Metamath Proof Explorer


Theorem hoidmv1le

Description: The dimensional volume of a 1-dimensional half-open interval is less than or equal to the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is one of the two base cases of the induction of Lemma 115B of Fremlin1 p. 29 (the other base case is the 0-dimensional case). This proof of the 1-dimensional case is given in Lemma 114B of Fremlin1 p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmv1le.l L = x Fin a x , b x if x = 0 k x vol a k b k
hoidmv1le.z φ Z V
hoidmv1le.x X = Z
hoidmv1le.a φ A : X
hoidmv1le.b φ B : X
hoidmv1le.c φ C : X
hoidmv1le.d φ D : X
hoidmv1le.s φ k X A k B k j k X C j k D j k
Assertion hoidmv1le φ A L X B sum^ j C j L X D j

Proof

Step Hyp Ref Expression
1 hoidmv1le.l L = x Fin a x , b x if x = 0 k x vol a k b k
2 hoidmv1le.z φ Z V
3 hoidmv1le.x X = Z
4 hoidmv1le.a φ A : X
5 hoidmv1le.b φ B : X
6 hoidmv1le.c φ C : X
7 hoidmv1le.d φ D : X
8 hoidmv1le.s φ k X A k B k j k X C j k D j k
9 snidg Z V Z Z
10 2 9 syl φ Z Z
11 10 3 eleqtrrdi φ Z X
12 5 11 ffvelrnd φ B Z
13 4 11 ffvelrnd φ A Z
14 12 13 resubcld φ B Z A Z
15 14 rexrd φ B Z A Z *
16 pnfxr +∞ *
17 16 a1i φ +∞ *
18 14 ltpnfd φ B Z A Z < +∞
19 15 17 18 xrltled φ B Z A Z +∞
20 19 ad2antrr φ A Z < B Z sum^ j vol C j Z D j Z = +∞ B Z A Z +∞
21 id sum^ j vol C j Z D j Z = +∞ sum^ j vol C j Z D j Z = +∞
22 21 eqcomd sum^ j vol C j Z D j Z = +∞ +∞ = sum^ j vol C j Z D j Z
23 22 adantl φ A Z < B Z sum^ j vol C j Z D j Z = +∞ +∞ = sum^ j vol C j Z D j Z
24 20 23 breqtrd φ A Z < B Z sum^ j vol C j Z D j Z = +∞ B Z A Z sum^ j vol C j Z D j Z
25 simpl φ A Z < B Z ¬ sum^ j vol C j Z D j Z = +∞ φ A Z < B Z
26 simpr φ A Z < B Z ¬ sum^ j vol C j Z D j Z = +∞ ¬ sum^ j vol C j Z D j Z = +∞
27 nnex V
28 27 a1i φ A Z < B Z ¬ sum^ j vol C j Z D j Z = +∞ V
29 3 a1i φ X = Z
30 snfi Z Fin
31 30 a1i φ Z Fin
32 29 31 eqeltrd φ X Fin
33 32 adantr φ j X Fin
34 11 ne0d φ X
35 34 adantr φ j X
36 6 ffvelrnda φ j C j X
37 elmapi C j X C j : X
38 36 37 syl φ j C j : X
39 7 ffvelrnda φ j D j X
40 elmapi D j X D j : X
41 39 40 syl φ j D j : X
42 1 33 35 38 41 hoidmvn0val φ j C j L X D j = k X vol C j k D j k
43 3 prodeq1i k X vol C j k D j k = k Z vol C j k D j k
44 43 a1i φ j k X vol C j k D j k = k Z vol C j k D j k
45 2 adantr φ j Z V
46 11 adantr φ j Z X
47 38 46 ffvelrnd φ j C j Z
48 41 46 ffvelrnd φ j D j Z
49 volicore C j Z D j Z vol C j Z D j Z
50 47 48 49 syl2anc φ j vol C j Z D j Z
51 50 recnd φ j vol C j Z D j Z
52 fveq2 k = Z C j k = C j Z
53 fveq2 k = Z D j k = D j Z
54 52 53 oveq12d k = Z C j k D j k = C j Z D j Z
55 54 fveq2d k = Z vol C j k D j k = vol C j Z D j Z
56 55 prodsn Z V vol C j Z D j Z k Z vol C j k D j k = vol C j Z D j Z
57 45 51 56 syl2anc φ j k Z vol C j k D j k = vol C j Z D j Z
58 42 44 57 3eqtrd φ j C j L X D j = vol C j Z D j Z
59 58 mpteq2dva φ j C j L X D j = j vol C j Z D j Z
