Metamath Proof Explorer


Theorem fedgmul

Description: The multiplicativity formula for degrees of field extensions. Given E a field extension of F , itself a field extension of K , we have [ E : K ] = [ E : F ] [ F : K ] . Proposition 1.2 of Lang, p. 224. Here ( dimA ) is the degree of the extension E of K , ( dimB ) is the degree of the extension E of F , and ( dimC ) is the degree of the extension F of K . This proof is valid for infinite dimensions, and is actually valid for division ring extensions, not just field extensions. (Contributed by Thierry Arnoux, 25-Jul-2023)

Ref Expression
Hypotheses fedgmul.a A=subringAlgEV
fedgmul.b B=subringAlgEU
fedgmul.c C=subringAlgFV
fedgmul.f F=E𝑠U
fedgmul.k K=E𝑠V
fedgmul.1 φEDivRing
fedgmul.2 φFDivRing
fedgmul.3 φKDivRing
fedgmul.4 φUSubRingE
fedgmul.5 φVSubRingF
Assertion fedgmul φdimA=dimB𝑒dimC

Proof

Step Hyp Ref Expression
1 fedgmul.a A=subringAlgEV
2 fedgmul.b B=subringAlgEU
3 fedgmul.c C=subringAlgFV
4 fedgmul.f F=E𝑠U
5 fedgmul.k K=E𝑠V
6 fedgmul.1 φEDivRing
7 fedgmul.2 φFDivRing
8 fedgmul.3 φKDivRing
9 fedgmul.4 φUSubRingE
10 fedgmul.5 φVSubRingF
11 4 subsubrg USubRingEVSubRingFVSubRingEVU
12 11 biimpa USubRingEVSubRingFVSubRingEVU
13 9 10 12 syl2anc φVSubRingEVU
14 13 simprd φVU
15 ressabs USubRingEVUE𝑠U𝑠V=E𝑠V
16 9 14 15 syl2anc φE𝑠U𝑠V=E𝑠V
17 4 oveq1i F𝑠V=E𝑠U𝑠V
18 16 17 5 3eqtr4g φF𝑠V=K
19 18 8 eqeltrd φF𝑠VDivRing
20 eqid F𝑠V=F𝑠V
21 3 20 sralvec FDivRingF𝑠VDivRingVSubRingFCLVec
22 7 19 10 21 syl3anc φCLVec
23 eqid LBasisC=LBasisC
24 23 lbsex CLVecLBasisC
25 22 24 syl φLBasisC
26 n0 LBasisCxxLBasisC
27 25 26 sylib φxxLBasisC
28 2 4 sralvec EDivRingFDivRingUSubRingEBLVec
29 6 7 9 28 syl3anc φBLVec
30 eqid LBasisB=LBasisB
31 30 lbsex BLVecLBasisB
32 29 31 syl φLBasisB
33 n0 LBasisByyLBasisB
34 32 33 sylib φyyLBasisB
35 34 adantr φxLBasisCyyLBasisB
36 drngring EDivRingERing
37 6 36 syl φERing
38 37 ad4antr φxLBasisCyLBasisBjyixERing
39 simplr φxLBasisCyLBasisBxLBasisC
40 eqid BaseC=BaseC
41 40 23 lbsss xLBasisCxBaseC
42 39 41 syl φxLBasisCyLBasisBxBaseC
43 eqid BaseE=BaseE
44 43 subrgss USubRingEUBaseE
45 9 44 syl φUBaseE
46 4 43 ressbas2 UBaseEU=BaseF
47 45 46 syl φU=BaseF
48 3 a1i φC=subringAlgFV
49 eqid BaseF=BaseF
50 49 subrgss VSubRingFVBaseF
51 10 50 syl φVBaseF
52 48 51 srabase φBaseF=BaseC
53 47 52 eqtrd φU=BaseC
54 53 45 eqsstrrd φBaseCBaseE
55 54 ad2antrr φxLBasisCyLBasisBBaseCBaseE
56 42 55 sstrd φxLBasisCyLBasisBxBaseE
57 56 ad2antrr φxLBasisCyLBasisBjyixxBaseE
58 simpr φxLBasisCyLBasisBjyixix
59 57 58 sseldd φxLBasisCyLBasisBjyixiBaseE
60 simpr φxLBasisCyLBasisByLBasisB
61 eqid BaseB=BaseB
62 61 30 lbsss yLBasisByBaseB
63 60 62 syl φxLBasisCyLBasisByBaseB
64 2 a1i φB=subringAlgEU
65 64 45 srabase φBaseE=BaseB
66 65 ad2antrr φxLBasisCyLBasisBBaseE=BaseB
67 63 66 sseqtrrd φxLBasisCyLBasisByBaseE
68 67 ad2antrr φxLBasisCyLBasisBjyixyBaseE
69 simplr φxLBasisCyLBasisBjyixjy
