Metamath Proof Explorer


Theorem fourierdlem114

Description: Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem114.f φF:
fourierdlem114.t T=2π
fourierdlem114.per φxFx+T=Fx
fourierdlem114.g G=Fππ
fourierdlem114.dmdv φππdomGFin
fourierdlem114.gcn φG:domGcn
fourierdlem114.rlim φxππdomGGx+∞limx
fourierdlem114.llim φxππdomGG−∞xlimx
fourierdlem114.x φX
fourierdlem114.l φLF−∞XlimX
fourierdlem114.r φRFX+∞limX
fourierdlem114.a A=n0ππFxcosnxdxπ
fourierdlem114.b B=nππFxsinnxdxπ
fourierdlem114.s S=nAncosnX+BnsinnX
fourierdlem114.p P=np0n|p0=πpn=πi0..^npi<pi+1
fourierdlem114.e E=xx+πxTT
fourierdlem114.h H=ππEXππdomG
fourierdlem114.m M=H1
fourierdlem114.q Q=ιg|gIsom<,<0MH
Assertion fourierdlem114 φseq1+SL+R2A02A02+nAncosnX+BnsinnX=L+R2

Proof

Step Hyp Ref Expression
1 fourierdlem114.f φF:
2 fourierdlem114.t T=2π
3 fourierdlem114.per φxFx+T=Fx
4 fourierdlem114.g G=Fππ
5 fourierdlem114.dmdv φππdomGFin
6 fourierdlem114.gcn φG:domGcn
7 fourierdlem114.rlim φxππdomGGx+∞limx
8 fourierdlem114.llim φxππdomGG−∞xlimx
9 fourierdlem114.x φX
10 fourierdlem114.l φLF−∞XlimX
11 fourierdlem114.r φRFX+∞limX
12 fourierdlem114.a A=n0ππFxcosnxdxπ
13 fourierdlem114.b B=nππFxsinnxdxπ
14 fourierdlem114.s S=nAncosnX+BnsinnX
15 fourierdlem114.p P=np0n|p0=πpn=πi0..^npi<pi+1
16 fourierdlem114.e E=xx+πxTT
17 fourierdlem114.h H=ππEXππdomG
18 fourierdlem114.m M=H1
19 fourierdlem114.q Q=ιg|gIsom<,<0MH
20 2z 2
21 20 a1i φ2
22 tpfi ππEXFin
23 22 a1i φππEXFin
24 pire π
25 24 renegcli π
26 25 rexri π*
27 24 rexri π*
28 negpilt0 π<0
29 pipos 0<π
30 0re 0
31 25 30 24 lttri π<00<ππ<π
32 28 29 31 mp2an π<π
33 25 24 32 ltleii ππ
34 prunioo π*π*ππππππ=ππ
35 26 27 33 34 mp3an ππππ=ππ
36 35 difeq1i ππππdomG=ππdomG
37 difundir ππππdomG=ππdomGππdomG
38 36 37 eqtr3i ππdomG=ππdomGππdomG
39 prfi ππFin
40 diffi ππFinππdomGFin
41 39 40 mp1i φππdomGFin
42 unfi ππdomGFinππdomGFinππdomGππdomGFin
43 5 41 42 syl2anc φππdomGππdomGFin
44 38 43 eqeltrid φππdomGFin
45 unfi ππEXFinππdomGFinππEXππdomGFin
46 23 44 45 syl2anc φππEXππdomGFin
47 17 46 eqeltrid φHFin
48 hashcl HFinH0
49 47 48 syl φH0
50 49 nn0zd φH
51 25 32 ltneii ππ
52 hashprg ππππππ=2
53 25 24 52 mp2an ππππ=2
54 51 53 mpbi ππ=2
55 22 elexi ππEXV
56 ovex ππV
57 difexg ππVππdomGV
58 56 57 ax-mp ππdomGV
59 55 58 unex ππEXππdomGV
60 17 59 eqeltri HV
61 negex πV
62 61 tpid1 πππEX
63 24 elexi πV
64 63 tpid2 πππEX
65 prssi πππEXπππEXππππEX
66 62 64 65 mp2an ππππEX
67 ssun1 ππEXππEXππdomG
68 67 17 sseqtrri ππEXH
69 66 68 sstri ππH
70 hashss HVππHππH
71 60 69 70 mp2an ππH
72 71 a1i φππH
73 54 72 eqbrtrrid φ2H
74 eluz2 H22H2H
75 21 50 73 74 syl3anbrc φH2
76 uz2m1nn H2H1
77 75 76 syl φH1
78 18 77 eqeltrid φM
79 25 a1i φπ
80 24 a1i φπ
81 negpitopissre ππ
82 32 a1i φπ<π
83 picn π
84 83 2timesi 2π=π+π
85 83 83 subnegi ππ=π+π