60 fveq2 k = l a k = a l
61 fveq2 k = l b k = b l
62 60 61 oveq12d k = l a k b k = a l b l
63 62 fveq2d k = l vol a k b k = vol a l b l
64 63 cbvprodv k x vol a k b k = l x vol a l b l
65 ifeq2 k x vol a k b k = l x vol a l b l if x = 0 k x vol a k b k = if x = 0 l x vol a l b l
66 64 65 ax-mp if x = 0 k x vol a k b k = if x = 0 l x vol a l b l
67 66 a1i a x b x if x = 0 k x vol a k b k = if x = 0 l x vol a l b l
68 67 mpoeq3ia a x , b x if x = 0 k x vol a k b k = a x , b x if x = 0 l x vol a l b l
69 68 mpteq2i x Fin a x , b x if x = 0 k x vol a k b k = x Fin a x , b x if x = 0 l x vol a l b l
70 1 69 eqtri L = x Fin a x , b x if x = 0 l x vol a l b l
71 70 33 38 41 hoidmvcl φ j C j L X D j 0 +∞
72 eqid j C j L X D j = j C j L X D j
73 71 72 fmptd φ j C j L X D j : 0 +∞
74 icossicc 0 +∞ 0 +∞
75 74 a1i φ 0 +∞ 0 +∞
76 73 75 fssd φ j C j L X D j : 0 +∞
77 59 76 feq1dd φ j vol C j Z D j Z : 0 +∞
78 77 ad2antrr φ A Z < B Z ¬ sum^ j vol C j Z D j Z = +∞ j vol C j Z D j Z : 0 +∞
79 28 78 sge0repnf φ A Z < B Z ¬ sum^ j vol C j Z D j Z = +∞ sum^ j vol C j Z D j Z ¬ sum^ j vol C j Z D j Z = +∞
80 26 79 mpbird φ A Z < B Z ¬ sum^ j vol C j Z D j Z = +∞ sum^ j vol C j Z D j Z
81 13 ad2antrr φ A Z < B Z sum^ j vol C j Z D j Z A Z
82 12 ad2antrr φ A Z < B Z sum^ j vol C j Z D j Z B Z
83 simplr φ A Z < B Z sum^ j vol C j Z D j Z A Z < B Z
84 eqid j C j Z = j C j Z
85 47 84 fmptd φ j C j Z :
86 85 ad2antrr φ A Z < B Z sum^ j vol C j Z D j Z j C j Z :
87 eqid j D j Z = j D j Z
88 48 87 fmptd φ j D j Z :
89 88 ad2antrr φ A Z < B Z sum^ j vol C j Z D j Z j D j Z :
90 3 eleq2i k X k Z
91 90 biimpi k X k Z
92 elsni k Z k = Z
93 91 92 syl k X k = Z
94 93 54 syl k X C j k D j k = C j Z D j Z
95 94 rgen k X C j k D j k = C j Z D j Z
96 ixpeq2 k X C j k D j k = C j Z D j Z k X C j k D j k = k X C j Z D j Z
97 95 96 ax-mp k X C j k D j k = k X C j Z D j Z
98 97 a1i j k X C j k D j k = k X C j Z D j Z
99 98 iuneq2i j k X C j k D j k = j k X C j Z D j Z
100 99 a1i φ j k X C j k D j k = j k X C j Z D j Z
101 8 100 sseqtrd φ k X A k B k j k X C j Z D j Z
102 101 adantr φ x A Z B Z k X A k B k j k X C j Z D j Z
103 id x A Z B Z x A Z B Z
104 eqidd x A Z B Z Z x = Z x
105 opeq2 y = x Z y = Z x
106 105 sneqd y = x Z y = Z x
107 106 rspceeqv x A Z B Z Z x = Z x y A Z B Z Z x = Z y
108 103 104 107 syl2anc x A Z B Z y A Z B Z Z x = Z y
109 108 adantl φ x A Z B Z y A Z B Z Z x = Z y
110 elixpsn Z V Z x k Z A Z B Z y A Z B Z Z x = Z y
111 2 110 syl φ Z x k Z A Z B Z y A Z B Z Z x = Z y
112 111 adantr φ x A Z B Z Z x k Z A Z B Z y A Z B Z Z x = Z y
113 109 112 mpbird φ x A Z B Z Z x k Z A Z B Z
114 3 eqcomi Z = X
115 ixpeq1 Z = X k Z A Z B Z = k X A Z B Z
116 114 115 ax-mp k Z A Z B Z = k X A Z B Z
117 fveq2 k = Z A k = A Z
118 93 117 syl k X A k = A Z
119 fveq2 k = Z B k = B Z
120 93 119 syl k X B k = B Z
121 118 120 oveq12d k X A k B k = A Z B Z