70 68 69 sseldd φxLBasisCyLBasisBjyixjBaseE
71 eqid E=E
72 43 71 ringcl ERingiBaseEjBaseEiEjBaseE
73 38 59 70 72 syl3anc φxLBasisCyLBasisBjyixiEjBaseE
74 1 a1i φA=subringAlgEV
75 13 simpld φVSubRingE
76 43 subrgss VSubRingEVBaseE
77 75 76 syl φVBaseE
78 74 77 srabase φBaseE=BaseA
79 78 ad4antr φxLBasisCyLBasisBjyixBaseE=BaseA
80 73 79 eleqtrd φxLBasisCyLBasisBjyixiEjBaseA
81 80 anasss φxLBasisCyLBasisBjyixiEjBaseA
82 81 ralrimivva φxLBasisCyLBasisBjyixiEjBaseA
83 oveq2 w=jtEw=tEj
84 oveq1 t=itEj=iEj
85 83 84 cbvmpov wy,txtEw=jy,ixiEj
86 85 fmpo jyixiEjBaseAwy,txtEw:y×xBaseA
87 82 86 sylib φxLBasisCyLBasisBwy,txtEw:y×xBaseA
88 eqid BaseScalarB=BaseScalarB
89 eqid B=B
90 eqid +B=+B
91 eqid 0ScalarB=0ScalarB
92 29 ad2antrr φxLBasisCyLBasisBBLVec
93 92 ad5antr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuBLVec
94 30 lbslinds LBasisBLIndSB
95 94 60 sselid φxLBasisCyLBasisByLIndSB
96 95 ad5antr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuyLIndSB
97 69 ad3antrrr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwujy
98 simpllr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuvy
99 64 45 srasca φE𝑠U=ScalarB
100 4 99 eqtrid φF=ScalarB
101 100 fveq2d φBaseF=BaseScalarB
102 101 52 eqtr3d φBaseScalarB=BaseC
103 102 ad2antrr φxLBasisCyLBasisBBaseScalarB=BaseC
104 42 103 sseqtrrd φxLBasisCyLBasisBxBaseScalarB
105 104 ad5antr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuxBaseScalarB
106 simp-4r φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuix
107 105 106 sseldd φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuiBaseScalarB
108 simplr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuux
109 105 108 sseldd φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuuBaseScalarB
110 22 ad2antrr φxLBasisCyLBasisBCLVec
111 eqid LSpanC=LSpanC
112 40 23 111 islbs4 xLBasisCxLIndSCLSpanCx=BaseC
113 39 112 sylib φxLBasisCyLBasisBxLIndSCLSpanCx=BaseC
114 113 simpld φxLBasisCyLBasisBxLIndSC
115 eqid 0C=0C
116 115 0nellinds CLVecxLIndSC¬0Cx
117 110 114 116 syl2anc φxLBasisCyLBasisB¬0Cx
118 117 ad5antr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwu¬0Cx
119 nelne2 ix¬0Cxi0C
120 106 118 119 syl2anc φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwui0C
121 100 fveq2d φ0F=0ScalarB
122 3 7 10 drgext0g φ0F=0C
123 121 122 eqtr3d φ0ScalarB=0C
124 123 ad7antr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwu0ScalarB=0C
125 120 124 neeqtrrd φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwui0ScalarB
126 simpr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwujwy,txtEwi=vwy,txtEwu
127 ovexd φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuiEjV
128 85 ovmpt4g jyixiEjVjwy,txtEwi=iEj
129 97 106 127 128 syl3anc φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwujwy,txtEwi=iEj
130 2 6 9 drgextvsca φE=B
131 130 oveqd φiEj=iBj
132 131 ad7antr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuiEj=iBj
