn
101 bitsss bitsAt0
102 101 sseli nbitsAtn0
103 102 anim2i tJnbitsAttJn0
104 103 ad2antlr ATRBwMbitsAJtJnbitsAtw=tntJn0
105 opelxp tnJ×0tJn0
106 4 5 oddpwdcv tnJ×0Ftn=22ndtn1sttn
107 vex tV
108 vex nV
109 107 108 op2nd 2ndtn=n
110 109 oveq2i 22ndtn=2n
111 107 108 op1st 1sttn=t
112 110 111 oveq12i 22ndtn1sttn=2nt
113 106 112 eqtrdi tnJ×0Ftn=2nt
114 105 113 sylbir tJn0Ftn=2nt
115 104 114 syl ATRBwMbitsAJtJnbitsAtw=tnFtn=2nt
116 100 115 eqtr2d ATRBwMbitsAJtJnbitsAtw=tn2nt=Fw
117 116 ex ATRBwMbitsAJtJnbitsAtw=tn2nt=Fw
118 117 reximdvva ATRBwMbitsAJtJnbitsAtw=tntJnbitsAt2nt=Fw
119 98 118 mpd ATRBwMbitsAJtJnbitsAt2nt=Fw
120 ssrexv JtJnbitsAt2nt=FwtnbitsAt2nt=Fw
121 37 119 120 mpsyl ATRBwMbitsAJtnbitsAt2nt=Fw
122 121 adantr ATRBwMbitsAJFw=BtnbitsAt2nt=Fw
123 eqeq2 Fw=B2nt=Fw2nt=B
124 123 rexbidv Fw=BnbitsAt2nt=FwnbitsAt2nt=B
125 124 adantl ATRBwMbitsAJFw=BnbitsAt2nt=FwnbitsAt2nt=B
126 125 rexbidv ATRBwMbitsAJFw=BtnbitsAt2nt=FwtnbitsAt2nt=B
127 122 126 mpbid ATRBwMbitsAJFw=BtnbitsAt2nt=B
128 127 r19.29an ATRBwMbitsAJFw=BtnbitsAt2nt=B
129 simp-5l ATRBtnbitsAt2nt=BxJybitsAx2yx=BATR
130 simpllr ATRBtnbitsAt2nt=BxJybitsAx2yx=BxJ
131 simplr ATRBtnbitsAt2nt=BxJybitsAx2yx=BybitsAx
132 68 eleq2d AJ:J0xdomAJxJ
133 67 132 syl ATRxdomAJxJ
134 133 biimpar ATRxJxdomAJ
135 fvco FunAJxdomAJbitsAJx=bitsAJx
136 65 134 135 syl2an2r ATRxJbitsAJx=bitsAJx
137 fvres xJAJx=Ax
138 137 fveq2d xJbitsAJx=bitsAx
139 138 adantl ATRxJbitsAJx=bitsAx
140 136 139 eqtrd ATRxJbitsAJx=bitsAx
141 129 130 140 syl2anc ATRBtnbitsAt2nt=BxJybitsAx2yx=BbitsAJx=bitsAx
142 131 141 eleqtrrd ATRBtnbitsAt2nt=BxJybitsAx2yx=BybitsAJx
143 48 eleq2d ATRxyMbitsAJxyxy|xJybitsAJx
144 opabidw xyxy|xJybitsAJxxJybitsAJx
145 143 144 bitrdi ATRxyMbitsAJxJybitsAJx
146 145 biimpar ATRxJybitsAJxxyMbitsAJ
147 129 130 142 146 syl12anc ATRBtnbitsAt2nt=BxJybitsAx2yx=BxyMbitsAJ
148 simpr ATRBtnbitsAt2nt=BxJybitsAx2yx=B2yx=B
149 34 ad4antr ATRBtnbitsAt2nt=BxJybitsAx2yx=BMbitsAJJ×0
150 149 147 sseldd ATRBtnbitsAt2nt=BxJybitsAx2yx=BxyJ×0
151 opeq1 t=xty=xy
152 151 eleq1d t=xtyJ×0xyJ×0
153 151 fveq2d t=xFty=Fxy
154 oveq2 t=x2yt=2yx
155 153 154 eqeq12d t=xFty=2ytFxy=2yx
156 152 155 imbi12d t=xtyJ×0Fty=2ytxyJ×0Fxy=2yx
157 opeq2 n=ytn=ty
158 157 eleq1d n=ytnJ×0tyJ×0
159 157 fveq2d n=yFtn=Fty
160 oveq2 n=y2n=2y
161 160 oveq1d n=y2nt=2yt
162 159 161 eqeq12d n=yFtn=2ntFty=2yt
163 158 162 imbi12d n=ytnJ×0Ftn=2nttyJ×0Fty=2yt
164 163 113 chvarvv tyJ×0Fty=2yt
165 156 164 chvarvv xyJ×0Fxy=2yx
166 eqeq2 2yx=BFxy=2yxFxy=B
167 166 biimpa 2yx=BFxy=2yxFxy=B