122 121 eqcomd k X A Z B Z = A k B k
123 122 rgen k X A Z B Z = A k B k
124 ixpeq2 k X A Z B Z = A k B k k X A Z B Z = k X A k B k
125 123 124 ax-mp k X A Z B Z = k X A k B k
126 116 125 eqtri k Z A Z B Z = k X A k B k
127 126 a1i φ k Z A Z B Z = k X A k B k
128 127 adantr φ x A Z B Z k Z A Z B Z = k X A k B k
129 113 128 eleqtrd φ x A Z B Z Z x k X A k B k
130 102 129 sseldd φ x A Z B Z Z x j k X C j Z D j Z
131 eliun Z x j k X C j Z D j Z j Z x k X C j Z D j Z
132 130 131 sylib φ x A Z B Z j Z x k X C j Z D j Z
133 ixpeq1 X = Z k X C j Z D j Z = k Z C j Z D j Z
134 3 133 ax-mp k X C j Z D j Z = k Z C j Z D j Z
135 134 eleq2i Z x k X C j Z D j Z Z x k Z C j Z D j Z
136 135 biimpi Z x k X C j Z D j Z Z x k Z C j Z D j Z
137 136 adantl φ Z x k X C j Z D j Z Z x k Z C j Z D j Z
138 elixpsn Z V Z x k Z C j Z D j Z y C j Z D j Z Z x = Z y
139 2 138 syl φ Z x k Z C j Z D j Z y C j Z D j Z Z x = Z y
140 139 adantr φ Z x k X C j Z D j Z Z x k Z C j Z D j Z y C j Z D j Z Z x = Z y
141 137 140 mpbid φ Z x k X C j Z D j Z y C j Z D j Z Z x = Z y
142 opex Z x V
143 142 sneqr Z x = Z y Z x = Z y
144 143 adantl φ Z x = Z y Z x = Z y
145 vex x V
146 145 a1i φ x V
147 opthg Z V x V Z x = Z y Z = Z x = y
148 2 146 147 syl2anc φ Z x = Z y Z = Z x = y
149 148 adantr φ Z x = Z y Z x = Z y Z = Z x = y
150 144 149 mpbid φ Z x = Z y Z = Z x = y
151 150 simprd φ Z x = Z y x = y
152 151 3adant2 φ y C j Z D j Z Z x = Z y x = y
153 simp2 φ y C j Z D j Z Z x = Z y y C j Z D j Z
154 152 153 eqeltrd φ y C j Z D j Z Z x = Z y x C j Z D j Z
155 154 3exp φ y C j Z D j Z Z x = Z y x C j Z D j Z
156 155 adantr φ Z x k X C j Z D j Z y C j Z D j Z Z x = Z y x C j Z D j Z
157 156 rexlimdv φ Z x k X C j Z D j Z y C j Z D j Z Z x = Z y x C j Z D j Z
158 141 157 mpd φ Z x k X C j Z D j Z x C j Z D j Z
159 158 ex φ Z x k X C j Z D j Z x C j Z D j Z
160 159 ad2antrr φ x A Z B Z j Z x k X C j Z D j Z x C j Z D j Z
161 160 reximdva φ x A Z B Z j Z x k X C j Z D j Z j x C j Z D j Z
162 132 161 mpd φ x A Z B Z j x C j Z D j Z
163 eliun x j C j Z D j Z j x C j Z D j Z
164 162 163 sylibr φ x A Z B Z x j C j Z D j Z
165 164 ralrimiva φ x A Z B Z x j C j Z D j Z
166 dfss3 A Z B Z j C j Z D j Z x A Z B Z x j C j Z D j Z
167 165 166 sylibr φ A Z B Z j C j Z D j Z
168 eqidd φ i j C j Z = j C j Z
169 fveq2 j = i C j = C i
170 169 fveq1d j = i C j Z = C i Z
171 170 adantl φ i j = i C j Z = C i Z
172 simpr φ i i
173 fvexd φ i C i Z V
174 168 171 172 173 fvmptd φ i j C j Z i = C i Z
175 eqidd φ i j D j Z = j D j Z
176 fveq2 j = i D j = D i
177 176 fveq1d j = i D j Z = D i Z
178 177 adantl φ i j = i D j Z = D i Z
179 fvexd φ i D i Z V
180 175 178 172 179 fvmptd φ i j D j Z i = D i Z
181 174 180 oveq12d φ i j C j Z i j D j Z i = C i Z D i Z
182 181 iuneq2dv φ i j C j Z i j D j Z i = i C i Z D i Z
183 170 177 oveq12d j = i C j Z D j Z = C i Z D i Z