133 129 132 eqtrd φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwujwy,txtEwi=iBj
134 85 a1i φxLBasisCyLBasisBvyuxwy,txtEw=jy,ixiEj
135 simprr φxLBasisCyLBasisBvyuxj=vi=ui=u
136 simprl φxLBasisCyLBasisBvyuxj=vi=uj=v
137 135 136 oveq12d φxLBasisCyLBasisBvyuxj=vi=uiEj=uEv
138 simplr φxLBasisCyLBasisBvyuxvy
139 simpr φxLBasisCyLBasisBvyuxux
140 ovexd φxLBasisCyLBasisBvyuxuEvV
141 134 137 138 139 140 ovmpod φxLBasisCyLBasisBvyuxvwy,txtEwu=uEv
142 141 adantllr φxLBasisCyLBasisBixvyuxvwy,txtEwu=uEv
143 142 adantl3r φxLBasisCyLBasisBjyixvyuxvwy,txtEwu=uEv
144 143 adantr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuvwy,txtEwu=uEv
145 130 oveqd φuEv=uBv
146 145 ad7antr φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuuEv=uBv
147 144 146 eqtrd φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuvwy,txtEwu=uBv
148 126 133 147 3eqtr3d φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuiBj=uBv
149 88 89 90 91 93 96 97 98 107 109 125 148 linds2eq φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuj=vi=u
150 149 ex φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuj=vi=u
151 150 anasss φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuj=vi=u
152 151 ralrimivva φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuj=vi=u
153 152 anasss φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuj=vi=u
154 153 ralrimivva φxLBasisCyLBasisBjyixvyuxjwy,txtEwi=vwy,txtEwuj=vi=u
155 f1opr wy,txtEw:y×x1-1BaseAwy,txtEw:y×xBaseAjyixvyuxjwy,txtEwi=vwy,txtEwuj=vi=u
156 87 154 155 sylanbrc φxLBasisCyLBasisBwy,txtEw:y×x1-1BaseA
157 60 39 xpexd φxLBasisCyLBasisBy×xV
158 f1rnen wy,txtEw:y×x1-1BaseAy×xVranwy,txtEwy×x
159 156 157 158 syl2anc φxLBasisCyLBasisBranwy,txtEwy×x
160 hasheni ranwy,txtEwy×xranwy,txtEw=y×x
161 159 160 syl φxLBasisCyLBasisBranwy,txtEw=y×x
162 hashxpe yLBasisBxLBasisCy×x=y𝑒x
163 60 39 162 syl2anc φxLBasisCyLBasisBy×x=y𝑒x
164 161 163 eqtrd φxLBasisCyLBasisBranwy,txtEw=y𝑒x
165 1 5 sralvec EDivRingKDivRingVSubRingEALVec
166 6 8 75 165 syl3anc φALVec
167 166 ad2antrr φxLBasisCyLBasisBALVec
168 lveclmod ALVecALMod
169 166 168 syl φALMod
170 169 ad2antrr φxLBasisCyLBasisBALMod
171 6 ad4antr φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0AEDivRing
172 7 ad4antr φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0AFDivRing
173 8 ad4antr φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0AKDivRing
174 9 ad4antr φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0AUSubRingE
175 10 ad4antr φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0AVSubRingF
176 fveq2 w=jfw=fj
177 176 fveq1d w=jfwv=fjv
178 fveq2 v=ifjv=fji
179 177 178 cbvmpov wy,vxfwv=jy,ixfji
180 simp-4r φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0AxLBasisC
181 simpllr φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0AyLBasisB
182 simplr φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0AcBaseScalarAfreeLMody×x