168 165 167 sylan2 2yx=BxyJ×0Fxy=B
169 148 150 168 syl2anc ATRBtnbitsAt2nt=BxJybitsAx2yx=BFxy=B
170 fveqeq2 w=xyFw=BFxy=B
171 170 rspcev xyMbitsAJFxy=BwMbitsAJFw=B
172 147 169 171 syl2anc ATRBtnbitsAt2nt=BxJybitsAx2yx=BwMbitsAJFw=B
173 oveq2 t=x2nt=2nx
174 173 eqeq1d t=x2nt=B2nx=B
175 160 oveq1d n=y2nx=2yx
176 175 eqeq1d n=y2nx=B2yx=B
177 174 176 sylan9bb t=xn=y2nt=B2yx=B
178 simpl t=xn=yt=x
179 178 fveq2d t=xn=yAt=Ax
180 179 fveq2d t=xn=ybitsAt=bitsAx
181 177 180 cbvrexdva2 t=xnbitsAt2nt=BybitsAx2yx=B
182 181 cbvrexvw tnbitsAt2nt=BxybitsAx2yx=B
183 nfv yATR
184 nfv yx
185 nfre1 yybitsAx2yx=B
186 184 185 nfan yxybitsAx2yx=B
187 183 186 nfan yATRxybitsAx2yx=B
188 simplr ATRxybitsAxx
189 62 ffvelcdmda ATRxAx0
190 189 adantr ATRxybitsAxAx0
191 elnn0 Ax0AxAx=0
192 190 191 sylib ATRxybitsAxAxAx=0
193 n0i ybitsAx¬bitsAx=
194 193 adantl ATRxybitsAx¬bitsAx=
195 fveq2 Ax=0bitsAx=bits0
196 0bits bits0=
197 195 196 eqtrdi Ax=0bitsAx=
198 194 197 nsyl ATRxybitsAx¬Ax=0
199 192 198 olcnd ATRxybitsAxAx
200 58 simp3bi ATRA-1J
201 200 sselda ATRnA-1nJ
202 breq2 z=n2z2n
203 202 notbid z=n¬2z¬2n
204 203 4 elrab2 nJn¬2n
205 204 simprbi nJ¬2n
206 201 205 syl ATRnA-1¬2n
207 206 ralrimiva ATRnA-1¬2n
208 ffn A:0AFn
209 elpreima AFnnA-1nAn
210 62 208 209 3syl ATRnA-1nAn
211 210 imbi1d ATRnA-1¬2nnAn¬2n
212 impexp nAn¬2nnAn¬2n
213 211 212 bitrdi ATRnA-1¬2nnAn¬2n
214 213 ralbidv2 ATRnA-1¬2nnAn¬2n
215 207 214 mpbid ATRnAn¬2n
216 fveq2 x=nAx=An
217 216 eleq1d x=nAxAn
218 breq2 x=n2x2n
219 218 notbid x=n¬2x¬2n
220 217 219 imbi12d x=nAx¬2xAn¬2n
221 220 cbvralvw xAx¬2xnAn¬2n
222 215 221 sylibr ATRxAx¬2x
223 222 r19.21bi ATRxAx¬2x
224 223 imp ATRxAx¬2x
225 199 224 syldan ATRxybitsAx¬2x
226 breq2 z=x2z2x
227 226 notbid z=x¬2z¬2x
228 227 4 elrab2 xJx¬2x
229 188 225 228 sylanbrc ATRxybitsAxxJ
230 229 adantlrr ATRxybitsAx2yx=BybitsAxxJ
231 230 adantr ATRxybitsAx2yx=BybitsAx2yx=BxJ
232 simprr ATRxybitsAx2yx=BybitsAx2yx=B
233 187 231 232 r19.29af ATRxybitsAx2yx=BxJ
234 233 232 jca ATRxybitsAx2yx=BxJybitsAx2yx=B
235 234 ex ATRxybitsAx2yx=BxJybitsAx2yx=B
236 235 reximdv2 ATRxybitsAx2yx=BxJybitsAx2yx=B
237 236 imp ATRxybitsAx2yx=BxJybitsAx2yx=B
238 237 adantlr ATRBxybitsAx2yx=BxJybitsAx2yx=B
239 182 238 sylan2b ATRBtnbitsAt2nt=BxJybitsAx2yx=B
240 172 239 r19.29vva ATRBtnbitsAt2nt=BwMbitsAJFw=B
241 128 240 impbida ATRBwMbitsAJFw=BtnbitsAt2nt=B
242 36 241 bitrd ATRBBFMbitsAJtnbitsAt2nt=B
243 242 ifbid ATRBifBFMbitsAJ10=iftnbitsAt2nt=B10
244 13 23 243 3eqtrd ATRBGAB=iftnbitsAt2nt=B10