Metamath Proof Explorer


Theorem fourierdlem68

Description: The derivative of O is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem68.f φF:
fourierdlem68.xre φX
fourierdlem68.a φA
fourierdlem68.b φB
fourierdlem68.altb φA<B
fourierdlem68.ab φABππ
fourierdlem68.n0 φ¬0AB
fourierdlem68.fdv φFX+AX+B:X+AX+B
fourierdlem68.d φD
fourierdlem68.fbd φtX+AX+BFtD
fourierdlem68.e φE
fourierdlem68.fdvbd φtX+AX+BFX+AX+BtE
fourierdlem68.c φC
fourierdlem68.o O=sABFX+sC2sins2
Assertion fourierdlem68 φdomO=ABbsdomOOsb

Proof

Step Hyp Ref Expression
1 fourierdlem68.f φF:
2 fourierdlem68.xre φX
3 fourierdlem68.a φA
4 fourierdlem68.b φB
5 fourierdlem68.altb φA<B
6 fourierdlem68.ab φABππ
7 fourierdlem68.n0 φ¬0AB
8 fourierdlem68.fdv φFX+AX+B:X+AX+B
9 fourierdlem68.d φD
10 fourierdlem68.fbd φtX+AX+BFtD
11 fourierdlem68.e φE
12 fourierdlem68.fdvbd φtX+AX+BFX+AX+BtE
13 fourierdlem68.c φC
14 fourierdlem68.o O=sABFX+sC2sins2
15 ioossicc ABAB
16 15 6 sstrid φABππ
17 15 sseli 0AB0AB
18 7 17 nsyl φ¬0AB
19 1 2 3 4 8 16 18 13 14 fourierdlem57 φO:ABDO=sABFX+AX+BX+s2sins2coss2FX+sC2sins22dsAB2sins2ds=sABcoss2
20 19 simpli φO:ABDO=sABFX+AX+BX+s2sins2coss2FX+sC2sins22
21 20 simpld φO:AB
22 21 fdmd φdomO=AB
23 eqid tAB2sint2=tAB2sint2
24 3 4 5 ltled φAB
25 2re 2
26 25 a1i φtAB2
27 3 4 iccssred φAB
28 27 sselda φtABt
29 28 rehalfcld φtABt2
30 29 resincld φtABsint2
31 26 30 remulcld φtAB2sint2
32 2cnd φtAB2
33 30 recnd φtABsint2
34 2ne0 20
35 34 a1i φtAB20
36 6 sselda φtABtππ
37 eqcom t=00=t
38 37 biimpi t=00=t
39 38 adantl tABt=00=t
40 simpl tABt=0tAB
41 39 40 eqeltrd tABt=00AB
42 41 adantll φtABt=00AB
43 7 ad2antrr φtABt=0¬0AB
44 42 43 pm2.65da φtAB¬t=0
45 44 neqned φtABt0
46 fourierdlem44 tππt0sint20
47 36 45 46 syl2anc φtABsint20
48 32 33 35 47 mulne0d φtAB2sint20
49 eldifsn 2sint202sint22sint20
50 31 48 49 sylanbrc φtAB2sint20
51 50 23 fmptd φtAB2sint2:AB0
52 difss 0
53 ax-resscn
54 52 53 sstri 0
55 54 a1i φ0
56 27 53 sstrdi φAB
57 2cnd φ2
58 ssid
59 58 a1i φ
60 56 57 59 constcncfg φtAB2:ABcn
61 sincn sin:cn
62 61 a1i φsin:cn
63 56 59 idcncfg φtABt:ABcn
64 eldifsn 20220
65 32 35 64 sylanbrc φtAB20
66 eqid tAB2=tAB2
67 65 66 fmptd φtAB2:AB0
68 difssd φ0
69 cncfcdm 0tAB2:ABcntAB2:ABcn0tAB2:AB0
70 68 60 69 syl2anc φtAB2:ABcn0tAB2:AB0
71 67 70 mpbird φtAB2:ABcn0
72 63 71 divcncf φtABt2:ABcn
73 62 72 cncfmpt1f φtABsint2:ABcn
74 60 73 mulcncf φtAB2sint2:ABcn
75 cncfcdm 0tAB2sint2:ABcntAB2sint2:ABcn0tAB2sint2:AB0
76 55 74 75 syl2anc φtAB2sint2:ABcn0tAB2sint2:AB0
77 51 76 mpbird φtAB2sint2:ABcn0