183 simpr φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0AAcAfwy,txtEw=0A
184 1 2 3 4 5 171 172 173 174 175 85 179 180 181 182 183 fedgmullem2 φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0Ac=y×x×0ScalarA
185 184 ex φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0Ac=y×x×0ScalarA
186 185 ralrimiva φxLBasisCyLBasisBcBaseScalarAfreeLMody×xAcAfwy,txtEw=0Ac=y×x×0ScalarA
187 eqid BaseA=BaseA
188 eqid ScalarA=ScalarA
189 eqid A=A
190 eqid 0A=0A
191 eqid 0ScalarA=0ScalarA
192 eqid BaseScalarAfreeLMody×x=BaseScalarAfreeLMody×x
193 187 188 189 190 191 192 islindf4 ALMody×xVwy,txtEw:y×xBaseAwy,txtEwLIndFAcBaseScalarAfreeLMody×xAcAfwy,txtEw=0Ac=y×x×0ScalarA
194 193 biimpar ALMody×xVwy,txtEw:y×xBaseAcBaseScalarAfreeLMody×xAcAfwy,txtEw=0Ac=y×x×0ScalarAwy,txtEwLIndFA
195 170 157 87 186 194 syl31anc φxLBasisCyLBasisBwy,txtEwLIndFA
196 73 anasss φxLBasisCyLBasisBjyixiEjBaseE
197 196 ralrimivva φxLBasisCyLBasisBjyixiEjBaseE
198 85 rnmposs jyixiEjBaseEranwy,txtEwBaseE
199 197 198 syl φxLBasisCyLBasisBranwy,txtEwBaseE
200 78 ad2antrr φxLBasisCyLBasisBBaseE=BaseA
201 199 200 sseqtrd φxLBasisCyLBasisBranwy,txtEwBaseA
202 eqid LSpanA=LSpanA
203 187 202 lspssv ALModranwy,txtEwBaseALSpanAranwy,txtEwBaseA
204 170 201 203 syl2anc φxLBasisCyLBasisBLSpanAranwy,txtEwBaseA
205 simpl φxLBasisCyLBasisBzBaseAφxLBasisCyLBasisB
206 205 ad4antr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwjyφxLBasisCyLBasisB
207 elmapi aBaseScalarBya:yBaseScalarB
208 207 ad4antlr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwjya:yBaseScalarB
209 simpr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwjyjy
210 208 209 ffvelcdmd φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwjyajBaseScalarB
211 113 simprd φxLBasisCyLBasisBLSpanCx=BaseC
212 206 211 syl φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwjyLSpanCx=BaseC
213 102 ad7antr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwjyBaseScalarB=BaseC
214 212 213 eqtr4d φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwjyLSpanCx=BaseScalarB
215 210 214 eleqtrrd φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwjyajLSpanCx
216 eqid BaseScalarC=BaseScalarC
217 eqid ScalarC=ScalarC
218 eqid 0ScalarC=0ScalarC
219 eqid C=C
220 lveclmod CLVecCLMod
221 22 220 syl φCLMod
222 221 ad2antrr φxLBasisCyLBasisBCLMod
223 111 40 216 217 218 219 222 42 ellspds φxLBasisCyLBasisBajLSpanCxbBaseScalarCxfinSupp0ScalarCbaj=CixbiCi
224 223 biimpa φxLBasisCyLBasisBajLSpanCxbBaseScalarCxfinSupp0ScalarCbaj=CixbiCi
225 206 215 224 syl2anc φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwjybBaseScalarCxfinSupp0ScalarCbaj=CixbiCi
226 225 ralrimiva φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwjybBaseScalarCxfinSupp0ScalarCbaj=CixbiCi
227 fveq2 w=jaw=aj
228 fveq2 v=ibv=bi
229 id v=iv=i
230 228 229 oveq12d v=ibvCv=biCi
231 230 cbvmptv vxbvCv=ixbiCi
232 231 oveq2i CvxbvCv=CixbiCi
233 232 a1i w=jCvxbvCv=CixbiCi