184 183 cbviunv j C j Z D j Z = i C i Z D i Z
185 184 eqcomi i C i Z D i Z = j C j Z D j Z
186 185 a1i φ i C i Z D i Z = j C j Z D j Z
187 182 186 eqtr2d φ j C j Z D j Z = i j C j Z i j D j Z i
188 167 187 sseqtrd φ A Z B Z i j C j Z i j D j Z i
189 188 ad2antrr φ A Z < B Z sum^ j vol C j Z D j Z A Z B Z i j C j Z i j D j Z i
190 fvex C i Z V
191 170 84 190 fvmpt i j C j Z i = C i Z
192 fvex D i Z V
193 177 87 192 fvmpt i j D j Z i = D i Z
194 191 193 oveq12d i j C j Z i j D j Z i = C i Z D i Z
195 194 fveq2d i vol j C j Z i j D j Z i = vol C i Z D i Z
196 195 mpteq2ia i vol j C j Z i j D j Z i = i vol C i Z D i Z
197 eqcom j = i i = j
198 197 imbi1i j = i C j Z D j Z = C i Z D i Z i = j C j Z D j Z = C i Z D i Z
199 eqcom C j Z D j Z = C i Z D i Z C i Z D i Z = C j Z D j Z
200 199 imbi2i i = j C j Z D j Z = C i Z D i Z i = j C i Z D i Z = C j Z D j Z
201 198 200 bitri j = i C j Z D j Z = C i Z D i Z i = j C i Z D i Z = C j Z D j Z
202 183 201 mpbi i = j C i Z D i Z = C j Z D j Z
203 202 fveq2d i = j vol C i Z D i Z = vol C j Z D j Z
204 203 cbvmptv i vol C i Z D i Z = j vol C j Z D j Z
205 196 204 eqtri i vol j C j Z i j D j Z i = j vol C j Z D j Z
206 205 fveq2i sum^ i vol j C j Z i j D j Z i = sum^ j vol C j Z D j Z
207 206 a1i φ A Z < B Z sum^ j vol C j Z D j Z sum^ i vol j C j Z i j D j Z i = sum^ j vol C j Z D j Z
208 simpr φ A Z < B Z sum^ j vol C j Z D j Z sum^ j vol C j Z D j Z
209 207 208 eqeltrd φ A Z < B Z sum^ j vol C j Z D j Z sum^ i vol j C j Z i j D j Z i
210 oveq1 w = z w A Z = z A Z
211 193 breq1d i j D j Z i z D i Z z
212 211 193 ifbieq1d i if j D j Z i z j D j Z i z = if D i Z z D i Z z
213 191 212 oveq12d i j C j Z i if j D j Z i z j D j Z i z = C i Z if D i Z z D i Z z
214 213 fveq2d i vol j C j Z i if j D j Z i z j D j Z i z = vol C i Z if D i Z z D i Z z
215 214 mpteq2ia i vol j C j Z i if j D j Z i z j D j Z i z = i vol C i Z if D i Z z D i Z z
216 fveq2 i = h C i = C h
217 216 fveq1d i = h C i Z = C h Z
218 fveq2 i = h D i = D h
219 218 fveq1d i = h D i Z = D h Z
220 219 breq1d i = h D i Z z D h Z z
221 220 219 ifbieq1d i = h if D i Z z D i Z z = if D h Z z D h Z z
222 217 221 oveq12d i = h C i Z if D i Z z D i Z z = C h Z if D h Z z D h Z z
223 222 fveq2d i = h vol C i Z if D i Z z D i Z z = vol C h Z if D h Z z D h Z z
224 223 cbvmptv i vol C i Z if D i Z z D i Z z = h vol C h Z if D h Z z D h Z z
225 215 224 eqtri i vol j C j Z i if j D j Z i z j D j Z i z = h vol C h Z if D h Z z D h Z z
226 225 a1i w = z i vol j C j Z i if j D j Z i z j D j Z i z = h vol C h Z if D h Z z D h Z z
227 breq2 w = z D h Z w D h Z z
228 id w = z w = z
229 227 228 ifbieq2d w = z if D h Z w D h Z w = if D h Z z D h Z z
230 229 eqcomd w = z if D h Z z D h Z z = if D h Z w D h Z w
231 230 oveq2d w = z C h Z if D h Z z D h Z z = C h Z if D h Z w D h Z w
232 231 fveq2d w = z vol C h Z if D h Z z D h Z z = vol C h Z if D h Z w D h Z w