78 23 3 4 24 77 cncficcgt0 φc+tABc2sint2
79 reelprrecn
80 79 a1i φc+tABc2sint2
81 1 adantr φsABF:
82 2 adantr φsABX
83 elioore sABs
84 83 adantl φsABs
85 82 84 readdcld φsABX+s
86 81 85 ffvelcdmd φsABFX+s
87 13 adantr φsABC
88 86 87 resubcld φsABFX+sC
89 88 recnd φsABFX+sC
90 89 3ad2antl1 φc+tABc2sint2sABFX+sC
91 79 a1i φ
92 86 recnd φsABFX+s
93 8 adantr φsABFX+AX+B:X+AX+B
94 2 3 readdcld φX+A
95 94 rexrd φX+A*
96 95 adantr φsABX+A*
97 2 4 readdcld φX+B
98 97 rexrd φX+B*
99 98 adantr φsABX+B*
100 3 adantr φsABA
101 100 rexrd φsABA*
102 4 rexrd φB*
103 102 adantr φsABB*
104 simpr φsABsAB
105 ioogtlb A*B*sABA<s
106 101 103 104 105 syl3anc φsABA<s
107 100 84 82 106 ltadd2dd φsABX+A<X+s
108 4 adantr φsABB
109 iooltub A*B*sABs<B
110 101 103 104 109 syl3anc φsABs<B
111 84 108 82 110 ltadd2dd φsABX+s<X+B
112 96 99 85 107 111 eliood φsABX+sX+AX+B
113 93 112 ffvelcdmd φsABFX+AX+BX+s
114 eqid DFX+AX+B=DFX+AX+B
115 1 2 3 4 114 8 fourierdlem28 φdsABFX+sds=sABFX+AX+BX+s
116 87 recnd φsABC
117 0red φsAB0
118 iooretop ABtopGenran.
119 eqid TopOpenfld=TopOpenfld
120 119 tgioo2 topGenran.=TopOpenfld𝑡
121 118 120 eleqtri ABTopOpenfld𝑡
122 121 a1i φABTopOpenfld𝑡
123 13 recnd φC
124 91 122 123 dvmptconst φdsABCds=sAB0
125 91 92 113 115 116 117 124 dvmptsub φdsABFX+sCds=sABFX+AX+BX+s0
126 113 recnd φsABFX+AX+BX+s
127 126 subid1d φsABFX+AX+BX+s0=FX+AX+BX+s
128 127 mpteq2dva φsABFX+AX+BX+s0=sABFX+AX+BX+s
129 125 128 eqtrd φdsABFX+sCds=sABFX+AX+BX+s
130 129 3ad2ant1 φc+tABc2sint2dsABFX+sCds=sABFX+AX+BX+s
131 126 3ad2antl1 φc+tABc2sint2sABFX+AX+BX+s
132 2cnd sAB2
133 83 recnd sABs
134 133 halfcld sABs2
135 134 sincld sABsins2
136 132 135 mulcld sAB2sins2
137 136 adantl φc+tABc2sint2sAB2sins2
138 11 3ad2ant1 φc+tABc2sint2E
139 1re 1
140 25 139 remulcli 21
141 140 a1i φc+tABc2sint221
142 1red φc+tABc2sint21
143 123 abscld φC
144 9 143 readdcld φD+C
145 144 3ad2ant1 φc+tABc2sint2D+C
146 simpl φsABφ
147 146 112 jca φsABφX+sX+AX+B
148 eleq1 t=X+stX+AX+BX+sX+AX+B
149 148 anbi2d t=X+sφtX+AX+BφX+sX+AX+B
150 fveq2 t=X+sFX+AX+Bt=FX+AX+BX+s
151 150 fveq2d t=X+sFX+AX+Bt=FX+AX+BX+s
152 151 breq1d t=X+sFX+AX+BtEFX+AX+BX+sE
153 149 152 imbi12d t=X+sφtX+AX+BFX+AX+BtEφX+sX+AX+BFX+AX+BX+sE
154 153 12 vtoclg X+sφX+sX+AX+BFX+AX+BX+sE
155 85 147 154 sylc φsABFX+AX+BX+sE
156 155 3ad2antl1 φc+tABc2sint2sABFX+AX+BX+sE
157 132 135 absmuld sAB2sins2=2sins2
158 0le2 02
159 absid 2022=2
160 25 158 159 mp2an 2=2
161 160 oveq1i 2sins2=2sins2
162 135 abscld sABsins2
163 1red sAB1
164 25 a1i sAB2
165 158 a1i sAB02
166 83 rehalfcld sABs2