234 227 233 eqeq12d w=jaw=CvxbvCvaj=CixbiCi
235 234 anbi2d w=jfinSupp0ScalarCbaw=CvxbvCvfinSupp0ScalarCbaj=CixbiCi
236 235 rexbidv w=jbBaseScalarCxfinSupp0ScalarCbaw=CvxbvCvbBaseScalarCxfinSupp0ScalarCbaj=CixbiCi
237 236 cbvralvw wybBaseScalarCxfinSupp0ScalarCbaw=CvxbvCvjybBaseScalarCxfinSupp0ScalarCbaj=CixbiCi
238 vex yV
239 breq1 b=fwfinSupp0ScalarCbfinSupp0ScalarCfw
240 fveq1 b=fwbv=fwv
241 240 oveq1d b=fwbvCv=fwvCv
242 241 mpteq2dv b=fwvxbvCv=vxfwvCv
243 242 oveq2d b=fwCvxbvCv=CvxfwvCv
244 243 eqeq2d b=fwaw=CvxbvCvaw=CvxfwvCv
245 239 244 anbi12d b=fwfinSupp0ScalarCbaw=CvxbvCvfinSupp0ScalarCfwaw=CvxfwvCv
246 238 245 ac6s wybBaseScalarCxfinSupp0ScalarCbaw=CvxbvCvff:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCv
247 237 246 sylbir jybBaseScalarCxfinSupp0ScalarCbaj=CixbiCiff:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCv
248 226 247 syl φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwff:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCv
249 simpllr φxLBasisCyLBasisBf:yBaseScalarCxjyixf:yBaseScalarCx
250 simplr φxLBasisCyLBasisBf:yBaseScalarCxjyixjy
251 249 250 ffvelcdmd φxLBasisCyLBasisBf:yBaseScalarCxjyixfjBaseScalarCx
252 elmapi fjBaseScalarCxfj:xBaseScalarC
253 251 252 syl φxLBasisCyLBasisBf:yBaseScalarCxjyixfj:xBaseScalarC
254 253 anasss φxLBasisCyLBasisBf:yBaseScalarCxjyixfj:xBaseScalarC
255 simprr φxLBasisCyLBasisBf:yBaseScalarCxjyixix
256 254 255 ffvelcdmd φxLBasisCyLBasisBf:yBaseScalarCxjyixfjiBaseScalarC
257 74 77 srasca φE𝑠V=ScalarA
258 5 257 eqtrid φK=ScalarA
259 48 51 srasca φF𝑠V=ScalarC
260 18 259 eqtr3d φK=ScalarC
261 258 260 eqtr3d φScalarA=ScalarC
262 261 fveq2d φBaseScalarA=BaseScalarC
263 262 ad4antr φxLBasisCyLBasisBf:yBaseScalarCxjyixBaseScalarA=BaseScalarC
264 256 263 eleqtrrd φxLBasisCyLBasisBf:yBaseScalarCxjyixfjiBaseScalarA
265 264 ralrimivva φxLBasisCyLBasisBf:yBaseScalarCxjyixfjiBaseScalarA
266 179 fmpo jyixfjiBaseScalarAwy,vxfwv:y×xBaseScalarA
267 265 266 sylib φxLBasisCyLBasisBf:yBaseScalarCxwy,vxfwv:y×xBaseScalarA
268 fvexd φxLBasisCyLBasisBf:yBaseScalarCxBaseScalarAV
269 157 adantr φxLBasisCyLBasisBf:yBaseScalarCxy×xV
270 268 269 elmapd φxLBasisCyLBasisBf:yBaseScalarCxwy,vxfwvBaseScalarAy×xwy,vxfwv:y×xBaseScalarA
271 267 270 mpbird φxLBasisCyLBasisBf:yBaseScalarCxwy,vxfwvBaseScalarAy×x
272 271 ad5ant15 φxLBasisCyLBasisBzBaseAaBaseScalarByz=BwyawBwf:yBaseScalarCxwy,vxfwvBaseScalarAy×x
273 272 adantr φxLBasisCyLBasisBzBaseAaBaseScalarByz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvwy,vxfwvBaseScalarAy×x
274 273 adantl3r φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvwy,vxfwvBaseScalarAy×x
275 simpr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvc=wy,vxfwvc=wy,vxfwv
276 275 breq1d φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvc=wy,vxfwvfinSupp0ScalarAcfinSupp0ScalarAwy,vxfwv
277 275 oveq1d φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvc=wy,vxfwvcAfwy,txtEw=wy,vxfwvAfwy,txtEw