233 232 mpteq2dv w = z h vol C h Z if D h Z z D h Z z = h vol C h Z if D h Z w D h Z w
234 226 233 eqtr2d w = z h vol C h Z if D h Z w D h Z w = i vol j C j Z i if j D j Z i z j D j Z i z
235 234 fveq2d w = z sum^ h vol C h Z if D h Z w D h Z w = sum^ i vol j C j Z i if j D j Z i z j D j Z i z
236 210 235 breq12d w = z w A Z sum^ h vol C h Z if D h Z w D h Z w z A Z sum^ i vol j C j Z i if j D j Z i z j D j Z i z
237 236 cbvrabv w A Z B Z | w A Z sum^ h vol C h Z if D h Z w D h Z w = z A Z B Z | z A Z sum^ i vol j C j Z i if j D j Z i z j D j Z i z
238 eqid sup w A Z B Z | w A Z sum^ h vol C h Z if D h Z w D h Z w < = sup w A Z B Z | w A Z sum^ h vol C h Z if D h Z w D h Z w <
239 81 82 83 86 89 189 209 237 238 hoidmv1lelem3 φ A Z < B Z sum^ j vol C j Z D j Z B Z A Z sum^ i vol j C j Z i j D j Z i
240 239 207 breqtrd φ A Z < B Z sum^ j vol C j Z D j Z B Z A Z sum^ j vol C j Z D j Z
241 25 80 240 syl2anc φ A Z < B Z ¬ sum^ j vol C j Z D j Z = +∞ B Z A Z sum^ j vol C j Z D j Z
242 24 241 pm2.61dan φ A Z < B Z B Z A Z sum^ j vol C j Z D j Z
243 1 32 34 4 5 hoidmvn0val φ A L X B = k X vol A k B k
244 29 prodeq1d φ k X vol A k B k = k Z vol A k B k
245 volicore A Z B Z vol A Z B Z
246 13 12 245 syl2anc φ vol A Z B Z
247 246 recnd φ vol A Z B Z
248 117 119 oveq12d k = Z A k B k = A Z B Z
249 248 fveq2d k = Z vol A k B k = vol A Z B Z
250 249 prodsn Z V vol A Z B Z k Z vol A k B k = vol A Z B Z
251 2 247 250 syl2anc φ k Z vol A k B k = vol A Z B Z
252 243 244 251 3eqtrd φ A L X B = vol A Z B Z
253 252 adantr φ A Z < B Z A L X B = vol A Z B Z
254 volico A Z B Z vol A Z B Z = if A Z < B Z B Z A Z 0
255 13 12 254 syl2anc φ vol A Z B Z = if A Z < B Z B Z A Z 0
256 255 adantr φ A Z < B Z vol A Z B Z = if A Z < B Z B Z A Z 0
257 iftrue A Z < B Z if A Z < B Z B Z A Z 0 = B Z A Z
258 257 adantl φ A Z < B Z if A Z < B Z B Z A Z 0 = B Z A Z
259 253 256 258 3eqtrd φ A Z < B Z A L X B = B Z A Z
260 59 fveq2d φ sum^ j C j L X D j = sum^ j vol C j Z D j Z
261 260 adantr φ A Z < B Z sum^ j C j L X D j = sum^ j vol C j Z D j Z
262 259 261 breq12d φ A Z < B Z A L X B sum^ j C j L X D j B Z A Z sum^ j vol C j Z D j Z
263 242 262 mpbird φ A Z < B Z A L X B sum^ j C j L X D j
264 243 adantr φ ¬ A Z < B Z A L X B = k X vol A k B k
265 244 adantr φ ¬ A Z < B Z k X vol A k B k = k Z vol A k B k
266 251 adantr φ ¬ A Z < B Z k Z vol A k B k = vol A Z B Z
267 255 adantr φ ¬ A Z < B Z vol A Z B Z = if A Z < B Z B Z A Z 0
268 iffalse ¬ A Z < B Z if A Z < B Z B Z A Z 0 = 0
269 268 adantl φ ¬ A Z < B Z if A Z < B Z B Z A Z 0 = 0
270 266 267 269 3eqtrd φ ¬ A Z < B Z k Z vol A k B k = 0
271 264 265 270 3eqtrd φ ¬ A Z < B Z A L X B = 0
272 27 a1i φ V
273 272 76 sge0ge0 φ 0 sum^ j C j L X D j
274 273 adantr φ ¬ A Z < B Z 0 sum^ j C j L X D j
275 271 274 eqbrtrd φ ¬ A Z < B Z A L X B sum^ j C j L X D j
276 263 275 pm2.61dan φ A L X B sum^ j C j L X D j