167 abssinbd s2sins21
168 166 167 syl sABsins21
169 162 163 164 165 168 lemul2ad sAB2sins221
170 161 169 eqbrtrid sAB2sins221
171 157 170 eqbrtrd sAB2sins221
172 171 adantl φc+tABc2sint2sAB2sins221
173 abscosbd s2coss21
174 104 166 173 3syl φsABcoss21
175 174 3ad2antl1 φc+tABc2sint2sABcoss21
176 89 abscld φsABFX+sC
177 92 abscld φsABFX+s
178 116 abscld φsABC
179 177 178 readdcld φsABFX+s+C
180 9 adantr φsABD
181 180 178 readdcld φsABD+C
182 92 116 abs2dif2d φsABFX+sCFX+s+C
183 fveq2 t=X+sFt=FX+s
184 183 fveq2d t=X+sFt=FX+s
185 184 breq1d t=X+sFtDFX+sD
186 149 185 imbi12d t=X+sφtX+AX+BFtDφX+sX+AX+BFX+sD
187 186 10 vtoclg X+sX+AX+BφX+sX+AX+BFX+sD
188 112 147 187 sylc φsABFX+sD
189 177 180 178 188 leadd1dd φsABFX+s+CD+C
190 176 179 181 182 189 letrd φsABFX+sCD+C
191 190 3ad2antl1 φc+tABc2sint2sABFX+sCD+C
192 19 simpri dsAB2sins2ds=sABcoss2
193 192 a1i φc+tABc2sint2dsAB2sins2ds=sABcoss2
194 134 coscld sABcoss2
195 194 adantl φc+tABc2sint2sABcoss2
196 simp2 φc+tABc2sint2c+
197 oveq1 t=st2=s2
198 197 fveq2d t=ssint2=sins2
199 198 oveq2d t=s2sint2=2sins2
200 199 fveq2d t=s2sint2=2sins2
201 200 breq2d t=sc2sint2c2sins2
202 201 cbvralvw tABc2sint2sABc2sins2
203 nfv sφ
204 nfra1 ssABc2sins2
205 203 204 nfan sφsABc2sins2
206 simplr φsABc2sins2sABsABc2sins2
207 15 104 sselid φsABsAB
208 207 adantlr φsABc2sins2sABsAB
209 rspa sABc2sins2sABc2sins2
210 206 208 209 syl2anc φsABc2sins2sABc2sins2
211 210 ex φsABc2sins2sABc2sins2
212 205 211 ralrimi φsABc2sins2sABc2sins2
213 202 212 sylan2b φtABc2sint2sABc2sins2
214 213 3adant2 φc+tABc2sint2sABc2sins2
215 eqid dsABFX+sC2sins2ds=dsABFX+sC2sins2ds
216 80 90 130 131 137 138 141 142 145 156 172 175 191 193 195 196 214 215 dvdivbd φc+tABc2sint2bsABdsABFX+sC2sins2dssb
217 216 rexlimdv3a φc+tABc2sint2bsABdsABFX+sC2sins2dssb
218 78 217 mpd φbsABdsABFX+sC2sins2dssb
219 nfcv _s
220 nfcv _sD
221 nfmpt1 _ssABFX+sC2sins2
222 14 221 nfcxfr _sO
223 219 220 222 nfov _sO
224 223 nfdm _sdomO
225 nfcv _sAB
226 224 225 raleqf domO=ABsdomOdsABFX+sC2sins2dssbsABdsABFX+sC2sins2dssb
227 22 226 syl φsdomOdsABFX+sC2sins2dssbsABdsABFX+sC2sins2dssb
228 227 rexbidv φbsdomOdsABFX+sC2sins2dssbbsABdsABFX+sC2sins2dssb
229 218 228 mpbird φbsdomOdsABFX+sC2sins2dssb
230 14 a1i φO=sABFX+sC2sins2
231 230 oveq2d φDO=dsABFX+sC2sins2ds
232 231 fveq1d φOs=dsABFX+sC2sins2dss
233 232 fveq2d φOs=dsABFX+sC2sins2dss
234 233 breq1d φOsbdsABFX+sC2sins2dssb
235 234 rexralbidv φbsdomOOsbbsdomOdsABFX+sC2sins2dssb
236 229 235 mpbird φbsdomOOsb
237 22 236 jca φdomO=ABbsdomOOsb