278 277 oveq2d φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvc=wy,vxfwvAcAfwy,txtEw=Awy,vxfwvAfwy,txtEw
279 278 eqeq2d φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvc=wy,vxfwvz=AcAfwy,txtEwz=Awy,vxfwvAfwy,txtEw
280 276 279 anbi12d φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvc=wy,vxfwvfinSupp0ScalarAcz=AcAfwy,txtEwfinSupp0ScalarAwy,vxfwvz=Awy,vxfwvAfwy,txtEw
281 6 ad8antr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvEDivRing
282 7 ad8antr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvFDivRing
283 8 ad8antr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvKDivRing
284 9 ad8antr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvUSubRingE
285 10 ad8antr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvVSubRingF
286 39 ad6antr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvxLBasisC
287 60 ad6antr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvyLBasisB
288 simpr φxLBasisCyLBasisBzBaseAzBaseA
289 288 ad5antr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvzBaseA
290 207 ad5antlr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCva:yBaseScalarB
291 simp-4r φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvfinSupp0ScalarBa
292 simpllr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvz=BwyawBw
293 id w=jw=j
294 227 293 oveq12d w=jawBw=ajBj
295 294 cbvmptv wyawBw=jyajBj
296 295 oveq2i BwyawBw=BjyajBj
297 292 296 eqtrdi φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvz=BjyajBj
298 simplr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvf:yBaseScalarCx
299 simpr φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvwyfinSupp0ScalarCfwaw=CvxfwvCv
300 176 breq1d w=jfinSupp0ScalarCfwfinSupp0ScalarCfj
301 fveq2 v=ifwv=fwi
302 301 229 oveq12d v=ifwvCv=fwiCi
303 302 cbvmptv vxfwvCv=ixfwiCi
304 176 fveq1d w=jfwi=fji
305 304 oveq1d w=jfwiCi=fjiCi
306 305 mpteq2dv w=jixfwiCi=ixfjiCi
307 303 306 eqtrid w=jvxfwvCv=ixfjiCi
308 307 oveq2d w=jCvxfwvCv=CixfjiCi
309 227 308 eqeq12d w=jaw=CvxfwvCvaj=CixfjiCi
310 300 309 anbi12d w=jfinSupp0ScalarCfwaw=CvxfwvCvfinSupp0ScalarCfjaj=CixfjiCi
311 310 cbvralvw wyfinSupp0ScalarCfwaw=CvxfwvCvjyfinSupp0ScalarCfjaj=CixfjiCi
312 299 311 sylib φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvjyfinSupp0ScalarCfjaj=CixfjiCi
313 312 r19.21bi φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvjyfinSupp0ScalarCfjaj=CixfjiCi
314 313 simpld φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvjyfinSupp0ScalarCfj
315 313 simprd φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvjyaj=CixfjiCi
316 1 2 3 4 5 281 282 283 284 285 85 179 286 287 289 290 291 297 298 314 315 fedgmullem1 φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvfinSupp0ScalarAwy,vxfwvz=Awy,vxfwvAfwy,txtEw
317 274 280 316 rspcedvd φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvcBaseScalarAy×xfinSupp0ScalarAcz=AcAfwy,txtEw