86 84 2 85 3eqtr4i T=ππ
87 79 80 82 86 16 fourierdlem4 φE:ππ
88 87 9 ffvelcdmd φEXππ
89 81 88 sselid φEX
90 79 80 89 3jca φππEX
91 fvex EXV
92 61 63 91 tpss ππEXππEX
93 90 92 sylib φππEX
94 iccssre ππππ
95 25 24 94 mp2an ππ
96 ssdifss ππππdomG
97 95 96 mp1i φππdomG
98 93 97 unssd φππEXππdomG
99 17 98 eqsstrid φH
100 47 99 19 18 fourierdlem36 φQIsom<,<0MH
101 isof1o QIsom<,<0MHQ:0M1-1 ontoH
102 f1of Q:0M1-1 ontoHQ:0MH
103 100 101 102 3syl φQ:0MH
104 103 99 fssd φQ:0M
105 reex V
106 ovex 0MV
107 105 106 elmap Q0MQ:0M
108 104 107 sylibr φQ0M
109 fveq2 0=iQ0=Qi
110 109 adantl φi0M0=iQ0=Qi
111 104 ffvelcdmda φi0MQi
112 111 leidd φi0MQiQi
113 112 adantr φi0M0=iQiQi
114 110 113 eqbrtrd φi0M0=iQ0Qi
115 elfzelz i0Mi
116 115 zred i0Mi
117 116 ad2antlr φi0M¬0=ii
118 elfzle1 i0M0i
119 118 ad2antlr φi0M¬0=i0i
120 neqne ¬0=i0i
121 120 necomd ¬0=ii0
122 121 adantl φi0M¬0=ii0
123 117 119 122 ne0gt0d φi0M¬0=i0<i
124 nnssnn0 0
125 nn0uz 0=0
126 124 125 sseqtri 0
127 126 78 sselid φM0
128 eluzfz1 M000M
129 127 128 syl φ00M
130 103 129 ffvelcdmd φQ0H
131 99 130 sseldd φQ0
132 131 ad2antrr φi0M0<iQ0
133 111 adantr φi0M0<iQi
134 simpr φi0M0<i0<i
135 100 ad2antrr φi0M0<iQIsom<,<0MH
136 129 anim1i φi0M00Mi0M
137 136 adantr φi0M0<i00Mi0M
138 isorel QIsom<,<0MH00Mi0M0<iQ0<Qi
139 135 137 138 syl2anc φi0M0<i0<iQ0<Qi
140 134 139 mpbid φi0M0<iQ0<Qi
141 132 133 140 ltled φi0M0<iQ0Qi
142 123 141 syldan φi0M¬0=iQ0Qi
143 114 142 pm2.61dan φi0MQ0Qi
144 143 adantr φi0MQi=πQ0Qi
145 simpr φi0MQi=πQi=π
146 144 145 breqtrd φi0MQi=πQ0π
147 79 rexrd φπ*
148 80 rexrd φπ*
149 lbicc2 π*π*πππππ
150 26 27 33 149 mp3an πππ
151 150 a1i φπππ
152 ubicc2 π*π*πππππ
153 26 27 33 152 mp3an πππ
154 153 a1i φπππ
155 iocssicc ππππ
156 155 88 sselid φEXππ
157 tpssi ππππππEXππππEXππ
158 151 154 156 157 syl3anc φππEXππ
159 difssd φππdomGππ
160 158 159 unssd φππEXππdomGππ
161 17 160 eqsstrid φHππ
162 161 130 sseldd φQ0ππ
163 iccgelb π*π*Q0πππQ0
164 147 148 162 163 syl3anc φπQ0
165 164 ad2antrr φi0MQi=ππQ0
166 131 ad2antrr φi0MQi=πQ0
167 25 a1i φi0MQi=ππ
168 166 167 letri3d φi0MQi=πQ0=πQ0ππQ0
169 146 165 168 mpbir2and φi0MQi=πQ0=π
170 68 62 sselii πH
171 f1ofo Q:0M1-1 ontoHQ:0MontoH
172 101 171 syl QIsom<,<0MHQ:0MontoH
173 forn Q:0MontoHranQ=H
174 100 172 173 3syl φranQ=H
175 170 174 eleqtrrid φπranQ
176 ffn Q:0MHQFn0M
177 fvelrnb QFn0MπranQi0MQi=π
178 103 176 177 3syl φπranQi0MQi=π
179 175 178 mpbid φi0MQi=π
180 169 179 r19.29a φQ0=π
181 68 64 sselii πH
182 181 174 eleqtrrid φπranQ
183 fvelrnb QFn0MπranQi0MQi=π
184 103 176 183 3syl φπranQi0MQi=π
185 182 184 mpbid φi0MQi=π
186 103 161 fssd φQ:0Mππ
187 eluzfz2 M0M0M
188 127 187 syl φM0M
189 186 188 ffvelcdmd φQMππ
190 iccleub π*π*QMππQMπ
191 147 148 189 190 syl3anc φQMπ
192 191 3ad2ant1 φi0MQi=πQMπ
193 id Qi=πQi=π