318 317 anasss φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwf:yBaseScalarCxwyfinSupp0ScalarCfwaw=CvxfwvCvcBaseScalarAy×xfinSupp0ScalarAcz=AcAfwy,txtEw
319 248 318 exlimddv φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwcBaseScalarAy×xfinSupp0ScalarAcz=AcAfwy,txtEw
320 319 anasss φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBwcBaseScalarAy×xfinSupp0ScalarAcz=AcAfwy,txtEw
321 eqid LSpanB=LSpanB
322 61 30 321 islbs4 yLBasisByLIndSBLSpanBy=BaseB
323 60 322 sylib φxLBasisCyLBasisByLIndSBLSpanBy=BaseB
324 323 simprd φxLBasisCyLBasisBLSpanBy=BaseB
325 324 adantr φxLBasisCyLBasisBzBaseALSpanBy=BaseB
326 78 65 eqtr3d φBaseA=BaseB
327 326 ad3antrrr φxLBasisCyLBasisBzBaseABaseA=BaseB
328 325 327 eqtr4d φxLBasisCyLBasisBzBaseALSpanBy=BaseA
329 288 328 eleqtrrd φxLBasisCyLBasisBzBaseAzLSpanBy
330 eqid ScalarB=ScalarB
331 lveclmod BLVecBLMod
332 29 331 syl φBLMod
333 332 ad2antrr φxLBasisCyLBasisBBLMod
334 321 61 88 330 91 89 333 63 ellspds φxLBasisCyLBasisBzLSpanByaBaseScalarByfinSupp0ScalarBaz=BwyawBw
335 334 biimpa φxLBasisCyLBasisBzLSpanByaBaseScalarByfinSupp0ScalarBaz=BwyawBw
336 205 329 335 syl2anc φxLBasisCyLBasisBzBaseAaBaseScalarByfinSupp0ScalarBaz=BwyawBw
337 320 336 r19.29a φxLBasisCyLBasisBzBaseAcBaseScalarAy×xfinSupp0ScalarAcz=AcAfwy,txtEw
338 eqid BaseScalarA=BaseScalarA
339 202 187 338 188 191 189 87 170 157 ellspd φxLBasisCyLBasisBzLSpanAwy,txtEwy×xcBaseScalarAy×xfinSupp0ScalarAcz=AcAfwy,txtEw
340 339 adantr φxLBasisCyLBasisBzBaseAzLSpanAwy,txtEwy×xcBaseScalarAy×xfinSupp0ScalarAcz=AcAfwy,txtEw
341 337 340 mpbird φxLBasisCyLBasisBzBaseAzLSpanAwy,txtEwy×x
342 87 ffnd φxLBasisCyLBasisBwy,txtEwFny×x
343 342 adantr φxLBasisCyLBasisBzBaseAwy,txtEwFny×x
344 fnima wy,txtEwFny×xwy,txtEwy×x=ranwy,txtEw
345 343 344 syl φxLBasisCyLBasisBzBaseAwy,txtEwy×x=ranwy,txtEw
346 345 fveq2d φxLBasisCyLBasisBzBaseALSpanAwy,txtEwy×x=LSpanAranwy,txtEw
347 341 346 eleqtrd φxLBasisCyLBasisBzBaseAzLSpanAranwy,txtEw
348 204 347 eqelssd φxLBasisCyLBasisBLSpanAranwy,txtEw=BaseA
349 eqid Basewy,txtEw=Basewy,txtEw
350 drngnzr KDivRingKNzRing
351 8 350 syl φKNzRing
352 258 351 eqeltrrd φScalarANzRing
353 352 ad2antrr φxLBasisCyLBasisBScalarANzRing
354 187 349 188 189 190 191 202 170 353 157 156 lindflbs φxLBasisCyLBasisBranwy,txtEwLBasisAwy,txtEwLIndFALSpanAranwy,txtEw=BaseA
355 195 348 354 mpbir2and φxLBasisCyLBasisBranwy,txtEwLBasisA
356 eqid LBasisA=LBasisA
357 356 dimval ALVecranwy,txtEwLBasisAdimA=ranwy,txtEw
358 167 355 357 syl2anc φxLBasisCyLBasisBdimA=ranwy,txtEw
359 30 dimval BLVecyLBasisBdimB=y
360 92 60 359 syl2anc φxLBasisCyLBasisBdimB=y
361 23 dimval CLVecxLBasisCdimC=x
362 110 39 361 syl2anc φxLBasisCyLBasisBdimC=x
363 360 362 oveq12d φxLBasisCyLBasisBdimB𝑒dimC=y𝑒x
364 164 358 363 3eqtr4d φxLBasisCyLBasisBdimA=dimB𝑒dimC
365 35 364 exlimddv φxLBasisCdimA=dimB𝑒dimC
366 27 365 exlimddv φdimA=dimB𝑒dimC