194 193 eqcomd Qi=ππ=Qi
195 194 3ad2ant3 φi0MQi=ππ=Qi
196 112 adantr φi0Mi=MQiQi
197 fveq2 i=MQi=QM
198 197 adantl φi0Mi=MQi=QM
199 196 198 breqtrd φi0Mi=MQiQM
200 116 ad2antlr φi0M¬i=Mi
201 elfzel2 i0MM
202 201 zred i0MM
203 202 ad2antlr φi0M¬i=MM
204 elfzle2 i0MiM
205 204 ad2antlr φi0M¬i=MiM
206 neqne ¬i=MiM
207 206 necomd ¬i=MMi
208 207 adantl φi0M¬i=MMi
209 200 203 205 208 leneltd φi0M¬i=Mi<M
210 111 adantr φi0Mi<MQi
211 95 189 sselid φQM
212 211 ad2antrr φi0Mi<MQM
213 simpr φi0Mi<Mi<M
214 100 ad2antrr φi0Mi<MQIsom<,<0MH
215 simpr φi0Mi0M
216 188 adantr φi0MM0M
217 215 216 jca φi0Mi0MM0M
218 217 adantr φi0Mi<Mi0MM0M
219 isorel QIsom<,<0MHi0MM0Mi<MQi<QM
220 214 218 219 syl2anc φi0Mi<Mi<MQi<QM
221 213 220 mpbid φi0Mi<MQi<QM
222 210 212 221 ltled φi0Mi<MQiQM
223 209 222 syldan φi0M¬i=MQiQM
224 199 223 pm2.61dan φi0MQiQM
225 224 3adant3 φi0MQi=πQiQM
226 195 225 eqbrtrd φi0MQi=ππQM
227 211 3ad2ant1 φi0MQi=πQM
228 24 a1i φi0MQi=ππ
229 227 228 letri3d φi0MQi=πQM=πQMππQM
230 192 226 229 mpbir2and φi0MQi=πQM=π
231 230 rexlimdv3a φi0MQi=πQM=π
232 185 231 mpd φQM=π
233 elfzoelz i0..^Mi
234 233 zred i0..^Mi
235 234 ltp1d i0..^Mi<i+1
236 235 adantl φi0..^Mi<i+1
237 elfzofz i0..^Mi0M
238 fzofzp1 i0..^Mi+10M
239 237 238 jca i0..^Mi0Mi+10M
240 isorel QIsom<,<0MHi0Mi+10Mi<i+1Qi<Qi+1
241 100 239 240 syl2an φi0..^Mi<i+1Qi<Qi+1
242 236 241 mpbid φi0..^MQi<Qi+1
243 242 ralrimiva φi0..^MQi<Qi+1
244 180 232 243 jca31 φQ0=πQM=πi0..^MQi<Qi+1
245 15 fourierdlem2 MQPMQ0MQ0=πQM=πi0..^MQi<Qi+1
246 78 245 syl φQPMQ0MQ0=πQM=πi0..^MQi<Qi+1
247 108 244 246 mpbir2and φQPM
248 4 reseq1i GQiQi+1=FππQiQi+1
249 26 a1i φi0..^Mπ*
250 27 a1i φi0..^Mπ*
251 186 adantr φi0..^MQ:0Mππ
252 simpr φi0..^Mi0..^M
253 249 250 251 252 fourierdlem27 φi0..^MQiQi+1ππ
254 253 resabs1d φi0..^MFππQiQi+1=FQiQi+1
255 248 254 eqtr2id φi0..^MFQiQi+1=GQiQi+1
256 6 15 78 247 17 174 fourierdlem38 φi0..^MGQiQi+1:QiQi+1cn
257 255 256 eqeltrd φi0..^MFQiQi+1:QiQi+1cn
258 255 oveq1d φi0..^MFQiQi+1limQi=GQiQi+1limQi
259 6 adantr φi0..^MG:domGcn
260 7 adantlr φi0..^MxππdomGGx+∞limx
261 8 adantlr φi0..^MxππdomGG−∞xlimx
262 100 adantr φi0..^MQIsom<,<0MH
263 262 101 102 3syl φi0..^MQ:0MH
264 89 adantr φi0..^MEX
265 262 172 173 3syl φi0..^MranQ=H
266 259 260 261 262 263 252 242 253 264 17 265 fourierdlem46 φi0..^MGQiQi+1limQiGQiQi+1limQi+1
267 266 simpld φi0..^MGQiQi+1limQi
268 258 267 eqnetrd φi0..^MFQiQi+1limQi
269 255 oveq1d φi0..^MFQiQi+1limQi+1=GQiQi+1limQi+1
270 266 simprd φi0..^MGQiQi+1limQi+1
271 269 270 eqnetrd φi0..^MFQiQi+1limQi+1
272 91 tpid3 EXππEX
273 elun1 EXππEXEXππEXππdomG
274 272 273 mp1i φEXππEXππdomG
275 274 17 eleqtrrdi φEXH
276 275 174 eleqtrrd φEXranQ
277 1 2 3 9 10 11 15 78 247 257 268 271 12 13 14 16 276 fourierdlem113 φseq1+SL+R2A02A02+nAncosnX+BnsinnX=L+R2